
Deformable Registration Combined with 3D SIFT 
Matching and Moving Least Squares 

Zisheng Li and Tsuneya Kurihara 

Central Research Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji-shi, Tokyo 
185-8601 Japan 

{zisheng.li.fj, tsuneya.kurihara.vn}@hitachi.com 

Abstract. Free-form deformation (FFD) is widely used in deformable image 
registration. FFD uses a regular grid of control points to generate image defor-
mation. Accurate optimization of the control-point displacement relies on an 
appropriate initial-deformation of the regular grid. In this work, a hybrid regis-
tration of landmark-based and free-form deformation is proposed and applied to 
lung CT images. Corresponding landmark-pairs are detected and matched by 
3D SIFT (scale-invariant feature transform). Using the landmark pairs, Moving 
Least Squares (MLS) is applied for deforming the regular grid. Utilizing the de-
formed control-point grid, a landmark-constrained FFD registration obtains a 
final registration result. Since this landmark-based deformation approach can 
obtain smooth and local deformation of the control-point grid, the proposed reg-
istration can directly start with the initialized control-point grid, without the 
need for any coarse-to-fine processing. It was experimentally demonstrated that 
the proposed hybrid-registration method outperforms conventioal FFD registra-
tion in terms of efficiency and accuracy.  

Keywords: deformable registration, landmark-based deformation, 3D SIFT, 3D 
MLS 

1 Introduction 

Image registration is one of the most fundamental research areas in medical-image 
processing. It aims to find a spatial transformation that maps points from one image, 
the moving image, to the corresponding points in another image, the fixed image. 
Moreover, it is categorized as rigid or non-rigid (deformable). Utilizing translations 
and rotations only, rigid registration maps a moving image to a fixed image, while 
deformable registration allows local deformation of the images. Although rigid regis-
tration is sufficient in certain circumstances, deformable registration (which provides 
accurate and local deformation) is required in more and more clinical cases, since 
tissues and organs of the human body deform, shrink, and grow over time. 

Deformable registration can be classified as feature-based methods, intensity-based 
methods, or a combination of the two. Feature-based methods extract and match cor-
responding landmarks and estimate a deformation field on the basis of the landmark 
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locations [1-2]. However, such methods need to interpolate the sparse set of land-
marks to obtain correspondences from non-feature locations. They therefore require 
automatic and high-accuracy matching of a large number of landmarks, which is not 
an easy task. Intensity-based methods use image intensity to derive the deformation 
field. Free-form-deformation (FFD) registration [3] is a widely used intensity-based 
method. It places a regular grid of control points on a moving image and obtains the 
deformation field from the displacement of the control points and B-spline functions. 
The FFD method therefore tends to incur a large computational cost, and it often 
requires an  appropriate starting point (i.e., initialization) for optimization of the de-
formation field, since the number of control points is typically large [4]. To provide 
an appropriate initialization of the control-point grid to guide the deformable registra-
tion, methods combining landmark-based registration and FFD registration have been 
proposed [5-6]. In [5], corresponding landmarks in coarse scale were located and used 
for determining a rigid registration as a starting point of multi-scale deformable regis-
tration. Such a rigid or affine registration, however, can only handle bony structures; 
it cannot provide an appropriate initialization for local deformation of human organs. 
In [6], to handle medical images with high resolution and large size, a registration 
framework consisting of two separate deformable-registration steps was proposed. A 
landmark-constrained deformable registration was proposed as an initialization step 
for the other dense deformable registration. However, the landmark-constrained regis-
tration described in [6] used a rigid registration as a starting point, possibly leading to 
misalignment. 

In this work, a hybrid registration of landmark-based and free-form deformation is 
proposed. Aiming to obtain an appropriate control-grid initialization that can handle 
local deformation of human organs, a landmark-based-deformation approach is de-
veloped. For detecting and matching corresponding landmark pairs, a robust feature-
point matching approach that widely used in computer vision literatures is utilized. 
Using the point-matching results, instead of a rigid/affine registration, smooth and 
local deformation are applied to the control-point grid. As a result, an appropriate 
starting point of FFD registration can be obtained. Using the initialized control grid, a 
landmark-constrained B-spline registration for obtaining a final registration result, 
without any coarse-to-fine processing, is also developed. 

