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2 Fraunhofer MEVIS, Project Group Image Registration, Lübeck, Germany
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Abstract. This paper proposes a novel method for image registration
of lung CT scans. Our approach consists of a procedure for automati-
cally establishing landmark correspondences in lung CT scan pairs and
an elaborate variational image registration scheme. The landmark infor-
mation is incorporated into the registration scheme as pre-registration
using the landmark-based Thin-Plate-Spline (TPS) method. The TPS
displacement field is improved by an additional minimization of an ob-
jective function consisting of a Normalized Gradient Field distance mea-
sure, a volume term, and a curvature regularizer. As a special property,
landmark correspondences as established by the TPS registration are
guaranteed to remain within a user-defined tolerance during the varia-
tional registration step.
The new method, called LMP (LandMark Penalty), is applied to the
20 publicly available DIR-Lab data sets and compared to state-of-the-
art methods. Particularly on the challenging COPDgene data sets, LMP
stands out with an average landmark error of 1.43 mm.

1 Introduction

Registration of lung CT images is a difficult task due to nonlinear motion, volume
change and induced shift of intensities. Furthermore, the task is aggravated by
the large number of small structures like vessels that move considerably [12].
Possible fields of application for lung image registration range from motion
correction during radiotherapy to improved assessment of treatment success or
pathogenesis by radiologists [20]. Thus, a lot of attention has been paid to image
registration of lung CT scans in recent years; see e.g. [2, 3, 5, 12, 25, 26]. This is
also reflected by a large number of participants of the EMPIRE10 challenge [20].

For a comprehensive literature overview on registration of lung CT scans we
refer to, e.g., [20]. Here, we focus on some state-of-the-art papers, which provide
quantitative registration results for the test data we are working on as well as
on papers proposing a methodology that combines feature- and intensity-based
registration, which is an approach we propose in this paper as well.
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As a first example, the DIR-Lab group published methods for 4D local trajec-
tory modeling (4DLTM) and component phase to phase (CPP) deformable image
registration in [2]. Recently, they developed a method based on compressible flow
image registration which is combined with a nonlinear filter to obtain the Least
median of squares Filtered Compressible flow (LFC) algorithm [3]. Schmidt-
Richberg et al. optimized parameters of a nonlinear variational intensity-based
registration by evaluation of the registration accuracy during run-time using
automatically detected landmark correspondences [26]. Rühaak et al. addition-
ally included volume regularization and lung segmentations into the variational
formulation of the registration problem based on Normalized Gradient Fields
image similarity measure and curvature regularization [25]. Recently, Heinrich
et al. described a discrete optimization scheme based on Markov random fields,
whose vertices build a minimum spanning tree, resulting in low run-times of
the registration [12]. In this paper, we follow the lines of Schmidt-Richberg et al.
and Rühaak et al. and augment the variational nonlinear registration approach of
Rühaak et al. by including automatically established landmark correspondences.
In contrast to Schmidt-Richberg et al., we directly integrate the landmark infor-
mation into the energy minimization problem.

For examples on the combination of intensity- and feature-based registration
methods see [13–15, 22]. Hellier and Barillot used additional information from
sulci in the context of registration of anatomical as well as functional brain im-
ages [13]. They employed robust estimators to adapt an optical flow registration.
Johnson and Christensen proposed a consistent combined landmark and inten-
sity based registration [14]. Their results with adaptions of Thin-Plate-Spline
registrations seem very promising, but unfortunately the evaluation was only
performed on two-dimensional data and the computational demand is very high
and not easily accomplishable for 3D data. The focus of Kybic and Unser was on
efficient registration based on B-spline deformation models as well as B-spline
image interpolation [15]. Furthermore, the integration of expert hints was possi-
ble by modelling landmark distances as potential energy of springs. And finally
and closest to our approach, Papademetris et al. used a weighted functional that
consists of intensity and feature components [22]. However, none of these papers
on hybrid intensity- and feature-based registration is tackling the problem of reg-
istration of pulmonary images and only Hellier and Barillot used automatically
detected features [13]. Furthermore, all referenced methods used soft constraints
to incorporate the feature/landmark correspondences, which are not capable of
guaranteeing a maximal mismatch of corresponding features/points. The latter
aspect was overcome by Papenberg et al., who – as an extension of [7, 9] – devel-
oped an approach for combination of landmark- and intensity-based registration,
which even allows for individual tolerances for each landmark [23]. They, how-
ever, did neither integrate automatic landmark detection into the registration
process nor adressed registration of lung CT data.

