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Abstract. Accurate alignment of intra-subject CT acquired during ra-
diotherapy is challenging due to tumor regression introducing large image
content differences. Some regressing tumors tend to expose newly-visible
lung parenchyma, in a type of regression we term ‘infiltrative’. We eval-
uated two nonrigid registration algorithms for accuracy and plausibility
in aligning two images demonstrating infiltrative regression. Both used a
vesselness measure-based feature cost and a linear elastic penalty term.
The performance of sum of square difference and sum of square tissue
volume difference intensity costs were compared in three subjects. Land-
mark error was not significantly different between the two algorithms,
although sum of square tissue volume difference produced more plausi-
ble transformations in the infiltrative regression scenario.
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1 Introduction

Lung tumors routinely exhibit regression in response to radiotherapy, with evi-
dent reduction in volume visible on computed tomography (CT) imaging within
the first few weeks of therapy [1–4]. At the end of a treatment course – generally
six or seven weeks – the tumor volume measured on CT, on average for the
population, is roughly half of that measured during simulation. However, tumor
volume response varies widely across patients, with some small number of tumors
progressing in size and others with a large response of over 80% regression by
volume [1]. It is not currently possible to predict the amount of tumor regression
for a particular patient prior to therapy.

Tumor volume regression can introduce large changes in the relative position
of adjacent tissue. While much of this tissue is normal, it contains pockets of
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microscopic extension of the lung tumor, which is not visible on macroscopic
imaging such as CT or PET. The standard of practice in radiotherapy is to
expand the visible tumor by a fixed margin (often 5 to 8 mm) during initial
planning to account for this subclinical disease with a prescribed radiation dose.
Accurate monitoring of the location of this ‘rind’ of tissue throughout the treat-
ment course is important for estimation of the delivered radiation dose and for
localization of the targets for dose delivery. However, since the subclinical disease
is not visible, changes in the location during therapy must be inferred through
registration.

Fig. 1. An example of tumor regression relative to adjacent vasculature. Left, planning
image with the gross tumor shown in red and the subclinical target shown in green.
Right, mid-treatment image with the residual gross tumor shown in red and the sub-
clinical target shown in yellow. The subclinical target boundary was located using the
method of [5]. The distance between the tumor boundary and surrounding vasculature
has increased due to ‘infiltrative type’ tumor regression.

Recently, it has been shown that the border regions of lung tumors often
regress relative to adjacent normal tissue such as pulmonary vessels [5, 6]. We
follow the method of [7] and distinguish between two types of tumor regression.
In ‘infiltrative’ type regression, the tumor border appears to regress in relation
to the adjacent normal tissue (see Fig. 1). A hypothesis to explain this type of
regression is that the lung tumor grows diffusely into the adjacent tissue, without
displacing large structures such as vessels. As the tumor begins to disintegrate in
response to radiation, relatively large normal tissue structures such as vessels are
left intact. In this manner, new lung parenchyma is exposed where tumor tissue
was previously. In ‘encapsulated’ type regression, adjacent tissue will regress
elastically with the tumor boundary. In this hypothesis, tumor growth elastically
displaces adjacent lung tissue, which then elastically decompresses as the tumor
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regresses. Tumors of both regression subtypes have been observed [5, 6]. For
infiltrative type regression, the tumor border is not a good surrogate for the
position of the adjacent tissue and, therefore, of the microscopic extension, so a
registration algorithm which focuses on aligning the high-contrast boundary of
the tumor and interpolating in adjacent regions will misalign these sections.

In [5], manual landmarks and deformable registration in the region directly
surrounding the subclinical target boundary were used to estimate the location of
the boundary, but the accuracy of the registration inside the entire normal lung
tissue region was not assessed. In [8], the difference of transforms from intensity-
driven registration with and without the tumor masked was used to estimate the
regression type, but the registration was unregularized and registration accuracy
was not quantified. In [9], a rigidity penalty was used within the tumor to prevent
non-physiological deformations, but the goal of that work was to align normal
lung tissue, so the plausibility of the registration around and within the tumor
was not evaluated.

