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Abstract In 13-37% of cases, lung cancer patients treated with radio-
therapy suffer from radiation induced lung disease, such as radiation in-
duced pneumonitis. Three dimensional (3D) texture analysis, combined
with patient-specific clinical parameters, were used to compute unique
features (n=2138). Principal component analysis (PCA) was used to re-
move highly correlated features and a series of support vector machines
(SVM) were used for classification in a leave one out scheme. On radio-
therapy planning CT data of 57 patients, (14 symptomatic, 43 asympto-
matic), the classifier obtained an area under the receiver operating curve
of 0.873 with sensitivity, specificity and accuracy of 92%, 72% and 87%
respectively. The combination of texture and clinical features demon-
strates a statistically significant performance increase over the use of
the clinical features alone. With further development the approach has
the potential to be used to predict the likelihood of patients developing
radiation induced pneumonitis in a clinical environment.

1 Introduction

Over the last two decades lung cancer has accounted for the majority of cancer
attributable deaths and in Scotland the incidence of lung cancer is amongst the
highest in the world [7,12]. Patients with stage I and stage II disease are treated
with radical radiotherapy if they are inoperable or decline surgery. For stage III
disease radical radiotherapy often combined with chemotherapy is the treatment
of choice. The exposure of lung tissue to ionising radiation during radiotherapy
can lead to physiological changes in the lung tissues and subsequently, radi-
ation induced lung injury. Radiation induced pneumonitis develops in 13-37% of
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patients after radiotherapy and causes reduced respiratory function in affected
patients [17]. Months to years after radiotherapy, pulmonary fibrosis may de-
velop - this is permanent scarring of the lung tissues and can lead to the serious
impairment of oxygen transfer. It is currently difficult to reliably predict whether
a patient is at a higher risk of radiation induced lung injury because the causal
mechanism of this condition is not well understood [2,19].

To date there has been research into predicting the risk by looking at patient
characteristics, chemotherapy factors and various dosimetric parameters. There
have also been investigations into the use of image analysis techniques for the
classification of existing lung disease, including fibrosis [1].

Figure 1. Single CT slice from a patient with lung cancer: A is a patient that did
not sustain radiation induced injury after radiotherapy. B is a patient that developed
radiation induced pneumonitis after radiotherapy. The red line is the lung volume as
outlined during the radiotherapy planning stage. Visually the scans show no differen-
tiating characteristics.

1.1 Pre-RT Dosimetric Parameters for Predicting the Risk of
Pneumonitis

Significant correlation has been observed between properties of the dose-volume
histogram (DVH) and the onset of radiation induced pneumonitis. A DVH is
calculated from the patient radiotherapy plan and the percentage of lung tissue
exposed to a particular dose is estimated - VDose. Several studies have shown
correlation between VDose and radiation induced pneumonitis [4]. Mean lung
dose (MLD), derived from the DVH, has been shown to correlate with pneu-
monitis [16]. Normal-tissue complication probability (NTCP) has also been used
to determine the risk of pneumonitis. NTCP assumes that the probability of
complications follows a sigmoidal dose-response relationship and uses mathem-
atical models based on the tolerance dose for whole organ irradiation and the
steepness of the dose-response curve to calculate the probability of lung damage
[15]. Dosimetric parameters, clinical parameters and the location of the tumour
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in the lung have been combined and used to classify patients with high and low
risk better than when only a single parameter has been used [13].

1.2 Post-RT Image Analysis and Existing Lung Disease

There has been a significant amount of research carried out on identifying regions
of the lung that have already changed due to lung disease. Texture analysis has
been used to classify unhealthy regions of lung tissue [14,10]. Volumetric texture
features have been used to classify interstitial lung diseases on CT images with
some success [20,21,22].

Here image analysis techniques were applied to the radiotherapy planning CT
scans, see Figure 1, to identify patients at a higher risk of developing radiation
induced injuries. Three dimensional texture analysis was used to create a series of
features for a number of patients. These features, together with patient-specific
clinical features, were used to define a feature space that was used in a supervised
classification scheme to predict the risk of pneumonitis from the planning CT
scan. We are aware of no previous work that has applied such texture analysis
to radiotherapy planning CT scans in an effort to predict the risk of induced
pneumonitis.

