
Learning Interstitial Lung Diseases CT Patterns
from Reports Keywords
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Abstract. The interpretation of CT exams from patients with intersti-
tial lung diseases depends on the correct assessment of associated CT
patterns. Computer aided diagnosis systems often study the automatic
identification of CT patterns, using the division of the lung in volumes of
interest and the use of supervised classification. Despite moderate suc-
cess, this approach has been hampered by the shortage of medical anno-
tations available to research groups. We propose a new method that col-
lects exams that contain CT patterns through the presence of keywords
in radiology reports, to learn pattern models using a multiple instance
learning algorithm. We compared our approach to the traditional use of
volumes of interest annotations for six interstitial lung diseases patterns.
The results show our approach performed comparatively in four of the
studied patterns, and poorly for the other two. The results suggest that
under certain conditions learning CT patterns from radiology reports is
possible, which could foster developments in computer aided diagnosis
systems.

1 Introduction

Interstitial Lung Diseases (ILD) are a set of more than 100 lung disorders that
affect the lung interstitium. Although jointly grouped, the several ILD sub-types
have different treatments and prognoses, and hence an accurate sub-type identifi-
cation is important for the disease management. ILD diagnosis normally requires
the analysis of the patient thorax CT, in which radiologists detect, locate and
characterize visual patterns (also denominated abnormalities or textures). These
patterns constitute the basis for radiologists’ conclusions, and are important el-
ements in the diagnosis process.

ILD Computer Aided Diagnosis (CAD) systems have studied the automatic
detection of CT patterns [6]. A popular approach is the division of the previ-
ously segmented lung in Volumes of Interest (VOI) and the use of supervised
classifiers to automatically label VOI into patterns types. Uchiyama et al. [8]
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used six specifically designed measures and artificial neural networks to classify
each region of interest (ROI) into one of 7 categories. Sluimer et al. [7] used a set
of Gaussian and Laplacian filters and a nearest neighbor classifier for 6 pattern
classes. Similar approaches were used in other pattern classification systems [2]
[1] [10].

The major limitation of supervised classification for CT pattern detection is
that it requires a set of radiologists to annotate a sufficient number of represen-
tative VOIs for each possible pattern. Because of the large number of patterns
and the variability in their presentation, and since most research groups have
limited medical support, the construction of a representative dataset is difficult
to accomplish. Consequently, most of the previous research on VOI classifica-
tion is either focused on a limited number of patterns [1] [8] [10] or pattern
superclasses which encompass different visually-like patterns, as hyperlucency
or high attenuation pattern [2] [7]. These simplifications reduce the ability of
CAD systems to significantly represent an ILD CT.

This paper presents a new method for building VOI classifiers that does not
depend on radiologists’ annotations. Our approach first automatically detects
exams containing the target pattern through the presence of keywords in the
radiology report associated with the exam. It subsequently employs a Multiple
Instance Learning (MIL) algorithm to locate the pattern VOI in the respective
exam. Since radiology reports are normally present in most hospital PACS, our
approach could ease the construction of VOI classifiers, and broaden its appli-
cation to a large number of patterns.

In this paper we will present and analyze our approach for VOI classification
of 6 classes of ILD patterns, representing each VOI by its mean Hounsfield
Unit (HU). Although the primitive model for VOI representation undermines
the performance, its simplicity will be useful for analyzing the potential and
limitations of the method.

MIL focuses on the problem of inferring concepts (which materialize as re-
gions in feature space) from sets of positive and negative bags. A bag is positive
if it contains at least one example of the concept, and negative if no concept
examples are present. MIL is based on the premise that concept regions have a
high concentration of examples from positive bags, and a small concentration of
negative bags examples. This is the principle behind the Diverse Density measure
introduced by Maron et al. [3], and the subsequent evolution expectation maxi-
mization diverse density [11] on which the method used in this paper is based.
MIL has already been applied to region classification from labels at an image
level (normally denominated weak labels) by considering each image as a bag
and each region an example [3]. The use of labels automatically collected from
associated text has also been described before for photo/video stocks [9]. This
paper studies the same approach for lung CT analysis and radiology reports.

