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Abstract. Automated segmentation of the pulmonary lobes from chest
CT scans is a challenging problem that is yet to be solved reliably. There-
fore there is a need for a semi-automated solution in the case where the
automated solution fails. We present an approach that can be used for
correcting an existing lobe segmentation or segmenting the lobes from
scratch in a semi-automatic manner. The method is based on an iterative
approach that evolves a surface based on a voxel based fissure confidence
function, smooth prior and user input points. An advantage of the pro-
posed method is that it takes into account both inputs from user and the
appearance of fissures in the image, which in turn reduces the number of
user interactions required. The proposed method was trained and tuned
on 18 CT scans, and tested on 22 CT scans from different subjects with
either idiopathic pulmonary fibrosis or severe emphysema. On average,
the proposed method requires 37 user drawn line segments, which are
mostly short, to segment all lobes accurately. We did not notice a large
difference in the number of required line segments between starting from
scratch or correcting lobe segmented from an automated method, as it
usually requires only two lines in two different view plane from the user
to obtain a relatively accurate fissure from scratch.

1 Introduction

Segmentation of pulmonary lobes in chest computer tomography (CT) scans is
a prerequisite for many analyses of lung diseases in clinical trials [1, 2]. Various
automated solutions have been proposed [3–6]. As observed from the results in
LObe and Lung Analysis 2011 (refer to lola11.com/), the problem of automated
lobe segmentation is still far from solved. Therefore, there is a need for a semi-
automated method for correction purposes.

Despite the need for semi-automated solutions for correcting lobe segmen-
tation, relatively few publications on this topic is available in the literature [7,
6]. Ross et al. [7] proposed the use of thin plate splines that are controlled by
user input points for segmenting the fissures. Lassen et al. [6] proposed to model
fissures in the form of a 3D surface in which the surface can be raised or lowered
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by user inputted lines and Laplacian smoothing was used to ensure the overall
smoothness of the resulting surface.

In our previous work [8], we have presented the use of evolving surfaces for
segmenting the lobes automatically. In this paper, we will show how the evolving
surface method can be adapted for semi-automated lobe segmentation, either
for correcting an existing lobe segmentation or to segment lobes from scratch.
In addition to user input points, our proposed method also takes into account
fissure-like structures in the image via a fissure confidence function. This results
in more accurate fissure segmentation with less user interactions, especially for
cases with obvious fissures.

2 Methodology

Similar to [8], the proposed method consists of two main components, which are
the computation of fissure confidence function and the surface evolution algo-
rithm. A human user interacts with the surface evolution algorithm by providing
a set of user input points, which is used to further constrain the surface evolu-
tion algorithm. The user can then gradually add more points to the set until the
desired result is obtained.

We start by describing the fissure confidence function that is based on a
supervised fissure enhancement filter. This is followed by the surface evolution
algorithm, which is an iterative process that modifies a given surface such that
the overall fissure confidence is maximized, with the constraint that the resulting
surface must be smooth and near to user input points. Finally, the way the
proposed method is initialized is described.

2.1 Fissure confidence function

The fissure confidence function is based on the supervised enhancement filter
presented in van Rikxoort et al. [9]. The filter consists of a two stage K nearest
neighbor (KNN) classifier, that is trained to distinguish between fissure and non-
fissure voxels. In the first stage, a set of Gaussian derivative and Hessian based
features are computed at different scales from the CT scans for all training sam-
ples, which belong to either the fissure class or non-fissure class. The computed
features are then used to train the stage one KNN classifier, which estimates the
probability of a voxel being a fissure as the fraction of samples that are fissures
among the K nearest neighbors. In the second stage, Gaussian derivative and
Hessian based features of the training samples are computed from the first stage
probability image. The probability image based features are then combined with
the CT scan based features computed in the first stage. The combined features
are then used again to train a stage two KNN classifier, which results in the final
probability estimates of a voxel being a fissure.

Although the results of the supervised fissure enhancement filter are usually
good, they may be noisy at times, e.g., misclassifying voxels adjacent to a fissure,
resulting in a thick slab of detected fissure. In order to remove such noise and
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to better localize actual fissure voxels, the following fissure confidence function,
C, for a voxel x is used

C (x) =

{
P (x;σ) +

(
1−

∣∣∣λ2(x;σ)
λ1(x;σ)

∣∣∣
)
, if λ1 (x;σ) < 0

0, otherwise
(1)

where P (.;σ) is the probability image observed under a Gaussian kernel of scale
σ, and λ1 (x;σ) ≥ λ2 (x;σ) are the largest and the second largest eigenvalues
from the Hessian matrix computed at x from P (.;σ). Intuitively, the confidence
of a voxel will only have a non-zero value if its probability is higher than the
voxels nearby. In order to have a high confidence, a voxel must have a high
probability of belonging to the fissure and its surroundings in the probability
image resemble a plate like structure.