The goal of this study is to design a registration strategy to provide accurate
correspondence in the lung tissue adjacent to the tumor, independent of the re-
gression type. To do so, we compare two algorithms that both use an intensity
cost and a cost based on enhancing vessel-like features. For one of the algo-
rithms, we use an intensity cost that accounts for varying image intensity due
to tissue volume changes, to determine if such a cost function can better model
deformation in the context of tumor regression than a more conventional sum
of square intensity difference cost. We evaluate each algorithm using physician-
defined point landmarks and by visualizing plausibility of the transform.

2 Method

2.1 Patient data acquisition and preprocessing

From a previous IRB-approved study of repeat computed tomography (CT) im-
ages (Philips Brilliance Big Bore, Fitchburg, WI) in radiotherapy patients, three
subjects with visually-identified infiltrative type regression were selected. Each
patient was imaged at the time of radiotherapy simulation and once during ra-
diotherapy. Active breathing control [2] was used to produce a consistent breath
hold at end of normal inspiration during imaging. CT voxel size was [1.2, 1.2,
2.0] mm in two patients and [1.2, 1.2, 3.0] mm in one patient. A radiation oncolo-
gist manually delineated both lungs; the tumor was included in the labeled lung
region. Tumor-bearing regions were contoured separately by the same physician.

2.2 Image registration

The ability to accurately align intra-subject CT images of the lung with infiltrative-
type tumor regression was evaluated using two different registration algorithms.
Algorithm A and B differ from each other by the way they define intensity cor-
respondence. Algorithm A registers two images by matching the intensities of
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the two images while Algorithm B registers two images by matching the tissue
volumes which is calculated from the image intensities. In addition to matching
image intensities, both algorithms match corresponding vessel features and use
the same regularization cost.

Algorithm A: sum of squared intensity difference within the lung and
tumor Algorithm A uses a sum of squared difference (SSD) intensity-based
similarity cost to match the intensities within a mask region containing the lung
and tumor tissue defined on each image separately. The SSD cost is defined as

CSSD =
∑

x∈Ω

[Im(h(x))− If (x)]
2
, (1)

where If and Im are the fixed and moving images, respectively, h(x) is the
transformation that maps the moving to the fixed image, and Ω ⊂ R3 is the
union of the regions containing both lung and tumor in the fixed and deformed
moving images. In this study, the planning image was chosen as If and the
mid-treatment image as Im.

Pulmonary vasculature serves as an easily distinguishable and highly specific
feature for image registration. However, due to the relatively low contrast of small
vessels compared to high-contrast boundaries such as the lung / chest wall and
lung / tumor interfaces, intensity-based cost functions are generally insensitive
to match these features. Using a similar strategy as in [10], we used a filter-based
method to highlight tube-shaped objects in the lung regions. The vesselness mea-
sure gives the probability [0, 1] that a voxel is contained within a tube-shaped
object. To generate the vesselness measure from each image, we employed the
approach in [11]. To calculate the vesselness measure, we calculate a matrix of
second-order directional derivatives, termed the Hessian matrix, at each voxel
location to evaluate the local curvature of the image in three-dimensional space.
A tube, or vessel, is ideally represented as having low curvature along the lon-
gitudinal axis of the vessel and high curvature along the two orthogonal axes.
Eigen decomposition of this matrix enables evaluation of the second order struc-
ture around the voxel of interest for arbitrary orientations, which eliminates the
need for derivative filters oriented along the direction of the vessel. Instead, the
eigenvalues represent the curvature along the principal axes of the vessel. After
ordering the eigenvalues by magnitude |λ1| ≤ |λ2| ≤ |λ3|, a vessel is optimally
represented as having the two largest eigenvalues nearly equal, with both having
very large magnitude in relation to the third eigenvalue. Thus, the vesselness
measure is calculated as

F (λ) =

{
(1− e−

R2
A

2α2 ) · e
−R2

B
2β2 · (1− e

− S2

2ρ2 ) if λ2 < 0 and λ3 < 0
0 otherwise

(2)

with RA = |λ2|
|λ3| , RB = |λ1|√

|λ2λ3|
, S =

√
λ2
1 + λ2

2 + λ2
3 where RA distinguishes

between plate-like and tubular structures, RB accounts for the deviation from a
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blob-like structure, and S differentiates between tubular structure and noise. α,
β, ρ control the sensitivity of the vesselness measure. The experiments in this
paper use α = 0.5, β = 0.5, and ρ = 5.