We showed in a previous paper [4] that radiology reports can be used as image
labels to guide a manifold learning algorithm for content based image retrieval.
This paper applies the same idea to a different problem, the classification of CT
patterns.
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2 Materials and Methods

2.1 Dataset

All exams used in our approach were retrieved from a collection of 1110 scans
from 253 patients with one type of ILD. From these CT scans all radiology re-
ports were collected. Scans with no reports or on which the segmentation process
failed were discarded. Scans were acquired on a Siemens SOMATOM Sensation
Cardiac 64 or a Siemens EMOTION DUO (Siemens Healthcare, Erlangen, Ger-
many) with varied acquisition parameters. Reports are in Portuguese.

2.2 System Description

Overview This section describes our learning approach to design a CT pattern
classifier from exams selected by the presence of keywords in radiology reports.
Each pattern classifier is built independently of all others in an one-against-
all configuration, and consequently the method description refers to examples
containing/not containing the target pattern as positive/negative.

Our method consists of 4 consecutive stages: 1) Selection of exams from a
dataset using a list of keywords; 2) Transformation of exams into bags of VOI;
3) Removal of noisy bags; 4) Learning the pattern model using MIL. Each stage
is described in detail in the next sections.

Exam Collection The positive/negative exams were automatically extracted
from the dataset described in section 2.1, by detecting in the radiology reports
the presence of terms related to the patterns category. The terms lists were previ-
ously assembled by a radiologist and include multi-words expressions (eg. ground
glass), inflections (eg. nodule, nodules, nodular), variations in hyphenation (eg.
groundglass, ground-glass) and typographical errors. An English translation of
the main terms is in Annex A. The list of table 1 presents the number of scans
that contain the pattern terms, and the number of scans that only contain terms
from that pattern.

A positive exam set is collected from the exams set that only contain the
target term, while a negative exam set is collected from the exams set that
do not contain the target term. The system selects 50 positive and 50 negative
exams, randomly without replacement. If the number of positive exams is smaller
than 50, all available exams are considered. Since only the nodular pattern has
more than 50 positive exams, only for this pattern does the positive exams set
vary. The negative exams set varies in all patterns.

Exams into Bags of VOI The second stage transforms all CT scans previously
selected into bags of VOI. Our system was based in the infrastructure described
in [7], and required three consecutive steps: Resizing, segmentation and division
in VOI. This architecture is common in ILD CAD analysis systems [6].
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Table 1. Number of exams present in the dataset per lung pathological tissue for
hyperlucency (HL), ground glass (GG), honeycombing (HC), crazy paving (CP), con-
solidation (Cons.) and nodular (Nod.) patterns. The total number of exams in the
dataset is 1110.

Tissue HL GG HC CP Cons. Nod.

# exams containing pattern 263 281 427 89 332 669
# exams only containing pattern 37 25 77 8 23 166

In the first step all scans are resized to 128×128×128 voxels using a nearest
neighbor interpolation. Segmentation uses the algorithm described in [5]. It is
composed of two region growing processes, one to segment the main airways from
a seed point, and a second starting from the lowest HU values in the bronchi that
segments the parenchyma. The final phase divides the segmented lungs into VOI
using the algorithm detailed in [2]. It uses seed points based on local maxima
or minima with a minimum distance of 5 voxels. A volume growing algorithm
is then applied until volumes collide based in an acceptance rule that equally
takes into account the distance to the seed point and the difference in HU values
to the VOI mean. Division based in homogeneous regions was previously shown
to improve over a square grid [6]. In this preliminary work we will only use the
mean of the HU value to describe each VOI.

Figure 1 a) contains the HU distributions for all points from hyperlucency
positive bags (Positive) and hyperlucency negative bags (Negative). It can be
observed a skewness of the positive set distribution to lower HU values.

Removing Noisy Exams Selecting exams based on the presence of terms
in radiology reports is inherently noisy. The presence of the term might be to
indicate its negation (”absence of nodules”) or the image abnormality might
be too small to be significant (”insignificant fibrosis in upper lobe”). The non
presence of terms also does not imply its absence. In fact it is frequent that follow-
up exams do not describe the findings present, but only pinpoint evolutions. The
noisy nature of this process is visible in fig.1 b) where the distribution of VOI
HU values on each bag containing hyperlucency terms is represented.