2.2 Surface evolution algorithm

A fissure is represented using a 3D surface, which is modeled using a height map
that resides on a 2D reference plane that has a normal n and passes through a
point x0. All points p ∈ R

2 on the 2D reference plane contain the the height
of the surface in the normal direction from the reference plane, which can be
mapped to a surface voxel coordinate via a function f : R2 → R

3.
The surface evolution algorithm uses a multi-scale approach, where the evo-

lution process starts at the coarsest scale and ends at the finest scale. During
the evolution process at a particular scale σ, the surface is iteratively evolved
such that the total confidence measure computed at σ is maximized, with the
constraint that the surface must be smooth and that it must be approximately
near a set of user inputted points P. Each iteration in the evolution process
consists of three steps, which are displacement, smoothing and reconstruction.

In the displacement step, the height of all the points in the height map are
adjusted independently, such that the total fissure confidence is maximized. This
is achieved by searching locally, within a radius of 10 voxels, for the nearest local
maxima in the confidence.

Once the new heights of all the points in the height map are determined,
the smoothing step is performed by applying a modified Laplacian smoothing
algorithm on the heights, where the update equation for the height of a point p
is defined as

ht+1 (p) = (1− ω (p))ht (p) +
ω (p)

|Ωp|

∑

q∈Ωp

ht (q) (2)

where Ωp is a set containing the immediate four neighbors of p and |Ωp| is
the cardinality of Ωp. The weight ω, which controls the amount of smooth-
ing occurred in each iteration of the modified Laplacian smoothing algorithm,
is designed such that less smoothing (lower weight) occur at points with high
confidence compared to those with lower confidence, and is defined as

ω(p) = min

(
ωmax

(
1−

C (f (p))

max(S)
, ωmin (3)
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for f(p) /∈ P in the height map, where S is the set containing the confidence
of all the points on the surface prior to smoothing, and ωmin and ωmax are the
minimum and maximum smoothing weight respectively. For f(p) ∈ P, ω is set
to ωmin.

The reconstruction step adjust the reference plane of the height map so that
it is optimal for the representation of the surface. By grouping voxel coordinates
of all points on the surface that have a non-zero fissure confidence X and the user
input points P, the weighted mean coordinates and weighted covariance matrix
are computed, where the weights of X corresponds to their fissure confidence
(in Equation 1) and the weight of P is a constant value of 2. The x0 of the new
reference plane is then the mean, and n is the eigenvector corresponding to the
smallest eigenvalue of the covariance matrix. The coordinates of X and P are
then mapped back to the height map constructed with the new reference plane,
with the height from P overwriting those from X. For those points on the height
map that do not correspond to any of the extracted coordinates, their heights
are interpolated via a linear tensioning scheme described in Dressler [10].

2.3 Initialization of surface evolution algorithm

The proposed method can be initialized either with a given lobe segmentation
or with user input points alone. Initialization of the proposed method with a
given lobe segmentation is straight forward.

For initialization with only a set of user input points P, we first estimate the
2D reference plane for representing the surface via the mean and the covariance
of P, similar to Section 2.2. The points in P are then projected onto the newly
formed surface. Using the projected points as seed, their heights are propagated
to neighboring points, where a new height for each of these points is obtained
by searching within a neighborhood of 10 voxels for the nearest point that forms
a maxima in terms of the fissure confidence. The same height propagation and
searching process is then repeated for the neighboring points and so on until the
heights of all points of the surface are obtained. The resulting surface is then
used for initializing the surface evolution algorithm in Section 2.2.