2 Materials and Methods

Radiotherapy planning CT scans (n=57) of patients with lung cancer treated at
the Edinburgh Cancer Centre in 2009 were selected for this study. All patients
were scanned using a 3 mm CT slice thickness, (IGE HiSpeed Fx/i, GE Medical
Systems, Milwaukee, WI, USA) resulting in a resolution of approximately 1 mm
in the axial plane with a 2048 grey-level range. Of the 57 patients, 14 developed
pneumonitis and 43 showed no symptoms of lung injury after treatment. The
presence of radiation induced lung injury was categorised by expert clinicians
invovled in the radiotherapy and follow up treatment of the patients with lung
cancer. The regions of the CT scans which were labelled as lung were extracted
from the DICOM images. Thresholding was applied to remove the bronchial
tree and a threshold implemented to replace blood vessels with the average pixel
value of surrounding tissue.

2.1 Clinical Features

A number of clinical and dosimetric features, which are measured in the normal
course of radical radiotherapy, were selected for use in the classification feature
space. These features were age, smoker/non-smoker, if the patient suffers from
asthma or similar conditions, T-stage, N-stage, if the patient was treated with
chemotherapy, the radiotherapy dose and number of fractions, the V20, V10, V5,
MLD and the size of the planning treatment volume (PTV).
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2.2 Texture Analysis

First Order Statistics (FOS) are derived from the grey-level histogram. This
is a simple approach which makes use of standard descriptors to characterise a
region. The features, however do not take into account the spatial relationships
and the correlation between pixels. The seven common features calculated are
mean, variance, coarseness, skew, kurtosis, energy and entropy.

Grey Level Co-occurrence Matrices (GLCMs) are used to generate second
order statistics. An entry (i, j) in a GLCM is the probability of finding a pixel
with grey-level i at a distance ds and angle α from a pixel with grey-level j. In
3D, 13 GLCMs are required to describe the texture in all directions for each ds.
In order to extract information from the GLCMs Haralick et al. [11] proposed a
set of 14 local features. Many of these features can be highly correlated, therefore
feature reduction or selection used prior to classification.

Grey Level Run Length Matrices (GLRLMs) contain information on the
run of a grey-level in a particular direction [9]. The run-length is the number
of pixels in a run. Fine textures will be dominated by short run-lengths, while
coarse textures will be dominated by longer run-lengths. GLRLM methods are
analogous to the GLCM method: 13 GLRLMs are used to describe texture in
the same manner as the GLCMs. GLRLMs were first introduced by Galloway
[9]: “The [GLRLM] matrix element (i, j) specifies the number of times that the
picture contains a run of length j, in the given direction, consisting of points
having grey level i (or lying in grey level range i).” Eleven features that describe
the texture of the image are calculated from the GLRLMs.

Grey Level Size Zone Matrices (GLSZMs) are analogous to GLRLMs, but
instead of measuring the length of a run in a particular direction, the size of
a connected region of the same grey level is measured [18]. An entry (i, j) in a
GLSZM is the probability of finding a connected region with grey-level i and of
size j within an image. This method can easily be used in 2D or 3D and the
same features are extracted as from GLRLMs, for example, long run emphasis
becomes large zone emphasis. This leads to the calculation of 11 features for
each GLSZM.

Gabor Filters were first defined by Gabor in one dimension [8] and later
extended by Daugman to 2D [6], which have the ability to model the orientation
and frequency sensitivity of the human visual system. Here 3D Gabor filters were
used where the filter was a Gaussian kernel function modulated by a sinusoidal
plane wave defined as:

ϕf,θ,φ = S×exp
(

−
((

x′
σx

)2
+

(
y′

σy

)2
+

(
z′
σz

)2
))