The third stage is responsible for removing bags which have a VOI distribu-
tion incoherent with the global VOI distribution, that is with the distribution of
all VOI of all bags. The detection of incoherent bags is based on the Kolmogorov-
Smirnov test between each bag points, with the distribution of all positive points
(Dpos) and with the distribution of all negative points (Dneg). The positive bags
for which the probability of belonging to Dpos is smaller than to belonging to
Dneg are removed. Analogously negative bags for which the probability to belong
to Dpos is larger than belonging to Dneg are also removed.

This process is exemplified in fig. 1 for hyperlucency terms. Fig. 1 a) and
fig. 1 b) presents, respectively, the global and positive bags distributions prior to
this stage, and fig. 1 c) and d) the global and positive bag distributions after this
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Fig. 1. Kernel density estimation for the probability densities functions (PDF) of the
HU mean values of VOI before and after the removal of noisy exams for hyperlucency
bags. a) PDF density from all VOI from positive and negative exams; b) PDF from
each positive bag before the removal of noisy bags; c) PDF from each positive bag after
the removal of noisy bags; d) PDF density from all VOI from positive and negative
exams after removing noisy bags.

stage. It can be observed that the positive bags with higher HU are removed,
and that the final positive distribution has been skewed to lower HU values.

Learning Patterns Representations through Multiple Instance Learn-
ing The final step uses a MIL algorithm to, from the set of positive and negative
bags, infer a model of the radiological pattern. In this preliminary work the out-
come of this stage will be the probability of the VOI containing the pattern. The
MIL algorithm is based on the work described in [9], which is in itself based on
the expectation maximization diverse density method described in [11].

The MIL method requires a VOI description x (which contains the HU mean
of the VOI as described in section 2.2) and a binary label t which indicates the
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presence/absence of the respective pattern in the VOI. Each sample has an asso-
ciated binary label w which indicates if the bag it belongs to is positive/negative.
The goal of the method is to determine the posterior probability p(t|x). Since
variable t is not observed, it has to be inferred from p(t|x,w) which requires
the knowledge of p(x|t) which requires the knowledge of t. The EM algorithm is
applied to this problem by alternating between:

1) Calculate the likelihood of each pathology pn(x|t) weighted by the prob-
ability that the VOI contains the positive pattern pn−1(t = 1|x,w). We used a
weighted Gaussian kernel density estimation:

pn(x|t = 1) =

N∑

i=0

pn−1(ti = 1|xi, wi).K(xi, x) (1)

and,

pn(x|t = 0) =
N∑

i=0

(1− pn−1(ti = 1|xi, wi)).K(xi, x) (2)

where K is a Gaussian kernel, n the iteration and N the number of VOI.
2) From the model of each pathology pn(x|t), determine the likelihood that

each VOI is abnormal.

pn(t = 1|x,w) = pn(x|t = 1).p(t = 1|w)
(1− p(t = 1|w))pn(x|t = 0) + p(t = 1|w).p(x|t = 1)n

(3)

The learning algorithm stops when pn(t = 1|x,w) converges to a stable so-
lution. p0(t|x,w) is initialized as p(t|w).

The value of p(t = 1|w = 1) can be considered as a prior knowledge on
the average percentage of abnormal VOI in the positive examples and is set
to a constant a, while p(t = 0|w = 1) = 1 − a. Under the same reasoning
p(t = 1|w = 0) = 0 and p(t = 0|w = 0) = 1.

From the obtained likelihood p(x|t) the final posterior distribution can be
estimated through Bayes’ rule:

p(t = 1|x) = p(x|t = 1).p(t = 1)

p(x|t = 0).(1− p(t = 1)) + p(x|t = 1).p(t = 1)
(4)

where p(t = 1) is a predefined value.
The definition of a influences the estimation of p(t|x), specially for fea-

ture space regions where there is no clear majority in concentration of pos-
itive/negative bags. A large value of a gives a larger importance to positive
examples, and the opposite for a small a. In the limit for a = 0 no VOI will
be considered positive, and for a = 1 all VOI in positive bags are considered
positive.

