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Abstract. Estimation of local lung ventilation from dynamic CT acqui-
sition becomes an interesting alternative to nuclear imaging as it offers
several advantages such as higher spatial resolution or comparably low
cost. Current approaches evaluate the ventilation as voxel-wise volume
change separately for each phase and thus neglect the dynamic aspects
of the respiratory system which leads to a less robust estimation. In this
paper, we propose a novel ventilation assessment that considers the voxel-
wise volume change over the entire breathing cycle by incorporating a
prior model. We show that our new method results in more plausible
estimates of the local volume change. It also yields the quantification
of phase shifts within the lungs that may have additional clinical util-
ity. Moreover, we are able to automatically detect image regions with
non-plausible volume changes potentially caused by image artifacts.

1 Introduction

Ventilation is the primary function of the respiratory system. In particular, as-
sessing ventilation on a local or regional level becomes increasingly important
for diagnosis, e.g., for early detection of diseases [1], or for therapy planning,
e.g., for functional avoidance in lung cancer radiotherapy [2].

Nuclear imaging such as SPECT or PET are the current standard for direct
functional assessment of lung ventilation, but suffer from low spatial resolution,
high cost, long scan time and/or low accessibility.

In order to overcome the limitations, the use of respiratory phase-based gated
4D CT (3D+t) has been proposed. The basic idea is to first estimate deformation
fields from one selected reference to all other phases which can then be analyzed
to obtain the voxel-wise volume change over the respiratory cycle [3–5].

The estimation of local volume changes is affected by multiple sources of
error, such as, e.g., imaging artifacts, binning artifacts or image noise. Espe-
cially imaging or binning artifacts, which can be spread over many slices, lead
to non-optimal input data for the registration and may significantly infer the
local volume change estimation. Examples of such artifacts include duplicate
diaphragm contours or missing structures in one or both data sets to be regis-
tered. Unfortunately, imaging or binning artifacts are very common in dynamic
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acquisitions as diseased patients have problems in breathing reproducibly: It was
found that for 90% of 4D CT acquisitions artifacts of 4mm and more occur in
at least one respiratory phase [6].

So far, most approaches typically compute the local volume change individ-
ually between two phases and do not consider all phases simultaneously [3–5].
Taking the dynamic aspects into account, i.e. looking at the voxel-wise volume
change over the whole breathing cycle, is however crucial as this allows to increase
the robustness against different sources of errors. In the context of deformation
field estimation, few approaches have recently considered the dynamical behavior
of the displacement per voxel by performing a trajectory constrained 4D registra-
tion [7, 8]. Instead of performing separate phase-to-phase registration, all phases
are considered simultaneously which, however, results in a higher computational
effort.

Here, we propose a novel concept, making use of the entire dynamic infor-
mation for a robust estimation of local volume change over the whole breathing
cycle. A functional model is applied regionally and fitted to the local volume
change. This results in more plausible estimates of voxel-wise volume change. In
addition, the deviation from the model can be used as an indicator for image lo-
cations with non-plausible volume changes that are potentially caused by image
artifacts.

2 Method

2.1 Image Data

We used 4D CT scans of 12 patients that were acquired for radiotherapy treat-
ment. During the CT scan, patient respiratory traces were acquired using the
Varian RPM system (Varian Medical Systems, Palo Alto, CA), with the marker
block placed on the upper abdomen. Acquisition was done in cine mode. The
projection images were retrospectively sorted into ten respiratory phase-based
bins of 3D CT image data (i.e., from 0% to 90% phase at 10% intervals, where
0% typically corresponds to end-inhale and 60% to end-exhale). The end-inhale
phase and the end-exhale phase were carefully selected by a radiologist. All im-
ages had an in-plane resolution of 0.85-0.97mm and a slice thickness of 2.5mm.