Here, we introduce a novel combination of variational nonlinear registration
and automatically detected landmarks that is applied to pulmonary CT scan
pairs. As there might be some misdetections of features and the accuracy of the
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algorithm is limited by the voxel sizes, we restrict our model to an upper bound
for the maximal landmark distance but allow for small mismatches. The inte-
gration of the feature-based registration is intended to stabilize the registration
and improve robustness in presence of noise or reconstruction artifacts.

The remainder of the paper is organized as follows: Section 2 describes the
methodical aspects of our approach. The main ingredients are variational image
registration (Sect. 2.1), the integration of the landmark correspondences into
the registration (Sect. 2.2), and automatic landmark detection (Sect. 2.3). The
conducted experiments are detailed and evaluated in Section 3. Section 3.1 ex-
plains the used data and evaluation criteria; Section 3.2 contains the obtained
registration results. In Section 4, these results are discussed.

2 Methods

2.1 Variational Image Registration

The aim of image registration is to find a plausible transformation y : Rd → R
d

such that for a given template image T : ΩT → R the transformed image T (y)
becomes similar to a given reference image R : ΩR → R. The dimension of the
image data is denoted by d ∈ N and ΩT , ΩR ⊂ R

d are the considered domains.
We are handling this task by solving an unconstrained optimization problem.
The objective function consists of several terms that are explained step by step.
The basic model is equal to the one proposed by Rühaak et al. [25]

The similarity of two images is determined by the distance measure. We select
a variant of the Normalized Gradient Fields (NGF) [10] distance measure which
is well-suited for proper alignment of edges represented e. g. by vessels in the
lung CT data [25]:

D(T (y),R) :=

∫

Ω

1− 〈∇T (y(x)),∇R(x)〉2η
‖∇T (y(x))‖2η ‖∇R(x)‖2η

dx , (1)

with 〈a, b〉η := η2 +
∑d

i=1 aibi and ‖a‖2η := 〈a, a〉η. The edge parameter η ∈ R is
important to control the influence of noise in the data. We fixed η = 100 for all
experiments. A major advantage of NGF is its independence of absolute intensity
differences between corresponding areas in template and reference image as it
was designed specifically for multi-modal image registration. This feature pays
off especially in registration of images acquired during different breathing phases.
Here, intensity differences occur due to altered density of lung tissue and hence
changed absorption of X-rays during acquisition of CT data.

A regularizing functional guides the solution towards plausible solutions.
With the definition of a kernel function ykern it is possible to avoid a penaliza-
tion of reasonable transformations. We employ curvature regularization which
was introduced in [8]:

S(y) := 1

2

d∑

i=1

∫

Ω

(Δ(yi(x)− ykerni (x)))2 dx . (2)
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It favors smooth transformations, which is very important when adding land-
mark information into registration [17]. Furthermore its energy is similar to
the energy that is minimized during a landmark-based Thin-Plate-Spline (TPS)
registration [18]. The TPS pre-registration maps the automatically detected ref-
erence landmarks onto the template landmarks, cf. section 2.2. We consider
this TPS warp as plausible deformation and choose ykern = yTPS. The mod-
eled smooth deformation is justifiable because sliding motion of the rib cage is
eliminated by masking the images with a proper segmentation [25]. Lung seg-
mentations were generated with the method of Lassen et al. [16].