2 Method 

This work aims to improve the efficiency and accuracy of deformable image registra-
tion by providing an appropriate starting point of the registration. It focuses on the 
initialization of the control-point grid. This initialization should be able to not only 
compensate global artifacts but also handle local deformation. Therefore, instead of 
the widely used rigid registration, landmark-based deformation of the control-point 
grid, for improving the initialization of FFD registration, is proposed. As shown in 
Fig. 1, the overall method (i.e., hybrid registration) consists of three steps: corre-
sponding-landmark detection and matching, landmark-based deformation of a regular 
control-point grid, and landmark-constrained B-spline registration. Corresponding 
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landmark pairs are detected and matched by 3D SIFT (scale-invariant feature trans-
form) [7]. Using the landmark pairs, Moving Least Squares (MLS) [8] is applied for 
deforming the control-point grid of B-spline registration. Using the deformed control-
point grid as a starting point, a landmark-constrained B-spline registration (for obtain-
ing the final registration result) is developed. SIFT can detect and match correspond-
ing feature points in different scales and rotations, and MLS can obtain smooth and 
local deformation of the control-point grid; therefore, the landmark-constrained regis-
tration can start directly with the initialized control-point grid, without the need for 
any coarse-to-fine processing. 

2.1 3D Landmark Detection and Matching 

For obtaining corresponding landmarks from pulmonary images, segmentation of 
blood vessels or bronchial airways [22-23], 3D operators for cornerness measure [24], 
and image-block matching techniques [25] are commonly utilized. However, ap-
proaches mentioned above are difficult to deal with changes of scaling and rotation 
robustly. On the other hand, in 2D image matching, SIFT is an effective approach and 
has been widely used since its original introduction by Lowe [21]. It focuses on ex-
tracting salient interest points that can be represented by stable feature descriptors. 
Such descriptors are invariant to changes of scaling, translation, and orientation. In 
the field of medical-image analysis, Cheung and Hamarneh extended the 2D SIFT 
approach to a multi-dimensional one [7]. Applications of an extended 3D SIFT to 

 
Fig. 1. Framework of the proposed method. 
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medical-image matching [18-19] and panoramic medical stitching [20] were also 
proposed. Accordingly, in the present study, the 3D SIFT method [7] is used for de-
tecting and matching corresponding landmarks. 

Detection of 3D Keypoints 
SIFT feature points can be detected by using difference-of-Gaussian (DoG) images 
[21]. For a medical image, which is usually a 3D volume, DoG images can be gener-
ated as follows [7]: 

 
 (1) 

 
where  is a constant multiplicative factor.  is obtained by smoothing 
original image  with variable-scale Gaussian filter : 

 

 (2) 

 
From such DoG images, local extrema can be detected at the pyramid level of . For 
voxel  in a DoG image with scale , the intensity of  is compared with those of its 
80 neighboring voxels (26 neighboring points at , 27 counterparts at scale , and 
27 counterparts at ). The voxel with the most or least extreme value of intensity 
is considered as a feature point. In this work, multi-scale searching parameters are set 
as  and . 

3D Keypoint Orientation 
Each detected keypoint as explained in the above section is assigned with a dominant 
orientation ( ) according to local image properties. The gradient orientation in 3D 
space is represented by two angles: azimuth  and elevation . The 3D gradient at 
location ( ) can be denoted as 

 

 (3) 

 
and the dominant orientation is defined as 

 

 (4) 
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where  are voxel sizes. A 2D histogram is produced by grouping gradients 
around a keypoint in bins that divide azimuth and elevation into sections at  inter-
vals. Peaks in this 2D histogram exceeding 80% of the largest peak are used to deter-
mine the dominant orientation.  

3D Feature Description and Matching 
Once the orientation of a keypoint is determined,  sub-regions surrounding 
the keypoint are sampled and rotated according to the orientation. For each sub-
region, magnitude of the gradient, weighted by a Gaussian window centered at the 
keypoint, is added to the corresponding bin, where eight bins for azimuth ( ) and 
four bins for elevation ( ). Finally, the feature vector is of 

 dimensions. 
The constructed SIFT features of a keypoint are converted to a single vector, and 

distances between a feature vector in one image is compared with every feature vector 
of the second image. A match is distinct when the ratio of the nearest-neighbor dis-
tance to the second-nearest one is below 60%, which is adopted in this work. 