2.2 Robust Functional Lung Analysis

Our proposed method consists of three main building blocks. First, deformation
fields are calculated to establish a voxel-wise correspondence between all phases
of the 4D CT. The deformation fields are then analyzed yielding a first estimate
of the local volume change. In contrast to former work, we do not treat the
local volume change per phase separately, but extend the estimation by fitting a
prior model to the relative volume change of each voxel to obtain a robust and
compact dynamic representation. Each building block is explained in detail in
the following.
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Computation of deformation vector field. In a registration step, the defor-
mation vector fields (DVF) between a selected reference, usually the 0% phase,
and all other respiratory phases are determined. For the computation of the
DVFs, we use a fully-automatic volumetric elastic registration scheme [9] that
maps the reference phase onto all other phases and thus establishes a voxel-wise
correspondence over the whole breathing cycle. The registration scheme requires
either a lung mask or a pre-processing of the input images in order to avoid
mis-alignment of near-pleura parenchymal structures due to potential sliding
along the lung-rib interface. Here, a pre-processing in terms of a simple transfer
function is applied to the image intensity scale. By choosing a smooth transfer
function, such that intensities smaller than 0HU are preserved and intensities
larger than 0HU are mapped to 0HU, bone structures become of similar inten-
sity than surrounding tissue and, therefore, rib cage motion does not influence
lung motion. As common for many state-of-the-art registration schemes, a joint
functional consisting of a similarity measure and a regularizer is minimized. For
the similarity measure, sum of squared differences is chosen while the regularizer
is defined as a linear elastic model. Based on calculus of variations a system of
non-linear partial differential equations is to be solved. The iterative solution is
stopped if either the update in the deformation is below 0.05mm for all voxel
positions (indicating convergence) or the Jacobian of the deformation is below
0.1 (guaranteeing the absence of singularities). The registration accuracy has
shown to be in the subvoxel range [9].

Computation of ventilation trajectory. In contrast to former work, we ex-
tend the estimation of the local volume change by considering also the tempo-
ral behavior. For that purpose, from each DVF u0%→i%, i = 10, 20, ..., 90, the
voxel-wise volume change is derived by calculating the Jacobian V 0%→i%(x) :=
det(∇u0%→i%(x)) for each voxel x of the DVF. The Jacobian estimates how
much the region around this voxel is contracting or expanding. A value of 1
corresponds to volume preservation whereas a value smaller (larger) than 1 in-
dicates local compression (expansion). For each voxel x, a vector is constructed
as V (x) := (1, V 0%→10%(x), V 0%→20%(x), ..., V 0%→90%(x)) describing the vol-
ume change over the breathing cycle, the so-called ventilation trajectory as a
trajectory in the temporal domain (see Fig. 1 for examples).

Model fit to ventilation trajectory. In order to arrive at a more robust
and compact representation of the volume change over the breathing cycle, we
perform a model fit to the ventilation trajectory V . The 1D model is based
on a cos2n function as it is frequently used (see, e.g., [10, 11]) to describe the
lung volume vol(t) over the respiratory cycle. Inspired by this representation, we
apply the same function to the relative volume change that we consider here.
The relative volume change with respect to a designated reference phase (here
0% phase) is given as vol(t)/vol(t0%). By subtracting 1, we have

vol(t)

vol(t0%)
− 1 =

vol(t)− vol(t0%)

vol(t0%)
=:

Δvol(t)

vol(t0%)

Fifth International Workshop on Pulmonary Image Analysis -77-



Fig. 1. Examples for ventilation trajectory V (shown in black) and fitted model V model

(red) for different lung positions. The first example (from left) shows a trivial fit whereas
the second example demonstrates an outlier causing the amplitude to be underesti-
mated for the standard approach but not for the proposed method. The third example
shows a slight phase shift, inhalation is not deepest for the 0% phase. For the last
example a fit is not plausible which can be detected by a large fit error E.

which is widely used in the definition of lung ventilation (see, e.g. [5]). Assuming
that vol(t) can be described by a cos2n-based function, the model should thus
also hold for the relative volume change.