Fig. 2 contains the evolution of the p(t|x,w) and p(x|t) for the hyperlucency
pattern. It is visible the progressive concentration of p(x|t) to regions where the
concentration of positive VOI is higher than negative VOI.
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Fig. 2. Evolution of the the posterior probability (left column) and the likelihood (right
column) for the described MIL algorithm and the hyperlucency pattern.
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3 Experiments and Results

3.1 Evaluation Dataset

A second database of 24 clinical dose thoracic CT scans was used to evaluate the
performance of our method. They were acquired between April 2004 and March
2010 on a Philips Mx8000 IDT or a Philips Brilliance iCT scanner (Philips Med-
ical Systems, Best, The Netherlands). Scans were taken at full inspiration with
patients in supine position. Data was acquired in spiral mode and reconstructed
to 512×512 or 768×768 matrices. Section spacing was between 0.8 and 5.0 mm
with 0.0 - 1.0 mm overlap. No contrast material was used.

The manual annotation system described in [2] was used by an intern ra-
diologist to mark each abnormal VOI into one of 7 classes: Hyperlucency, con-
solidation, honeycombing, ground glass, crazy paving, non-specific interstitial
pneumonia pattern and Nodular pattern. In addition, he indicated all VOIs
which contained more than one type of tissue as inhomogeneous. All remaining
VOIs were labeled as normal lung tissue.

3.2 Results

The dataset described in the previous section was used to build the true posterior
probability for each studied pattern (ptrue(t = 1|x)), and this distribution was
compared to the p(t = 1|x) obtained from our method in terms of their ability to
differentiate the VOI in the evaluation dataset. We considered p(t = 1) = p(t =
0) = 0.5. The binary classifier is a simple threshold on the posterior probability.

Table 2 presents the Area Under the Receiving Operation Curve (AUC)
for true and estimated posterior probabilities. The AUC was estimated from
the specificity/sensitivity for a progressively larger discriminant threshold. The
posterior probability was estimated 20 times for different sets of randomly picked
exams, and for different values of a. Table 2 presents the mean AUC, and in
parenthesis the standard deviation. It can be observed that our approach has a
slightly inferior performance to the true distribution for hyperlucency, ground
glass, crazy paving and honeycombing. For consolidation and nodular patterns,
the AUC is much lower. It can also be observed that there are slight differences
in performance depending on the value considered for the parameter a. The
standard deviation is small for all patterns, with the exception of consolidation.

Fig. 3 presents in the first column the initial positive/negative distributions
for honeycombing, crazy paving, consolidation and nodular patterns. In the sec-
ond column the true posterior distribution (ptrue(t = 1|x)), and one of the esti-
mated posterior distributions for different values of a. For the first two patterns
it can be observed that our approach produces a similar posterior distribution
to the VOI annotations. For the last two patterns the two distributions are very
different. In all cases it can be observed that the value of a influences the final
outcome of the distribution.
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Table 2. Area under the ROC curve for hyperlucency (HL), ground glass (GG), hon-
eycombing (HC), crazy paving (CP), consolidation (Cons.) and nodular (Nod.), from
the posterior distribution obtained from VOI annotations ptrue, and estimated by our
method p(t = 1|x) for different values of a. The p(t = 1|x) was estimated 20 times for
different sets of randomly picked exams. The table presents the mean AUC value for
all experiments and in parenthesis the standard deviation.

HL GG HC CP Cons. Nod.

ptrue(t = 1|x) 0.72 0.75 0.78 0.78 0.85 0.72

p(t = 1|x) a = 0.1 0.67
(0.003)

0.72
(0.003)

0.77
(0.001)

0.77
(0.003)

0.39
(0.18)

0.32
(0.008)

p(t = 1|x) a = 0.5 0.71
(0.004)

0.72
(0.006)

0.78
(0.001)

0.77
(0.003)

0.52
(0.25)

0.28
(0.003)

p(t = 1|x) a = 0.9 0.71
(0.005)

0.72
(0.003)

0.77
(0.008)

0.77
(0.004)

0.51
(0.25)

0.29
(0.013)

4 Discussion

This paper compared the performance of our approach, which learns represen-
tations of lung patterns through the detection of keywords in radiology reports,
with the conventional use of VOI annotations.