Outlier Removal 
To improve the accuracy and robustness of landmark matching, outliers in the SIFT 
matching are removed by using a RANSAC algorithm [9] as follows: 
Step 1: 
Randomly select 3 landmark pairs from the obtained landmarks  and , and esti-
mate a rigid transformation  with the selected landmark pairs, where  repre-
sents a certain landmark among . 
Step 2: 
Apply  to all of landmarks , compute the distance between the transformed 
landmarks and their corresponding ones: . 
Step 3: 
When the above distance is smaller than a threshold , such landmarks are consid-
ered as inliers. This threshold is computed as , where  
represents the threshold value of a Chi-square distribution with degrees of freedom , 

 is the proportion of inliers that determined by the threshold,  is the standard 
deviation of . In this work,  and  are determined, and the resulting 
threshold value is . 
Step 4: 
Estimate the iteration number by 

 (5) 

where  is the current proportion of outliers. Equation (5) ensures that within  trials, 
the probability to obtain a sample set with no outliers is , which is set as 0.99. 
Step 5: 
Repeat steps 1-4 until the iteration number exceeds . 

Fifth International Workshop on Pulmonary Image Analysis -137-



Step 6: 
Select the obtained inliers with the largest number within  trials. 

2.2 Control-point Grid Deformation  

To obtain an appropriate initialization of an FFD registration, the regular control-
point grid is deformed by a landmark-based deformation approach. Thin-plate splines 
(TPS) [1] is a widely used non-rigid transformation model that utilizes sparse corre-
sponding landmarks as control points of the deformation. However, as for TPS, each 
landmark has a global effect on the transformation. As a result, the accuracy of the 
deformation is easily affected by outliers. On the other hand, MLS [8] was proposed 
for interactive animation in computer graphics. This approach is capable of producing 
local deformation with a small number of corresponding points. In other words, it can 
overcome the limitations of the landmarks’ global effect in the case of TPS. In recent 
years, therefore, MLS attracts more and more attention in regard to landmark-based 
registration. In [2] and [10], 3D corresponding landmarks were matched by weighted 
cross correlation and user annotation, respectively, and deformation of each voxel was 
obtained by MLS. In [11], the original 2D SIFT proposed by Lowe [21] was applied 
to detect and match corresponding landmarks for 2D brain images, and the original 
2D MLS was utilized for obtaining deformation of each pixel. However, to find trans-
formations of every pixel/voxel in an image is a time-consuming procedure, which 
lowers the efficiency of registration.  

In this work, landmark-based deformation is not applied for finding transfor-
mations of every image voxel in a registration; instead, it is utilized for obtaining 
deformation of the regular control-point grid, i.e., an initialization of an FFD registra-
tion. Since MLS can avoid global effects of each landmark, 3D MLS is adopted as the 
landmark-based deformation approach in the proposed registration framework.  

In MLS, aiming to find the best rigid transformation  of a control point  
on the fixed image, the following equation is minimized: 

(6) 

where  and  are corresponding landmark pairs obtained by SIFT matching;  is 
the landmark number; weights  have the form of least squares while being depend-
ent on distances between control point  and landmark ;  is set as 1.0 experimen-
tally. As a result, a unique transformation ( ) can be obtained for each control point 

; and such transformations can provide smooth and local deformation of the control 
points, on the basis of the corresponding landmark pairs.  

Since the control-point displacements obtained by MLS are reliable, the initial B-
spline curves used in the FFD registration are constructed so that they pass through 
the obtained control points. Definition points  of such B-spline 
curves can be calculated by the following equation: 
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where  are the control points obtained by MLS. In equation (7), since there are n 
equations and n+2 unknowns, to find a set of unique solutions, two boundary condi-
tions are required. In this work, the boundary conditions are set as  
and ; i.e., the curves are opened, and curvatures of two ends of such 
curves are 0. Utilizing cubic B-spline interpolation techniques in [26],  can be 
solved efficiently.  