3 Experiments and results

Training of the supervised fissure enhancement filter and tuning of the parame-
ters for the proposed method was performed using a total of 18 chest CT scans
obtained from a research database, with slice thickness and in-plane resolution
ranging from 0.50 to 1.25 mm and 0.55 to 0.78 mm respectively. The method
was tested on chest CT scans from another research database, consisting of 22
scans from different patients with either idiopathic pulmonary fibrosis or severe
emphysema (forced expiratory volume in one second < 45%). The slice thickness
and in-plane resolution of the test set ranged from 0.6 to 3.0 mm and 0.59 to
0.80 mm respectively.
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As a preprocessing step, the lungs of all test scans were segmented using the
method presented in Brown et al [11]. Approximate nearest neighbor search-
ing [12] was used to implement the KNN classifiers of the supervised fissure en-
hancement filter, where the number of nearest neighbor K was set to fifteen [9]
and an error bound ε of 0.5 was used. To reduce computational time, the multiple
scales used for computing the confidence and performing the evolution process
were implemented in the form of a Gaussian pyramid. The probability image
from the supervised fissure enhancement filter was first filtered with a Gaussian
kernel of σ = 1 voxel, resulting in the image at scale level one. By filtering the
image with the same Gaussian kernel and subsampling the resulting image at a
factor of two, the image at the second scale level is obtained. The same process
is repeated to obtain images at higher scale level. A total of four scale levels
were used in this work. The finite difference method was used to approximate
Equation 1 using the images from the Gaussian pyramid.

To further reduce the computation time, the surface evolution algorithm
was modified to stop at the second finest level instead of the finest level. A
simple stopping criterion of stopping afterN iterations was used for the evolution
process. The value N was set to 10ns, where ns = 2, 3, 4 indicates scale level in
the evolution process, with ns = 2 being the second finest scale. The number
of smoothing iteration for the smoothing process was set to 100 for ns = 4,
and was divided by two whenever ns is decreased (proceeding to finer scale).
The minimum weight ωmin and maximum weight ωmax were set to 0.01 and 0.3
respectively.

Semi-automated segmentation of the lobes using the proposed method were
performed by the first author and approved by a board certified radiologist.
Initialization from scratch was used when a fissure detected from the automated
segmentation were too different from the truth. User input points required by
the proposed method were provided by drawing lines on either the axial, coronal
or sagittal viewing plane. Table 1 shows the number of interactions required for
the test cases, measured in the number of line segments drawn. Excluding the
computation time of the supervised enhancement filter, segmenting the lobes
interactively for a test case takes on average 20 minutes (including loading and
processing), depending on how easy it is to locate the fissures visually. Figure 1
shows surface rendering of the segmented lobes and the line segments provided
for the fissures in a left and a right lung.

Table 1. The number of line segments drawn by the user.

Left major Right major Right minor All fissures
fissure fissure fissure

Average 13.5 13.7 9.5 36.8
Standard deviation 5.0 4.8 4.1 7.8
Min 3 5 3 18
Max 20 25 19 47
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(a)

(b)

Fig. 1. Original CT scan overlaid with the segmented lobes (left), and the surface
rendering of the segmented lobes and user input points, with the upper lobe in green,
lower lobe in purple, middle lobe in red, input points for major fissure in blue and
input points for minor fissure in pink.

4 Discussion and conclusion

We have presented a generic approach that is suitable for segmenting lung lobes
both semi-automatically and automatically (as shown in previous work [8]). The
advantage of the proposed method as a tool for semi-automatic lobe segmenta-
tion is that it is capable of taking into account user inputs and image appearance,
and thus reducing the number of user inputted points, as seen from the Table 1
where it can take as low as three and no more than 25 line segments to get an
accurate segmentation of a fissure.

It should be noted that the majority of these line segments are very short, less
than half the length of the fissures in the view plane they are in, as observed in
Figure 1. Also, most of these short segments are meant to correct errors that are
less than one centimeter from the actual fissure, and thus they may be omitted
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if the task at hand does not require accurate lobe segmentation, e.g. lobe volume
analysis.

We did not notice a large difference in the number of required line segments
between starting from scratch or correcting lobe segmented from an automated
method. For the test cases where we start from scratch, two lines in two different
view planes are all that is needed to obtain a fairly accurate fissure.

Future work will be to improve runtime performance of the proposed method,
as currently it takes about 5 to 7 seconds to execute the evolution algorithm after
user points are changed. Among the possible solution would be to precompute
the fissure confidence instead of computing it on the fly. Also, the way the
proposed method is currently implemented, there is a loading and preprocessing
time for each fissure before the user can start the editing it. Taking advantage of
multi-threading technology by moving certain processing into background will
remove such wait time and thus further shorten user interaction time.
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