×exp (j2π(xu + yv + zw)),

where u = Fsinφcosθ, v = Fsinφsinθ w = Fcosφ, [x′y′z′]T = R × [xyz]T , S is
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a normalisation scale and F =
√

u2 + v2 + w2 is the amplitude of the complex
sinusoid wave with frequency (u, v, w). θ ∈ (0 ≤ θ < π) and φ ∈ (0 ≤ φ < π) are
the orientations of the wave vector in the 3D frequency domain and σx, σy, σz

define the width of the Gaussian envelope in the x, y and z axis respectively. R
defines the rotation matrix for transforming the Gaussian envelope to coincide
with the orientation of the sinusoid. Features are calculated by generating dif-
ferent Gabor filters using a range of φ, θ and F . For each filter the energy after
convolution is calculated and this results in one feature being generated per fil-
ter. Using F = [25 : 25 : 100], θ = [−π/3 : π/6 : π/2] and φ = [−π/3 : π/6 : π/2],
144 features are generated per image.

2.3 Feature Reduction

To remove highly correlated features and to reduce the size of the feature set
before training PCA was used. PCA is a well demonstrated method for mapping
features into a linear sub-space while retaining maximal variance. A normalised
feature matrix, X, is constructed: where each row corresponds to features calcu-
lated from a patient and each column corresponds to a particular feature. The
reduced feature matrix, Z, in the new sub-space is, Z = XU′

red, where U′
red is

constructed via the singular value decomposition of the covariance matrix, Σ,
which is given by Σ = 1

m X′X, where m is the number of rows in matrix X.
The singular value decomposition of Σ provides two matrices of interest;

U: the eigenvectors of X, and S: the eigenvalues (on the diagonal) of X. U′
red

is then constructed from U, by retaining the first k eigenvectors which retain
V % of the variance in the data. That is the smallest value of k that satisfies
(
∑k

i=1 Sii/
∑m

i=1 Sii) ≥ V . The drawback of PCA is that it obfuscates the re-
lative importance of the original features in X as each new feature in Z is a
linear combination of the original features in X. This, unfortunately, means that
the identity of the features that are of greatest importance to the classification
scheme are unknown.

2.4 Classification

A Support Vector Machine (SVM) [5] is a supervised learning model. The model
is constructed by first mapping our feature space into a high order space using a
kernel function. This allows for the generation of a non-linear decision boundary.
The decision boundary is then constructed by finding a hyperplane which sep-
arates the data in the new feature space. The hyperplane which is furthest from
the data points (the one that maximises the margin) is chosen. This decision
boundary can then be used to classify new data points.

A Gaussian kernel SVM was used in this work. Both the γ parameter in
the kernel and the soft margin parameter C, were optimised by a grid search
on a cross validation set. Once these parameters had been tuned, the SVM was
trained and a model generated for classification. In this work libsvm [3], an open
source SVM library, was used.
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3 Results

A total of 2125 texture features, in addition to 13 clinical features, were cal-
culated on each of the 57 cases: 7 first order features, 11 GLSZM features, 143
GLRLM features (11 features×13 directions), 1820 GLCM features (14 features×
13 directions × 10 distances) and 144 Gabor features. In order to calculate the
features, each image was scaled to 8, 16, 32 and 64 grey-levels. PCA was per-
formed on the feature matrices prior to SVM, leave one out, classification. The
training set used during leave one out classification used either all the cases or
consisted of a balanced training set with equal numbers of patients in each class
to attempt to overcome potential training bias.

3.1 Classification Performance

The maximum classification performance was: Area Under Reciever Operator
Curves (ROC) = 0.873, Sensitivity = 92%, Specificity = 72%, and Accuracy =
87%. This was achieved using an SVM trained with a balanced training set of
all the texture features combined with the clinical features and PCA reduction
applied to the data with 95% of the variance retained.

The results of the best performing classifiers are presented in Table 1.

Table 1. Best performing classifiers with performance metrics. Each classifier was
implemented in a leave one out scheme using CT scans from 57 patients, of which
14 went on to develop pneumonitis and the rest remained healthy. The table shows
whether PCA was used, and if so, how much variance was retained in the feature set.