With l = 10 denoting the number of respiratory phases, o an offset, α repre-
senting the ventilation amplitude and φ the time of end-exhalation, the function

V model(x, t) = o+ α cos2n
(π
l
(t− φ) +

π

2

)

describes the ventilation at time t for a fixed anatomical position x. The model
parameter n is chosen to place emphasis on the exhalation state which is usually
longer than the inhalation state (typically, n = 2). The ventilation model V model

is fitted to the ventilation trajectory V by a least-squares optimization, here
implemented by a Gauß-Newton scheme. A few actual examples of ventilation
trajectories together with their fitted model functions are shown in Fig. 1.

Another interesting parameter that can be calculated using the model repre-
sentation is the squared difference between fitted model and trajectory weighted
with the inverse of the ventilation amplitude, the so-called fit error

E(x) :=
1

max(α(x), ε)
‖V model(x, t)− V (t)‖2 .

It is used in the following as a confidence level for the ventilation estimate.

2.3 Error Detection

The error term E measures the deviation of the ventilation from the model.
Assuming that the model is an adequate representation, an accurate ventilation
should result in a small error. Consequently, a local large error E should reveal
areas of misregistration or of inaccurate ventilation estimation caused by im-
perfect image data, e.g., due to breathing artifacts. While having such region
identified is a benefit in itself, we can also go one step further and perform a sec-
ond registration in those critical areas with different registration settings which
will then result in more plausible local ventilation.
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In order to test the value of the error term, we generated synthetic images on
which error detection was carried out. Finally, a second-pass registration scheme
was used aiming at an improved ventilation estimate.
Synthetic Data. To evaluate the performance of the second-pass registration,
ground-truth is required. Careful selection of data sets was done to find cases that
were less impacted by breathing or binning artifacts. For two of such cases a slab
of eight slices located in the lower lungs was modified in three different ways: (A)
cyclic shift by one respiratory phase, (B) reduced exhalation depth, (C) reduced
inhalation depth. Setting A replaced the slab with data from the preceding
respiratory phase. Setting B (C) doubled the end-inhalation (end-exhalation)
phases and skipped the end-exhalation (end-inhalation) phases within the slab.
These synthetic modifications mimic the type of error frequently found in real
image data.
Second pass registration. Image regions with a larger fit error are likely
to be impacted by image artifacts. To exclude those regions from driving the
registration process, a weighting mask is added to the registration scheme. The
basic idea is to upweight the regularizer here, thus to assign a low weight to
image voxels with a large fit error E. Therefore, from E two thresholds tlower,
tupper are generated (here we took the 80% and the 95% quantiles). A weight of
0 (1) is assigned to voxels with a fit error E(x) larger (smaller) than the upper
(lower) threshold. For the remaining voxels a linear mapping is chosen,

M(x) =

⎧
⎨

⎩

0 : E(x) > tupper
tupper−E(x)
tupper−tlower : tlower < E(x) < tupper

1 : E(x) < tlower

.

The building blocks as described in Sect. 2.2 are now executed again – in contrast
to the first-pass registration now with the weighting mask M as additional factor
within the similarity measure.

3 Results

The benefit for the novel robust lung ventilation is demonstrated in two different
experiments. First, we compare the method to the state of the art for lung
ventilation in Sect. 3.1. At second, we show the value of evaluating the error
term for identifying regions corrupted by image artifacts.

3.1 Robust Lung Ventilation

Evaluating the accuracy of the estimated voxel-wise local ventilation is extremely
difficult due to a lack of ground truth. Comparing, e.g., the 4D CT-based ven-
tilation estimation with that obtained from nuclear imaging [3] suffers from low
resolution and artifacts in the nuclear images. Also, determining the accuracy
of the underlying deformation fields is not sufficient since ventilation estima-
tion can differ significantly even for methods showing similar target registration
errors [12].
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However, even without an established ground truth, we are still able to com-
pare two different ventilation estimates as we expect certain characteristics from
the estimation given the fact that it reflects a physiological process: for exam-
ple, with the lung at end-inhale as the reference position, an overall contraction
– rather than a mixture of contracting and expanding regions – seems to be
desirable from a physiological point of view. In addition, the radiologist’ selec-
tion of end-inhale and end-exhale phase does not necessarily hold for the entire
lungs. A suboptimal choice will result in under-estimating the ventilation am-
plitude, thus increases its inhomogeneity. As a measure for inhomogeneity, the
variance of the assessed ventilation amplitude was computed. Evaluation on 12
data sets resulted in a variance of 0.004 to 0.016 and of 0.002 to 0.010 using
end-inhale/end-exhale phases and all phases, respectively (see Tab. 1). In all
cases, the variance was reduced for the proposed method, mean improvement
was computed as 38%.