The vesselness measure for each image, Ff (x) and Fm(x) for the fixed and
moving images, respectively, was calculated, and the sum of square vesselness
measure difference (SSVMD) cost is

CSSVMD =
∑

x∈Ω

[Fm(h(x))− Ff (x)]
2
, (3)

where Ω is the region containing only lung parenchyma.
To smooth the transformation and penalize non-physiological deformations, a

Laplacian regularizer was employed. The regularization term in the cost function
is

CREG =

∫

Ω

||∇2u(x)||2dx (4)

where u(x) = h(x)− x is the displacement field, and ∇2 = ∇ · ∇
=

[
∂2

∂x2
1
+ ∂2

∂x2
2
+ ∂2

∂x2
3

]
.

The total cost used in this algorithm is then given by

CA = CSSD + ρvCSSVMD + ρrCREG (5)

where ρv and ρr are weighting factors that control the contribution of each cost
term.

A cubic B-spline basis was selected to parameterize the transform h(x) due
to its ability to represent non-rigid tissue changes in a compact form, which
enables computational efficiency. With B-splines, the transform is represented
by

h(x) = x+
∑

k∈K

φkβ(x− xi), (6)

where φk is the coefficient vector of the k-th control point xi, K is the spline
lattice, and β(x) is the cubic B-spline basis function.

Algorithm B: sum of squared tissue volume difference within the lung
and tumor Algorithm B is the same as Algorithm A except that the SSD
similarity cost is replaced by an intensity cost which accounts for changes in
voxel intensity due to local tissue volume changes. The sum of squared tissue
volume difference (SSTVD) cost is based on the hypothesis that lung parenchyma
image intensity can be approximated as a linear combination of air and tissue
[12, 13]. The tissue volume contained in a voxel can be estimated by scaling the
voxel volume by a linear function of image intensity in Hounsfield Units (HU).
The SSTVD cost is the sum of square differences of the tissue volume at each
location given by

CSSTV D =

∫

Ω

[Vf (x)− Vm(h(x))]
2
dx
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=

∫

Ω

vf (x)
If (x)+ 1000

1055
− vm(h(x))

Im(h(x)) + 1000

1055

]2
dx (7)

where I(x)+1000
1055 = I(x)−HUair

HUtissue−HUair
, and Ω was the union of the region containing

the lungs and tumor (the same region used for SSD cost in Alg. A). The volume of
a voxel in the moving image varies with the transformation h(x). The Jacobian
of the transformation estimates local volume change, so the moving image voxel
volume is evaluated as vm(h(x)) = vf (x) · J(h(x)). The total cost used in this
algorithm is then given by

CA = CSSTV D + ρvCSSVMD + ρrCREG. (8)

2.3 Experiments and analysis

Registration performance was evaluated by comparison to physician-defined ho-
mologous point landmarks. Landmarking was performed using the software pack-
age IX [14]. 100 point landmarks were automatically identified inside the lung
on the fixed image using a feature descriptor based on image intensity and in-
tensity gradient magnitude, culled from a larger set of points to ensure an even
and well-spaced distribution throughout the lungs. A radiation oncologist then
manually located the landmark in the moving image. IX includes a feature to
assist manual landmarking based on a thin plate spline fit of a training set of
manually-located landmark pairs, but this feature was not used; all landmarks
in the moving image were manually located.

After registration, the resulting transformation from each registration algo-
rithm A and B was used to transform the coordinates of the fixed landmarks
into the moving image domain. Landmark registration error was evaluated as
the distance between the transformed fixed landmark and the moving landmark.