From the analysis of table 2 it can be observed that our approach performed
slightly worst for ground glass, honeycombing, crazy paving and hyperlucency
and poorly for consolidation and nodular patterns. The observation of fig. 3
shows that the resulting posterior probability is close to the true distribution
for honeycombing and crazy paving, and very different for consolidation and
nodular pattern.

The results suggest that under certain conditions, patterns can be approx-
imately modeled without the use of medical annotations. This is surprising in
our case because of the different nature of the train and evaluation datasets, the
primitive model chosen for the pattern representation and the low agreement
between medical doctors on the annotation of such patterns [2]. Although the
posterior distribution is not exactly matched, the deviations do not affect the
general performance, as they mainly exist for sparse regions and don’t affect the
posterior probability decisively.

There are nevertheless limitations. The performance of the results is affected,
although not dramatically, by the choice of a, and our approach fails in the
estimation of the nodular and consolidation patterns. Moreover the collection of
exams that exclusively contain the target pattern might bias the model.

The poor results of the last two patterns seems to originate on a deficient
choice of the initial exam sets, as the initial positive exams distribution in fig.
3, contrarily to what was expected, has a higher percentage of low HU values.
The large values of standard deviation for consolidation point that this behavior
is not consistent, and depends on the randomly chosen negative exams. This
suggests that the initial exam set was severely distorted by noisy exams.
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Fig. 3. Initial HU distributions for all samples from the positive/negative set (first
column), and final estimated posterior distributions p(t|x) and ptrue(t|x) for different
values of a (second column).
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There could be several reasons for this set distortion. For the nodular pattern
it is possible that in the positive set are included exams with solitary nodules,
which are a lot more common and would also contain the nodular keyword.
This is suggested by the large number of exams containing the nodule keywords.
More advanced information extraction techniques might be required for this
particular finding. In the case of consolidation there might exist cross-talk with
other patterns of high HU value in the negative exams set, which justifies the
large values for the standard deviation. VOI models which include additional
features could improve the performance of the consolidation pattern.

These limitations suggest that our approach can’t be directly applied to
all findings. Specific image/text approaches or manually picked exams might
be required for an acceptable performance. Nevertheless our system seems to
greatly reduce the amount of required medical intervention.

5 Conclusion

In this paper we presented a new approach for classifying representations of lung
CT patterns without a dataset of annotated VOI by radiologists. Our approach
used keywords detected in radiology reports to select exams that contain the
target pattern, and subsequently used a multiple instance algorithm to single
out the abnormal VOI.

We evaluated the proposed method by comparing its performance against the
traditional use of VOI annotations for 6 patterns related to ILD diagnosis. Our
approach had a comparable performance for four of the considered patterns,
and failed for two patterns due to a deficient exam collection. The presented
experiments suggest that our approach is effective if the initial exam set is not
excessively cluttered with noisy exams which are discordant with the true pattern
model. Despite these limitations results suggest that our approach greatly eases
the design of VOI classification systems. This could broaden its application to
a larger number of patterns, beyond the point where the use of traditional VOI
annotations is feasible, hence improving CAD systems CT representations.

Future improvements include the evaluation of our approach in more elabo-
rate VOI models with additional features, and the application of more advanced
information extraction/natural language processing techniques.
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A List of Keywords

These lists are translations from the original Portuguese terms, and for brevity
do not contain terms inflections, variations in hyphenation, and typographical
errors. Hyperlucency - (emphysema, hiper transparent, cyst, pneumotocele,
pneumotorax); Honeycombing - (honeycombing, fibrosis); Ground Glass -
(ground glass); Crazy Paving - (crazy paving); Consolidation - (consolida-
tion, condensation, opacity); Nodular - (nodule, micronodule, multinodular).
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