To achieve a proper global alignment of the lungs and their boundaries we
incorporate a lung mask penalty B(y) [24]. In terms of our segmentation masks
it equals a sum of squared differences over all voxels. Alternatively it is defined
for the binary functions bR : ΩR → {0, 1} and bT : ΩT → {0, 1} that equal one
for positions inside the lungs and zero otherwise:

B(y) := 1

2

∫

ΩR
(bT (y(x))− bR(x))

2
dx . (3)

Although the curvature regularization encourages smooth transformations
there is no guarantee that locally extreme volume changes and foldings of the grid
are avoided. We therefore add volume regularization to prevent singularities [24]:

V(y) :=
∫

ΩR
ψ(det∇y(x)) dx , (4)

with ψ : R → R ∪ {∞}, ψ(t) :=

{
(t−1)2

t , t > 0,

∞, t ≤ 0.
(5)

Now we explain how the landmark information is combined with the intensity-
based registration model.

2.2 Landmark integration

In the given context, landmarks are usually understood as characteristic points
of the image domain and, consequently, landmark correspondences as point cor-
respondences. The reference landmarks are denoted as rj ∈ R

d and the template
landmarks as tj ∈ R

d, j = 1, 2, . . . , L. We use landmarks to establish a Thin-
Plate-Spline solution, which satisfies the landmark conditions:

yTPS(rj) = tj , for all j ∈ {1, 2, . . . , L} . (6)

The TPS solution serves on the one hand as pre-registration and on the other
hand as kernel transformation for the regularizer. The nonlinear registration
might nevertheless negatively affect the successful landmark registration. We
want to maintain the correspondences within a small tolerance and employ a
log barrier method to restrict the transformation to a maximal displacement of
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the transformed reference landmarks by a′ ∈ R
+ millimeters. The squared eu-

clidean distance of the j-th transformed reference landmark to the corresponding
template landmark is calculated and denoted by fj(y):

fj(y) := ‖y(rj)− tj‖22 , j = 1, 2, . . . , L . (7)

The log barrier penalty P(y) is based on all fj(y) and a := (a′)2:

P(y) := −
L∑

j=1

log

(
1− fj(y)

a

)
. (8)

If any fj(y) ≥ a and hence x = 1− fj(y)/a ≤ 0 we set log(x) = −∞. This way
we ensure P(y) → ∞ if any fj(y) → a.

The sought transformation y is computed by solving an unconstrained opti-
mization problem which equals a minimization of the following joint functional:

J (y) := D(T (y),R) + αS(y) + βB(y) + γV(y) + δP(y)
!
= min . (9)

The four parameters α, β, γ, δ ∈ R
+ allow for an individual weighting of the

corresponding terms. The parameters were chosen empirically as α = 5, β = 1,
γ = 10−3, δ = 250 and a = 5 for all experiments.

A solution of (9) is obtained in a Discretize-then-Optimize scheme using
multilevel representations of the data [18]. By solving the problem from coarse
to fine resolution, the risk of getting stuck in local minima during optimization
is reduced and the multilevel approach acts as an additional regularizer. For
numerical optimization of the discretized objective functional J the L-BFGS
quasi-Newton method combined with Armijo line search and conjugate gradi-
ents solver was used [21]. If the initial deformation is feasible the line search
guarantees feasibility during further optimization despite of difficulties arising
from the terms P and V.

2.3 Automated Detection of Landmark Correspondences

The automated detection of landmark correspondences
(
rj , tj

)
, j = 1, 2, . . . , L,

in ΩR and ΩT is based on [28]. The applied algorithm consists of two phases:
identification of appropriate landmark candidates rcandj , j = 1, 2, . . . , L′  L,
in ΩR and transferring them to ΩT .

For identification of the rcandj , we apply the so-called Foerstner3D operator
to R. Retaining the original notation of [11], the operator is defined as

Foerstner3D :=
1

trace
(
(Kσ ∗ (∇R ∇RT ))

−1) , (10)

with Kσ being a Gaussian kernel of variance σ (here: σ = 1) and the structure
tensor ∇R ∇RT : ΩR → R

d×d. Voxels with high operator answers are inter-
preted as suitable candidates, i.e., the lung voxel with the highest Foerstner3D
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value is selected as first landmark candidate. Additional lung voxels with high
operator answers are then continuously added to the candidate set (until the
pre-defined maximum number L′ of candidates), with a minimum Euclidean
distance being postulated to be kept between the candidates to provide an ap-
proximately equal distribution of the landmarks within the lungs [19] (original
distance: 50 voxel; if no voxels with high operator values are available for this
value, the distance is iteratively decreased).

