
2D X-ray airway tree segmentation by 3D
deformable model projection and registration

Benjamin Irving1, Tania Douglas2, and Paul Taylor1

1 Division of Population Health,
University College London, UK

�� benjamin.irving@eng.ox.ac.uk
2 Department of Biomedical Engineering,

University of Cape Town, Rondebosch, South Africa

Abstract. Chest x-rays (CXR) still play an important role in detection
of airway disease. Airway stenosis is a key sign of disease such as pae-
diatric tuberculosis but is challenging to measure in CXR because the
airway has relatively low contrast compared to overlying structures. In
this study a novel approach to identify airways in CXRs is introduced,
using a 3D statistical shape model to guide the segmentation. The 3D
model is projected onto the CXR and aligned to the airways using four
manual landmarks. The 3D shape model is then fitted to each CXR us-
ing an energy function based on image gradient, anatomical shadow and
a regularisation term. Anatomical shadow is a novel feature introduced
to detect the airway even without a clearly defined boundary. The algo-
rithm achieved a mean error of 6.8±2.6 pixels (0.82±0.31 mm) on the 31
patient test set, a 25± 17% improvement on the initial linear alignment.

1 Introduction

The prevalence of tuberculosis (TB) remains high in many countries and accu-
rate detection paediatric TB is poor [3]; however, there is increasing interest in
specialised methods for paediatric airway analysis [1]. Chest X-ray (CXR) exami-
nations are still a key component of pulmonary TB detection, and a common sign
of pulmonary TB in children is airway deformation caused by lymphadenopathy
[3, 8]. There is potential to automate the detection of the airway boundary, to
assist in identification of stenosis, but this is challenging because the boundary
is relatively low contrast (or incomplete) compared to better defined overlapping
structures such as the heart, rib cage and vertebrae.

Segmentation of the trachea and complete left main bronchus (LMB) and
right main bronchus (RMB) in 2D X-rays has not been previously achieved. Pre-
viously, Tezoo et al. [9] built a semi-automatic active shape model (ASM) based
method to segment the trachea and bifurcation region, with 9 manual landmark
points required. However, they do not clearly demonstrate any improvement of
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the ASM over the initial affine alignment to the manual landmarks, and do not
segment the complete LMB and RMB. Complete LMB and RMB segmentation
is diagnostically important for the measurement of stenosis in paediatric TB [2].

This study uses a 3D statistical shape model (SSM) of the trachea, LMB and
RMB to aid segmentation of the airways in CXRs. Projection of a 3D model onto
2D CXRs has been used for bone structures [4] but not for the airways. The 3D
shape model along with novel 2D features are chosen to allow the airways to be
detected while excluding overlapping structures with stronger edges and higher
contrast. A model developed from CT is more complete than a model from
radiographs where the RMB and LMB are often not completely visible.

2 Method

A 3D SSM of the airways derived from CT examinations is used in this study. As
described in Figure 1, a silhouette of the mean airway is found and the points are
projected onto a 2D plane and aligned to the airway region. This 2D projection
is used to generate an energy function to measure the fit of the model to airway
features in the CXR. The parameters of the 3D SSM are then optimised to
determine the best fit of the projection to the 2D image.

Fig. 1. An outline of the 3D to 2D projection and registration method. The 3D shape
model is projected and aligned with a processed 2D CXR. An optimisation of 3D shape
model modes of variation is performed using 2D image features.

2.1 Model Projection and alignment

Irving et al. [7] developed a 3D airway SSM consisting of a mesh representation
of the mean airway (shown in Figure 3a) and the first 11 PCA derived modes of
variation – from TB and non-TB paediatric patients with normal airways and
stenosis. It is important to include examples of pathology in the statistical model
in order to correctly detect X-ray cases with severe airway stenosis. This model
is used in our method.

The silhouette of an object can be used to define the edges of the surface
mesh that will be visible in a 2D projection. There are a number of methods
to extract a silhouette, although, for small models (meshes with less than 10
000 faces) a brute force approach has almost the same speed as more complex
methods [6].
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A brute force approach was implemented to detect the airway silhouette
vertices (si) of the 3D mesh (see Figure 3a). The brute force approach was used
to evaluate each edge in the airway shape mesh. Silhouette edges in a mesh are
defined as edges separating a face with a normal facing towards the viewer and a
face with a normal away from the viewer [6]. The normal (N) of each face in the
airway surface mesh is found using the cross product of two edges3. The inner
product of the face normal (N) with the viewing direction (E) is used to detect
the orientation of each face. If N · E > 0 then the polygon faces frontwards
(as shown in Figure 2). If N · E < 0 then the polygon faces backwards and if
N · E = 0 then the normal is orthogonal to the viewing direction.