Classifier Grey Features Used PCA Variance TP TN FP FN Sensitivity Specificity Accuracy Area Under
Levels For Classification retained/% ROC

SVM-balanced 8 All texture with clinical Yes 95 13 31 12 1 0.923 0.721 0.772 0.873
SVM-balanced 8 All texture with clinical No n/a 13 33 10 1 0.929 0.767 0.807 0.867
SVM-balanced 16 All texture with clinical Yes 99 11 36 7 3 0.786 0.837 0.825 0.804
SVM-balanced 8 GLCM Features Yes 99 12 33 10 2 0.857 0.767 0.790 0.823
SVM-balanced 64 Gabor Filter Features Yes 99 12 28 15 2 0.857 0.651 0.702 0.804
SVM 8 All texture features Yes 99 12 35 8 2 0.857 0.814 0.825 0.794
SVM 16 All texture features No n/a 11 31 12 3 0.786 0.721 0.737 0.779
SVM 16 All texture features Yes 99 11 36 7 3 0.786 0.837 0.825 0.770
SVM 64 All texture features Yes 99 11 36 7 3 0.786 0.837 0.825 0.736
SVM 8 All texture features No n/a 11 33 10 3 0.786 0.767 0.772 0.732

Table 2 displays the average performance of the SVMs trained with balanced
data sets. The values have been averaged over the number of grey levels used
and the different values of PCA used.

Table 2 shows that there is a increase in performance when the texture fea-
tures are combined with the clinical features compared to using either set inde-
pendently. A t-test was used to determine whether the increase in performance,
when using both feature sets together, was statistically significant. These results
can be seen in Table 3.
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Figure 2. Receiver Operator Curves for the two best classifiers from Table 1.

Table 2. Average performance of the SVMs trained with a balanced training set. The
table displays an improvement in average performance when the texture features are
combined with the clinical features.

Specificity Sensitivity Accuracy Area Under ROC
All texture features with clinical 0.6899 0.7321 0.7003 0.6990

All texture features 0.6705 0.6964 0.6769 0.6521
Clinical features 0.6570 0.5655 0.6345 0.5815

4 Discussion

The results presented in Section 3 are very promising and demonstrate that an
SVM trained with the features described has the potential to predict the risk
of a patient developing radiation induced pneumonitis to a reasonable degree.
This suggests that there is a significant difference in the lung tissues between
patients who go on to develop the condition versus those who do not and that
this underlying difference can be characterised by the use of texture calculated
from radiotherapy planning CT images.

There is more work to be done in this area to build on the preliminary
results presented in this paper. An obvious next step would be to verify the
work with a much larger cohort of patients. More data would also remove the
need to perform leave one out classification, which was used to simultaneously
increase the amount of training and test data available. However, leave one out
classification would not be suited to a clinical implementation. Other extensions
of this work would be to incorporate an NTCP method, to develop a grading
system that predicts the severity of radiation pneumonitis or to add additional
features from the CT scans to improve classification performance.

It would also be useful to consider the severity of the induced lung injury.
There are varying degrees of radiation induced pneumonitis and it would be an
improvement to the method proposed in this paper to incorporate this in the
form of a multi-class classifier, rather than a binary classifier. At the current
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Table 3. p-values from a t-test comparing the performance of SVMs that were trained
with either the texture features combined with the clinical features or trained with one
of the individual feature sets. The results presented are for the SVMs trained with a
balanced training set. The p-values demonstrate a significant increase in performance.

"Texture with Clinical" vs "Clinical" Specificity Sensitivity Accuracy Area Under ROC
Significant Increase Yes Yes No Yes

p-value 0.2067 0.0101 0.0084 0.0136

"Texture with Clinical" vs "Texture" Specificity Sensitivity Accuracy Area Under ROC
Significant Increase Yes Yes Yes Yes

p-value 0.2839 0.2304 0.2127 0.1144

time, the patient data does not include this grading information, though we are
hopeful that this will be available in the near future.

The clinical application of this work would be to assist clinicians assess
which patients are at a higher risk of developing clinically significant radiation
induced pneumonitis and to adjust therapeutic management accordingly. The
work presented in this paper displays a promising avenue for further research
into the prediction of the risk of developing radiation induced pneumonitis with
the overall aim of improving the clinical outcome for patients with lung cancer.
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