Similar to [28], we use a cross correlation (CC)-based blockmatching strat-
egy for transferring the candidates rj to ΩT . In [28], a two-step approach was
suggested: For each rj , a first block matching was performed using the original
intensity values of R and T , followed by a block matching based on the answers
of the differential operator applied for identification of the rj . To detect and re-
ject implausible transfers, the results of both runs were compared. This approach
has been reported to be robust especially for automatic landmark detection in
4D-CT data sets [6, 28]; however, for, e.g., landmark detection in normal and low
dose CT scan pairs, we observed only a small fraction of the detected landmark
candidates to be classified as being reliably transferred by this approach.

In this work, we adopt the idea of learning a TPS transformation in parallel
to the landmark candidate transfer, as originally proposed by Murphy et al. [19]:
Starting with the corner points of the bounding boxes of the lung masks and
a small set of candidates rj that are located in the upper region of the lungs
and feature high correlation values for the intensity-based block matching (cor-
relation coefficient > 0.7), we test the robustness of the block matching results
for the remaining candidates on a landmark-by-landmark basis by comparing
the block matched landmark position and its location as suggested by the TPS
warp. If both positions were within a three-voxel agreement, the correspondence(
rcandj , yTPS

(
rcandj

))
is used as additional supporting point of the (recalculated)

TPS warp; otherwise, the point matching is interpreted as not being reliable and
rejected. After testing all L′ landmark candidates, the resulting TPS transfor-
mation is – in the sense of a final correction step – again applied to the rejected
landmark candidates rcand,rejj : Assuming the TPS as being roughly correct on a
global scale, a local intensity- and CC-based block matching is performed in the
proximity of yTPS(rcand,rejj ) and the resulting correspondence added to the final
landmark correspondence set in the case of a high correlation value.

3 Experiments

3.1 Data and Evaluation

We used twenty publicly available data sets provided by the DIR-Lab [2, 4, 5] for
evaluation purposes. The data sets 1 to 10 are pulmonary 4D-CT data sets, for
which we used the scan during maximal expiration as template and the maximal
inspiration scan as reference image. The data sets 11 to 20 originate from the
COPDgene study. Here, we employed the inspiration scan as template and the
expiration scan as reference image.
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Table 1. Number of automatically detected landmarks located in the left lung (Lleft)
respectively in the right lung (Lright) and minimal pairwise euclidean distance in ref-
erence and template domain (values given in mm).

Case Lleft Lright Min. distance in ΩR Min. distance in ΩT
1 122 251 9.03 6.10
2 151 224 12.20 10.52
3 163 180 10.06 8.26
4 73 126 9.04 7.11
5 112 110 9.07 7.58
6 41 96 11.00 8.44
7 55 118 11.00 8.66
8 77 103 14.01 12.14
9 65 122 8.04 5.79
10 84 113 10.11 7.81
11 186 173 13.01 9.72
12 84 179 10.02 5.66
13 231 384 13.02 6.07
14 73 148 9.03 7.10
15 94 245 10.02 6.63
16 262 306 11.01 8.48
17 145 337 11.04 7.55
18 199 229 10.04 10.04
19 268 298 10.02 8.95
20 92 168 12.00 10.04

Each data set contains 300 landmark pairs that were manually annotated
by medical experts. These landmarks were used for evaluation of registration
accuracy but not during the registration process. Computing the distance of
landmarks after registration is a common procedure for evaluation, cf. e. g. [20].
That is why the statistics of landmark errors are widely published and can be
compared to the literature, e. g. [3, 12, 25, 26]. We directly compute the euclidean
distances between transformed reference and corresponding template landmark
for all 300 landmarks and compare means and standard deviations.