Fig. 2. The viewing direction (E) and outward facing normal (N) of a triangle, which
are used to define the direction of the face

The radiographic projection of the shape (represented by the si) was found
by calculating the vector vi = l0 + dl from X-ray source l0 to each si in di-
rection l using parameters based on the Lodox X-ray system dimensions (l0 =
[1000, 0, 0]mm, airway model centred at [0,0,0]mm). The intersection of v with
the detector plane at [-100, 0, 0]mm can then be calculated. The z-coordinate of
each point is kept the same as no magnification occurs in the scanning direction
of the system.

Once the silhouette points have been projected onto the detector plane, this
algorithm requires some manual interaction to initialise the alignment of the
model to the airways in the image. Procrustes analysis [5] was used to align
the model with 4 manually annotated landmark points. Figure 3b shows the
alignment of the 4 bifurcation points of the projected 3D model with the 4
manual annotations on the image. The optimal scaling, translation and rotation,
calculated from the Procrustes analysis of the landmark points, are used to
transform the silhouette and skeleton points.

2.2 Image Features

An energy function derived from image features was used to fit the projected
shape model to the airway region of the CXR. This function consists of a gradient
based component (Egrad) and an anatomical shadow component (EAS).

The image intensity of the airway varies due to overlap with the ribs, ver-
tebra and pulmonary structures. In order to reduce this variation, local nor-

3 The meshing procedure produces vertices of a consistent order. Therefore, the cross
product of two edges will always lead to a consistent normal direction relative to the
volume.
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Fig. 3. Projection and linear alignment a)Airway silhouette detection and projection.
The detected silhouette vertices (black), skeleton (blue) and branch start and end
points (green) are projected. b) Procrustes analysis fitting the projected branch start
and end points (red squares) with the 4 manual landmarks (green dots).

malisation, which has been used previously for airway enhancement [9], was

applied to the image. Local normalisation can be described by Iln = I−G(I)
σf

where σf =
√

G((I −G(I))2) is the estimate of the standard deviation at each
pixel and G(I) is the Gaussian blur function4 applied to image I(x,y). Figure 4
demonstrates the effect of local normalisation on a CXR.

A component of E was derived from the image gradient. Vesselness is a com-
mon method for detecting tubular structures in images and Canny edge detection
is a common technique for edge detection. Both these methods were attempted
but failed to provide suitable airway features because of overlapping structures
with greater intensity and stronger edges. Instead, the smoothed gradient of the
image was used as one set of image features. The Sobel filter was used to ex-
tract the gradient and a Gaussian convolution of σ = 5 was used to smooth the
gradient. The gradient derived energy function was calculated as the sum of the
gradient at edge silhouette points:

Egrad = −
p∑

i=1

|∇Iln(si)| (1)

where si are the p projected silhouette points on image Iln.
Edge detectors provide useful features for airway segmentation but if used

alone were not always effective when there are additional strong edges. A second
characteristic of the airway is that it appears as a shadow over higher contrast
structures. Any structure overlapped by the airway should appear locally darker

4 Using the training set, σ = 20 pixels was used (approximately 80 % of the maximum
airway radius). However, similar results on the test set were obtained for the range
σ = 10 pixels to σ = 30 pixels.
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(a) Unprocessed chest x-ray (b) Local normalisation

Fig. 4. Improvement in airway visibility after local normalisation

in the airway. Comparing the local greyscale inside and outside the airway, can
be used to optimise the fit without well defined edges.

Therefore, anatomical shadow, a novel feature is introduced that compares
local greyscale inside and outside the model, and updates the location and ori-
entation of the sampling with each change to the 3D shape model. The outward
direction of each silhouette point is defined as the vector from the closest skeleton
point to the silhouette point (Figure 5). Once the orientation of each silhouette
point is found then the mean greyscale value of kernels inside and outside the
airway can be compared. The orientation of the line connecting the two circular
kernels is always perpendicular to the current airway wall. The energy function
was defined as:

EAS =

p∑

i=1

ci,1 − ci,0
ci,0

(2)

where ci,0 is the mean greyscale of the sampled kernel outside the airway and
ci,1 is the mean greyscale of the sampled kernel inside the airway at silhouette
point si. The key advantage of this feature over conventional gradient is that
the positon and orientation is dependant on the shape model, making it a true
comparison between regions inside and outside of the model, while using large
enough regions to obtain a mean difference of the overlapping airway. The radius
each kernel was chosen as 7 pixels and the distance between si and each kernel
as 9 pixels based on the training set.