2.3 Landmark-constrained FFD Registration 

The deformed control-point grid is used as a starting point of an FFD registration. To 
obtain faster and better convergence of optimization in the registration procedure, a 
landmark-constrained approach [6] is adopted. Geometric information of the land-
mark pairs is incorporated into cost function S in the optimization process. The result-
ing S is formulated as 

 
 (8) 

 
where  and  are the fixed and moving images;  is a displacement field of the 
moving image, obtained by B-spline functions; MI is mutual information [12] of  
and the transformed ; C is a bending-energy regularization term [3] calculated from 

 to enforce smooth deformation of ; P indicates the corresponding pairs;  
denotes displacements at these points given by the landmark matching results; and  
and  are weighting factors determined experimentally. In this manner, landmark-
matching results are also incorporated into the cost function of the deformable regis-
tration, aiming to make the optimization process converge in an accurate and fast 
way. In this work, the L-BFGS (limited-memory Broyden–Fletcher–Goldfarb–
Shanno) algorithm [13] is applied to the optimization procedure. 

 

3 Experimental Results 

3.1 Clinical Data for Evaluation 

Two sets of pulmonary CT images were used to evaluate the proposed method. The 
first dataset was composed of lung CT images from cases 1-5 of a DIR-lab dataset 
[2]. The provided images were originally cropped to include the entire rib cage and 
sub-sampled to 256×256 voxels in the axial plane. The image resolution was 0.97 to 
1.16 mm in the axial plane, and 2.5 mm in the z-direction. The second dataset, also 
from the DIR-lab dataset, was composed of lung CT images from cases 6-10 [14]. 
These images were not originally sub-sampled or processed in any way. The image 

Fifth International Workshop on Pulmonary Image Analysis -139-



resolution was 0.97 mm, with 512×512 voxels in the axial plane and 2.5 mm in the z-
direction. All the image pairs from the DIR-lab were measured at the extreme inhale 
and exhale phases, respectively.  

As ground-truth data for accuracy evaluation, corresponding landmarks were man-
ually annotated in the fixed and moving images by DIR-lab, and 300 landmarks per 
image were made publicly available [2, 14]. 

3.2 Evaluation Results 

Euclidean distances between the manually annotated landmarks and the transformed 
correspondences in the moving images were used to calculate the registration spatial 
error. The mean and standard deviation (SD) values of the Euclidean distances were 
obtained from the two datasets, respectively. 

To compare the performance of the proposed method with a state-of-the-art FFD-

Table 1. Parameters and strategies of registration. 

Control-grid initiali-
zation 

Coarse-to-
fine level Sample number Optimization Maximum

iteration 

Proposed Landmark-based
deformation 1 

30,000-180,000 
(Sample propor-

tion: 0.5%) 
L-BFGS* 50 

FFD Affine  
transformation 4 2,000-3,000 ASGD** 4,000-8,000 

*L-BFGS [13]: limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm
**ASGD [15]: adaptive stochastic gradient descent algorithm 

Table 2. Running time and landmark number of SIFT matching. 

Dataset DIR-lab dataset 
Cases 1-5 

DIR-lab dataset 
Cases 6-10 

Running time [s] 15 48 
Landmark number (SD) 1,028 (176) 1,248 (185) 

Table 3. Evaluation results of DIR-lab dataset (cases 1-5). 

MLS + interpolation Proposed FFD 
Coarsest/finest grid size [mm] -/32 -/32 128/16 
RMS error (SD) [mm] 2.35 (0.58) 1.45 (0.35) 2.03 (0.48) 
Running time [s] 16 23 462 

Table 4. Evaluation results of DIR-lab dataset (cases 6-10). 

MLS + interpolation Proposed FFD 
Coarsest/finest grid size [mm] -/32 -/32 128/16 
RMS error (SD) [mm] 4.16 (1.08) 2.54 (0.64) 3.99 (1.29) 
Running time [s] 51 92 1366 
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based registration method, the deformable registration module of the Elastix toolkit 
[15] was evaluated. In [15], the control-point grid was initialized by using an affine 
registration of the fixed and moving images. Moreover, in [15], a multi-level coarse-
to-fine scheme is applied to handle large motions. On the other hand, the proposed 
method applies 3D SIFT matching and MLS to initialize the control-point grid, and it 
directly runs the landmark-constrained registration at the finest resolution level. Pa-
rameters and registration strategies of the two methods are listed in Table 1. “Sample 
number” denotes numbers of sample points for computation of image similarity met-
ric. In this work, selection of such sample points is based on a series of Halton se-
quences [16-17]; while that of the FFD registration in [15] is based on random coor-
dinates.  