In detail, we compared the proposed method, called LMP (registration with
LandMark Penalty), our former approach without landmark usage (NLR ab-
breviation for NonLinear Registration) [25], the TPS solution and the gsyn
method [1, 27], which is the best ranked algorithm of the EMPIRE10 bench-
mark and part of the open-source ANTS library. According to [27], the images
were pre-processed before we applied the gsyn algorithm. First they were masked
with the same lung segmentations that we used in our methods. As second step
the data was normalized to the interval [0,1]. An affine pre-registration of the
lung masks preceded the registration of the pre-processed data; all parameters
were chosen to be equal to the ones reported in [27].
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Fig. 1. Overlay of reference (orange) and (transformed) template (blue) image in or-
thogonal views of the 8th case. Top row: Initial situation, middle row: Result of TPS
registration, bottom row: Result of LMP registration. Correctly aligned structures ap-
pear gray, particularly vessels appear white.

3.2 Results

Some properties of the automatically detected landmarks are given in table 1.
On average the right lung contains more landmarks than the left one which is
plausible because of the different volumes. Figure 1 shows registration results
as an overlay of reference and transformed template image. Visual inspection of
the middle row indicates a good alignment of large vessels and lung boundaries
by the pure landmark-based TPS solution. This serves as an excellent starting
point for the subsequent optimization by LMP (bottom row). A similar situation
is depicted in Figure 2 where the movement in the original images is obviously
large and makes the registration challenging. This is a property of all COPDgene
data sets (cases 11 to 20), cf. second column of Table 2.
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Fig. 2. Overlay of reference (orange) and (transformed) template (blue) image in or-
thogonal views of the 18th case (b). Top row: Initial situation, middle row: Result of
TPS registration, bottom row: Result of LMP registration. Correctly aligned structures
appear gray; in particular large vessels appear white.

The comparison of the tested methods with respect to landmark errors is
given in Table 2. The results for the NLR method by Rühaak et. al [25] slightly
differ from the published ones because we do not move the transformed reference
landmark to the next voxel center. Instead, we directly calculate the euclidean
distances in world coordinates. Concerning the first ten cases, our proposed
approach LMP shows good results with a mean error being in the order of
the inter-observer variability of the landmarks and close to the axial resolution,
cf. [2, 5]. The small standard deviation additionally increases reliability, which is
important for clinical applications. One can easily see that by integration of the
landmarks no benefit could be gained in comparison to NLR. Nevertheless, it
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Table 2. Comparison of means (standard deviations) of distances of 300 manually
annotated landmark pairs before and after registration of end-inspiration and end-
expiration phases of the DIR-Lab data. Values given in mm.

Case initial Observer error NLR gsyn our method TPS

1 3.89 (2.78) 0.85 (1.24) 0.98 (0.49) 1.00 (0.49) 0.95 (0.51) 0.99 (0.78)
2 4.34 (3.90) 0.70 (0.99) 0.96 (0.46) 1.00 (0.50) 0.94 (0.47) 0.97 (0.64)
3 6.94 (4.05) 0.77 (1.01) 1.09 (0.62) 1.13 (0.61) 1.07 (0.64) 1.27 (0.90)
4 9.83 (4.86) 1.13 (1.27) 1.36 (0.96) 1.37 (0.96) 1.35 (0.96) 1.93 (1.33)
5 7.48 (5.51) 0.92 (1.16) 1.25 (1.23) 1.34 (1.24) 1.26 (1.24) 1.90 (1.45)
6 10.89 (6.97) 0.97 (1.38) 1.11 (0.66) 1.11 (0.66) 1.10 (0.67) 1.94 (1.40)
7 11.03 (7.43) 0.81 (1.32) 1.04 (0.63) 1.11 (0.80) 1.05 (0.63) 2.02 (1.32)
8 15.00 (9.01) 1.03 (2.19) 1.14 (0.93) 1.24 (1.44) 1.13 (0.90) 2.11 (1.37)
9 7.92 (3.98) 0.75 (1.09) 1.07 (0.65) 1.12 (0.73) 1.07 (0.65) 1.83 (1.03)
10 7.30 (6.35) 0.86 (1.45) 1.03 (0.64) 1.05 (0.63) 1.03 (0.65) 1.78 (1.44)

Avg 1-10 8.46 (5.48) 0.88 (1.31) 1.10 (0.73) 1.15 (0.81) 1.10 (0.73) 1.67 (1.17)