2.3 Optimisation

An energy function is used to optimise the fit of the 3D SSM to the airway
regions in the CXR. This fit is constrained by the modes of variation of the 3D
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Fig. 5. Anatomical shadow feature a) The silhouette points (green), with unsmoothed
centreline (blue) and outward pointing vectors. b) Greyscale difference between ci,1
and ci,0 for a single silhouette point (si).

model and any calculation of this energy function for a particular set of SSM
weights involves a projection of the 3D model.

A statistical shape model can be described by variation along each eigenvector
from the mean model [5], x = x̄+Φb where x̄ is a n×3 array of vertex positions
of the mean model that are deformed by m eigenvectors Φ = (φ1|φ2|...|φm) with
weights b = (b1, ..., bm). Therefore, b can be used to choose a suitable model
that is the best fit to a single airway case.

A total energy E(b) was created from a weighted combination of the energy
functions:

E(b) = αeEgrad(b) + αgEAS(b) + rEreg(b) (3)

where αe and αg are the weights. E(b) is a function of the 3D shape model
weights b. With any choice of b, the corresponding 3D shape is determined, this
model is projected onto the 2D image and Egrad(b) and EAS(b) are calculated
from the position of the projected points. The lower the energy, the better the
3D model matches features in the 2D image.

An additional regularisation term (Ereg) was included with weight (r). Reg-
ularisation is required because the 3D model is poorly constrained by optimising
on a 2D projection. Ereg is chosen as:

Ereg =

m∑

j=1

|bj |
λj

(4)

where bj ∈ b is the weighting factor of each eigenvector and λj is the eigenvalue
of the jth eigenvector – equivalent to the variance of each mode within the
dataset. This term penalises variation of the model away from the mean model,
while penalising modes with larger variation in the dataset less than modes with
smaller variation.
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The local minimum of E(b) was used to find the optimal b, and, therefore,
the best segmentation, for each chest radiograph. Most optimisation methods
require a continuous function. We are working in discrete image space and so
linear interpolation was used to determine the features used in Egrad(b) and
EAS(b) at any required value for si. Nelder-Mead downhill simplex optimisation
method was used to find the local minimum of E(b) from the initial mean model.
At each step in the optimisation, E(b) needs to be calculated a number of times
in order to update b. Each calculation of E(b) requires a reprojection of the 3D
model and calculation of Egrad(b) and EAS(b) based on the projected silhouette
points. Figure 3 shows initial mean model and Figure 6 shows the 3D model after
optimisation to case 6 as an example.

Fig. 6. Case 6 as an example of the op-
timised 3D shape and projection

Fig. 7. The manually drawn outline of
an example airway (Case 21)

In summary, the Nelder-Mead method is used to optimise the energy function
E(b) in Equation 3 by finding 3D shape model weights b that produced an
optimal fit to the 2D features, as shown in Figure 1.

2.4 Dataset

A 41 patient CXR dataset was obtained from Red Cross Children’s Hospital,
South Africa. The images were acquired using the Lodox Statscan radiography
unit (pixel size of 0.12 x 0.12 mm) and contained both TB and non-TB patients
with ages from 3 months to 60 months. A number of TB patients had severe
airway stenosis. The dataset was divided into a 10 patient training set (5 TB and
5 non-TB) and a 31 patient test set (11 TB and 20 non-TB). A small training
set was used because only the weights (αe, αg and r) for the energy function
need to be determined. Two sets of manually drawn airway outlines were used
to evaluate the method (See Figure 7). Annotation 1 is used to generate results
and Annotation 2, from a less experienced observer, is used for comparison. The
observers segmented as much of the airway as they could identify, which varied.
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3 Results

Parameters were derived using the 10 patient training set. To evaluate the perfor-
mance of the method, the fitted projection was compared to the manual outlines
of the 31 previously unseen test cases. The shortest distance between each sil-
houette point (si) and the manual outline was found by evaluating each segment
of the manual outline and finding the minimum 2-norm distance (di). The mean
μdist =

1
p

∑p
i=1 di for the p projected points on each image was used for evalu-

ation. μdist was calculated for each airway both after Procrustes alignment and
finally after the shape model optimisation. The difference between the fits was
calculated as a percentage.

The 10 training cases with manual annotations were used to find the optimal
parameters (αedge=0.4, αAS=0.6 and r=0.003) with μdist = 5.4 for E (Equation
3) by performing a grid search. Optimal parameters without EAS only achieved
μdist = 7.4. The robustness of the algorithm to intra-observer variability of the
landmark points was tested by assigning a second set of landmark points to the
bifurcation regions in the training images. The mean error for all training cases
was 5.4±1.5 pixels (mean and standard deviation). This compared to a fit using
the previous landmarks of 5.4 ± 1.9 pixels. This shows that the algorithm is
robust to intra-observer variability in the selecting of the landmark points.