In addition to quantifying registration accuracy at landmarks, we evaluated
the plausibility of each transformation by reviewing the local tissue deformations.
The Jacobian determinant of the transformation (termed the “Jacobian” here)
at a point represents local expansion or contraction of the tissue. The Jacobian
of transform h(x) is defined as

J(h(x)) =

∣∣∣∣∣∣∣

∂h1(x)
∂x1

∂h1(x)
∂x2

∂h1(x)
∂x3

∂h2(x)
∂x1

∂h2(x)
∂x2

∂h2(x)
∂x3

∂h3(x)
∂x1

∂h3(x)
∂x2

∂h3(x)
∂x3

∣∣∣∣∣∣∣
. (9)

A J(h(x)) value less than one corresponds to a situation where points mapped
from the domain of the fixed image near x contract locally under the transfor-
mation. J(h(x)) greater than one corresponds with expansion, and an identity
value implies no expansion or contraction.

3 Results

Fig. 2 shows the moving image overlaid on the fixed image before and after
registration with each algorithm. Alg. A (SSD) visually produces a good regis-
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tration of the lung boundaries and vasculature. The algorithm also aligns the
tumor boundary. However, in the case of infiltrative regression, the boundary
is receding away from the original position, exposing newly-visible parenchymal
tissue which is present in the moving but not the fixed image. In this case, it is
questionable whether it is proper to align the tumor boundary. Alg. B (SSTVD)
also visually produces good agreement of the lung boundary and vasculature.
This tumor surrounds several large airways in the central portion of the tumor,
which are also registered well by both algorithms. Alg. B, however, did not pro-
duce exact alignment of the tumor boundary, which is more in line with expected
performance in the case of infiltrative regression. Results were visually similar
in the other two subjects, but are not displayed here.

Fig. 2. Complementary color overlays of fixed image (maroon) and moving image
(green) of Subject 1. The top row shows coronal slices through the tumor-bearing lung,
and the bottom row shows sagittal slices. Left to right: unregistered, after registration
with Algorithm A, after registration with Algorithm B.
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Fig. 3 shows images of the Jacobian for both algorithms for all three subjects.
In each case, Alg. A showed compression in most regions of the tumor. This
result is due to the algorithm trying to elastically compress both the region of
new parenchyma visible only in the moving image and the tumor itself. Alg.
B, on the other hand, shows a Jacobian near unity within the regions of the
tumor consistent in both images. The regions where tumor is present in the fixed
image, but new parenchyma is visible in the moving image, show expansion of
the transform as the algorithm attempts to match the tissue volume in the new
parenchyma to the tumor in the fixed image. This result is plausible, as the
algorithm does not attempt to match the tumor boundaries but instead is able
to account for the differing image content in the two images.

The value of ρr was adjusted for both Alg. A and B to determine the effect
of increased regularization on matching. Increased ρr led to visibly less accurate
boundary matching, but the deformation patterns and Jacobian images for each
algorithm did not change appreciably.

Table 1 shows the landmark errors prior to and after registration for both
algorithms, averaged over all three patients. The errors are listed for all land-
marks within a distance d of the tumor surface on the fixed image. The difference
in landmark error distributions between SSD and SSTVD was not significant at
any value of d, with p ranging from [0.25, 0.37] (Wilcoxon signed rank test).
Landmark error was similar between patients, with mean error for SSD of 3.3
(2.5), 3.3 (2.7), and 3.1 (2.4) mm for Subjects 1, 2, and 3, respectively. Land-
mark error for SSTVD was 3.4 (2.3), 3.4 (2.7), and 3.2 (2.4) mm for the three
subjects.

Table 1. Landmark error (mm) prior to and after registration, averaged over all three
patients. Errors are reported as mean (standard deviation) for all landmarks within
a distance d mm from the tumor surface. N is the number of landmarks within the
distance d.

d N unregistered Alg. A (SSD) Alg. B (SSTVD)

5 3 10.3 (2.3) 4.6 (3.9) 5.9 (3.6)
10 8 9.8 (3.4) 3.9 (2.6) 5.9 (3.8)
15 17 9.4 (3.2) 3.7 (2.0) 4.6 (3.0)
20 27 9.2 (3.2) 3.3 (2.1) 4.1 (2.9)
40 51 8.8 (3.3) 3.2 (2.2) 3.6 (2.6)
All 300 8.3 (3.3) 3.2 (2.5) 3.3 (2.4)