11 26.33 (11.44) 0.65 (0.73) 1.39 (1.40) 1.21 (1.36) 1.26 (1.23) 3.69 (3.79)
12 21.79 (6.47) 1.06 (1.51) 2.36 (2.79) 3.01 (4.46) 2.02 (2.29) 4.10 (3.60)
13 12.64 (6.40) 0.58 (0.87) 1.18 (0.81) 1.24 (1.08) 1.14 (0.70) 1.56 (1.07)
14 29.58 (12.95) 0.71 (0.96) 1.57 (1.39) 1.38 (1.14) 1.62 (1.60) 4.39 (3.89)
15 30.08 (13.36) 0.65 (0.87) 1.44 (1.14) 1.31 (1.19) 1.47 (1.26) 3.63 (3.31)
16 28.46 (9.17) 1.06 (2.38) 2.08 (2.92) 1.49 (2.25) 1.38 (1.46) 2.69 (2.94)
17 21.60 (7.74) 0.65 (0.78) 1.18 (1.13) 1.24 (1.24) 1.22 (1.30) 2.25 (2.18)
18 26.46 (13.24) 0.96 (3.07) 1.65 (1.98) 2.09 (3.32) 1.63 (2.16) 3.47 (3.76)
19 14.86 (9.82) 1.01 (2.54) 1.13 (1.09) 1.18 (1.25) 1.12 (1.14) 2.20 (2.34)
20 21.81 (10.51) 0.87 (1.65) 1.44 (1.23) 1.63 (2.05) 1.45 (1.31) 4.00 (3.16)

Avg 11-20 23.36 (10.11) 0.82 (1.54) 1.54 (1.59) 1.58 (1.93) 1.43 (1.45) 3.20 (3.00)

Avg 1-20 15.91 (7.80) 0.85 (1.42) 1.32 (1.16) 1.36 (1.37) 1.26 (1.09) 2.44 (2.09)

does not interfere the variational registration. The gsyn method performs almost
as good as NLR/LMP and the TPS method is according to the landmark error on
manually annotated landmarks the worst one. However, TPS works surprisingly
well although it does not use intensity information. Especially in the first two
cases almost no difference to any of the other methods is visible. On data sets 11
to 20, a difference between NLR and LMP is visible. On average, the model that
integrates the landmark knowledge performs better than NLR. The gsyn method
performs well – as expected because gsyn is ranked first in the EMPIRE10
challenge – but on average the mean landmark error is 10 % larger than the value
of our proposed method. The TPS method, which was investigated as proof of
concept, is not as accurate as the other three test methods but, nevertheless, the
mean landmark error is dramatically decreased compared to the initial values.

Unfortunately there are no published results for the registration of the DIR-
Lab COPDgene data yet which makes a comparison impossible. In contrast a
lot of groups tested their methods on the DIR-Lab 4D datasets and we will
briefly report on their results. Each result has the format mean±standard de-
viation. Heinrich et al. achieved 1.43±1.30 mm [12] and Schmidt-Richberg et
al. attained 1.35±0.90 mm [26]. The DIR-Lab group presented two approaches
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that use information of intermediate scans for registration [2]. They evaluated
the registrations on larger sets of landmarks containing the 300 publicly avail-
able ones. 4DLTM achieves on average 1.35±1.47 mm and CPP 1.56±1.57 mm.
Their recently published LFC method [3] had on average 1.03±1.12 mm land-
mark error. All their evaluations were evaluated in a move to voxel center manner
meaning that the transformed reference landmark was moved towards the next
voxel center as the template landmark is always localized on the grid. After this
rounding procedure, the landmark distances were calculated. If we calculate the
distances the same way LMP achieves an average error of 0.95± 1.07 mm.

4 Discussion

We have presented a method for registration of lung CT scans that competes
successfully with several state-of-the-art algorithms on the 20 DIR-Lab data sets.
The integration of additional knowledge represented by automatically detected
landmarks makes the nonlinear registration very robust and provides an excellent
starting point. Additionally, the landmark penalty guarantees that successfully
registered automatically detected landmarks maintain a distance below a user-
defined threshold. We could show that this is especially useful on the more
difficult COPDgene data sets.
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