case ID inhale/exhale all phases used
mean variance mean variance

01 0.244 0.012 0.242 0.008
02 0.087 0.004 0.098 0.002
03 0.268 0.016 0.241 0.010
04 0.087 0.004 0.092 0.002
05 0.203 0.012 0.197 0.008
06 0.052 0.004 0.066 0.002
07 0.158 0.007 0.166 0.003
08 0.107 0.004 0.107 0.002
09 0.223 0.008 0.220 0.006
10 0.160 0.004 0.167 0.004
11 0.188 0.006 0.179 0.004
12 0.161 0.012 0.162 0.008

Table 1. Mean and variance of assessed ventilation amplitude based on (i) only the
end-inhale and end-exhale image pair and (ii) all respiration phases.

Fig. 2 compares the ventilation estimate based on end-inhale and end-exhale
phase (marked in blue) with the ventilation estimate based on all phases (bot-
tom). Overall, the proposed method results in a more homogeneous map. Focus-
ing on the upper left lobe a mixed pattern of contraction and expansion can be
observed for any V 0%→i%. Careful inspection revealed a phase shift (see Fig. 1(c)
for an example) causing this unrealistic pattern – the 0% phase and the 60%
phase do not contain the extremal states for this lung region. The proposed
method, however, provides a realistic amplitude by shifting the trajectory along
the respiratory cycle.
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Fig. 2. Volume change over the respiratory cycle (top 3x3) and ventilation amplitude
α (bottom) after fitting to the ventilation model. The result from a state-of-the-art
approach (see text) is marked blue. Note the inhomogeneous pattern in the upper left
lobe with regions showing even positive values.
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3.2 Error Detection

Slab modifications as described in Sect. 2.3 for the settings A-C affect ventila-
tion assessment. Fig. 3 (left) shows that a reduced inhalation depth (setting C)
results in a reduced amplitude in lung regions above the modified slab, a reduced
exhalation depth (setting B) decreases the amplitude within the slab. Moreover,
the cyclic shift (setting A) by 10% of the respiratory cycle is correctly estimated
as shown in Fig. 3 (center). For all modifications the fit error is increased around
the modified slab (cf. Fig. 3 (right) for an example).

From the fit error a mask function (cf. Sect. 2.3) is computed and used as
input for a second-pass registration. From the corrected deformation fields the
ventilation trajectory for each voxel position is computed. The model fit then
results in a smaller fit error within the modified slab, see Fig. 3 (right). In the
same way, a binning artifact on top of the diaphragm (slices 95-100) is excluded
from driving the registration resulting in a decreased fit error as well. Further
analysis is required to ensure the applicability to real image artifacts.

Fig. 3. Analysis of slicewise averaged ventilation amplitude (left), end-exhalation state
(center) and fit error (right).

4 Conclusion

In this paper we show that local lung ventilation can be robustly estimated from
4D CT image data. A physiologically motivated breathing model is applied voxel-
wise to the volume change curve along the breathing cycle. Volume change is
calculated by use of the Jacobian of the deformation vector field. In comparison
to ventilation calculation based on only the end-inhale and end-exhale image
pair, the presented method is able to take the whole breathing cycle into account
for ventilation amplitude calculation. Regionally varying breathing phase shifts
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are recognized and do not deteriorate the estimation result. Applied to twelve
4D CT data sets, it could be shown that by taking the whole breathing cycle
into account, the ventilation estimation is less impacted by image noise or other
image imperfections.

The deviation from the physiological model, expressed as fit error after model
adaptation, can be used to detect regions of low image fidelity. It could be
shown that synthetically deteriorated image regions can be detected with the
presented method and that potentially a second-pass registration can improve
the registration result.
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