4 Discussion

The goal of this study was to evaluate two different ways to implement intensity
cost for registering intra-subject CT acquired during radiotherapy, specifically
for infiltrative type tumor regression. The plausibility of the transformations
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Fig. 3. Images of the Jacobian for the three subjects. Top row in each cluster: Algorithm
A. Bottom row in each cluster: Algorithm B. Left column in each cluster: coronal slice
of tumor-bearing lung. Right column in each cluster: sagittal slice. A Jacobian less than
one (red to yellow color) implies compression of the transformation locally, whereas a
Jacobian greater than one (blue to purple color) implies expansion. A Jacobian of unity
implies neither expansion nor contraction (green color). The tumor boundary is shown
by the white markers.
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was assessed by visual inspection of the Jacobian of each transformation. Alg. A
(SSD) tended to produce a compression within the tumor, in order to match the
smaller tumor on the mid-treatment image to the larger tumor on the planning
image. This result is reasonable if the tumor has regressed elastically, and the
border contains corresponding tissue in the two images. However, in infiltrative
type regression, the tumor tissue at the border has disappeared, replaced by
newly-visible lung parenchyma. In this case, the result of Alg. A is inconsistent
with the infiltrative hypothesis.

To understand the results from Alg. B (SSTVD), it is helpful to consider
three regions of the image. In regions that contain lung parenchyma in both
images, SSTVD matches tissue volume as it was designed to do. Changes in
the same subject breath hold level between CT acquisitions results in different
brightness due to varying voxel air content. In this region, the SSTVD cost as-
sists in matching parenchyma regions while the SSVMD cost matches vessel-like
features. In regions containing tumor tissue in both images, intensity content
inside the tumor was used for matching. Even though the tumor decreased in
size, because this size decrease was due to mass loss, the tumor intensity re-
mained similar in both images. Thus, the SSTVD cost did not try to expand
or compress the transform in this region but instead allowed intensity features
to drive the registration. Essentially, the SSTVD cost acts as a constraint on
the Jacobian determinant in this region. In the tumor region, SSVMD was not
used due to masking, so it did not contribute to image matching. The third
region is the boundary of visible tumor in the planning image which appears
as parenchyma in the mid-treatment image. In this region, there is no corre-
sponding content in the image pair. We found that the SSTVD cost tended to
produce an expansion in the transform in this region. In the planning image,
the intensity in this region is high, whereas in the mid-treatment image it is
lower in the corresponding location where newly-visible parenchyma is found.
In this case, the SSTVD cost tends to try to expand the transform to increase
the tissue volume in the mid-treatment image. However, the regularization acts
to reduce the allowable expansion and compression in this region. Finally, since
this region contains no vessel features in the planning image, the SSVMD cost
does not affect the matching in this region.

Both SSD and SSTVD produced reasonable, but not subvoxel, accuracy in
the normal lung tissue near the tumor. SSD had higher, but not significant,
accuracy for landmarks independent of distance from the tumor. Potential solu-
tions to improve the accuracy include increasing the weighting of the SSVMD
cost and adding other features such as airways and/or fissures, although neither
option was not evaluated here. Within the central regions of the tumor, both al-
gorithms produced reasonable results for the few visible features there, although
we did not quantify landmark error in such regions. In conventional CT, such an
evaluation is difficult due to the lack of strong features in most tumors. Options
to solve this problem include contrast-enhanced CT and/or morphological MRI.
Another limitation of the study was the limited cohort size, although a larger
study is planned.
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5 Conclusions

Two algorithms, both with a pulmonary vessel feature cost and linear elastic
regularization, but with different implementations of intensity cost, were evalu-
ated on the problem of intra-subject CT registration during radiotherapy. Both
algorithms provided accurate registration, but sum of square tissue volume differ-
ence produced more plausible transforms to manage infiltrative type regression.
More work is needed to improve accuracy and to validate the registration near
the tumor boundary.
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