In addition, to validate the effectiveness of the proposed landmark-based defor-
mation, a registered image is generated by directly interpolating the initialized grid 
instead of performing the landmark-constrained optimization procedure. In this way, 
the accuracy of the landmark-based deformation was also evaluated by using the same 
datasets. Lung masks were not used in the three above-mentioned methods in these 
experiments. 

The running time and final landmark number (mean and SD values) of the SIFT 
matching and RANSAC procedures are listed in Table 2, for the two datasets, respec-
tively. A CT value threshold, [250-800], is experimentally set, and voxels that have a 
CT value within the threshold range are considered as being inside the lung. The SIFT 
matching is performed in such regions. Examples of SIFT matching results for case 1 
of the DIR-lab dataset are shown in Figure 2. Red points shown in the figure represent 
corresponding landmarks. 

The results of an evaluation using the two datasets for the three above-described 
approaches are listed in Tables 3 and 4. For the second dataset, cases 6-10 of the DIR-
lab dataset, since the image size is large and the rib cage of the patient’s body is not 
cropped out, the parameters of the FFD registration need to be modified. Number of 
sample points and maximum iterations of optimization are increased to 3,000 and 
8,000, respectively. The proposed method, in contrast, is able to deal with the two 
datasets with the same parameter set. These parameters were tuned on two image-
pairs of cases 1-5 of the DIR-lab dataset. Moreover, it should be noted that the run-

Fig. 2. Examples of SIFT matching results. 
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ning times of MLS deformation and the proposed method include that for SIFT 
matching processing for all of the evaluation results listed in Tables 3 and 4. 

It is clear that the proposed method outperforms the conventional FFD deformable 
registration to a large extent, both in terms of efficiency and accuracy. Thanks to the 
accuracy and robustness of SIFT matching, the MLS deformation can provide good 
performance of registration without need for any coarse-to-fine procedures. Conse-
quently, the landmark-based deformation provides an appropriate starting point for 
FFD registration. Furthermore, landmark-constrained optimization contributes to fast 
convergence of the proposed registration. Overall, the proposed method outperforms 
the conventional FFD registration [15] by achieving 30% better accuracy and more 
than 15 times higher processing speed. 

4 Conclusion and Future work 

A hybrid registration method of landmark-based deformation and FFD registration is 
proposed and applied to the registration of lung CT images. Aiming to obtain an ap-
propriate control-grid initialization that can handle local deformation of human lungs, 
a landmark-based deformation approach is proposed. Using an initialized control grid 
as a starting point, landmark-constrained FFD registration, to obtain a final registra-
tion result without need for any coarse-to-fine processing, is developed. 

To detect and match corresponding landmark pairs, 3D SIFT matching is devel-
oped. Using the obtained landmark pairs, 3D MLS deformation is applied for deform-
ing the regular control-point grid of an FFD registration. As a result, smooth and local 
deformation of the control-point grid can be obtained as an appropriate starting point 
for deformable registration. Furthermore, a landmark-constrained approach for ob-
taining faster and better convergence of the registration is also developed. Evaluation 
experiments on lung CT images show that the proposed method, with a fixed parame-
ter set, is able to perform an efficient and accurate registration on actual clinical data 
without any coarse-to-fine processing. Compared with a conventional FFD registra-
tion, the proposed method achieves 30% better accuracy and more than 15 times 
higher processing speed. 

Since the running time of landmark matching occupies a large proportion of that of 
the proposed registration approach, the landmark-matching algorithm needs to be 
speeded up. In addition, the robustness and accuracy of landmark matching needs to 
be validated by using images with larger deformation and higher noise level. Fur-
thermore, the proposed method should be evaluated in terms of inter-patient registra-
tion tasks. 
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