Using these parameters the method was applied to the 31 patient test set and
the results compared to the manual annotations. Figure 8a shows the mean pixel
distance (μdist) from the manual annotations for each case in the test set and
Figure 8b shows the percentage improvement over the initial alignment. The test
set achieved a 6.8±2.6 pixel error (8.3±2.0 for TB and 6.0±2.6 for non-TB), a
25±17 % improvement on the initial linear alignment (29 of 31 cases performing
better). Taking into account the voxel size of 0.12 × 0.12mm, the average error
is 0.82± 0.31 mm.

Annotations 2 was used to test the variability of the manual annotations and
achieved a results of 7.5 ± 2.5 pixel error and 17.5 ± 22% (26 of 31 performing
better). The distance between the two manual segmentations could not be com-
pared because each observer segmented as much of the airway as they could see,
which varied. Figure 9 shows four example fits to the test dataset. The algo-
rithm fails to properly detect the LMB in Figure 9d but still improves on the
initial alignment (as shown in Figure 8b). The method was implemented using
Python and c++, taking 7.5± 0.7 minutes per case on a single core of an Intel
i7 processor.

4 Discussion

Segmentation of the airways in CXRs is a challenging problem because of poorly
defined borders and overlapping high contrast bone and heart structures. This
study applies 3D SSM registration to segment the trachea, and complete LMB
and RMB in CXR for the first time. The method requires 4 manual landmarks
for the initial linear transform and then optimises the shape model using a novel

-50- Fifth International Workshop on Pulmonary Image Analysis



0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

m
ea

n 
di

st
an

ce
 (p

ix
el

s)
 

Case number 

Annotations 1

Annotations 2

(a) Mean distance (μdist) for each case
using the optimisation algorithm

-80

-60

-40

-20

0

20

40

60

1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728293031

Re
du

ct
io

n 
in

 m
ea

n 
di

st
an

ce
 (%

) 

Case number 

Annotations 1

Annotations 2

(b) Improvement over initial alignment
(C1-C20 are non-TB and C21-31 are TB)

Fig. 8. Accuracy of the airway registration for each case of the test set

(a) C1 initial (b) C1 (non-TB) (c) C6 (non-TB) (d) C21 (TB) (e) C22 (TB)

Fig. 9. a) C1 initialisation before fit. b, c, d, e) Comparison between the manual
annotations (red line) and the optimised fit (green dots) for cases in the test set.

anatomical shadow feature. The model was able to detect airway shape variation
with an error of 6.8± 2.6 pixels (or 0.82± 0.31 mm), a 25 ± 17% improvement
on the initial similarity transform.

Figure 9a shows that the initial alignment is already a close approximation
of the airway leading to a small error but does not capture individual airway
changes. However, the model fit shown in Figure 9b captures the true airway
shape. This high initial accuracy explains why the improvement in the error is
only 25 ± 17%. Figure 8 shows that this method consistently improves on the
initial alignment.

The method was evaluated on TB and non-TB cases, where a number of the
TB cases have severe stenosis. As illustrated in Figure 9d and 9e, this stenosis
was captured in many but not all cases. This resulted in a slightly higher error
for TB cases (8.3± 2.0 pixels) compared to non-TB cases (6.0± 2.6 pixels). The
3D airway SSM was trained using both TB and non-TB cases in order to capture
both normal variation and stenosis. However, additional cases of severe stenosis
or improved regularisation of the optimisation function might be required to
capture all airway stenosis in CXRs.

An alternative method to an SSM could be an active appearance model
(AAM) that incorporates both shape and greyscale variation. However, the air-
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ways overlap with higher contrast anatomical structures such as the ribs, ver-
tebrae and the heart. The position of these structures relative to the airway is
sensitive to small changes in the position of the patient making AAM unsuit-
able. There are also a number of advantages to using a projected 3D shape model
instead of a shape model derived 2D landmarks in CXRs. CT allows a more re-
liable model of the airway branches which are not consistently visible in X-rays.
The problem could also be reformulated in 2D using the same CT dataset, by
projecting the normalised 3D training set to 2D and using this to develop a 2D
active shape model. However, the 3D optimisation also provides a personalised
3D airway model, and allows further improvements by incorporating additional
X-ray views (e.g. Lateral CXR) to better constrain the optimisation.

Detection of the airway boundary allows automatic measurements of bronchial
cross sections to be made to aid detection of stenosis. This method also produces
a 3D personalised airway model, which could aid visualisation of stenosis.
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