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Abstract. In this paper, the authors propose a novel method for texture
analysis to discriminate malignant GGO from benign GGO in LIDC/IDRI
dataset. The proposed method for texture analysis is based on the ori-
ented gray level co-occurrence matrix (GLCM), which is also proposed
by the authors. The oriented GLCM has the advantages that the noise
reduction is unnecessary, and arbitrary direction and distance in the con-
tinuous space can be used because of the hyper-surface fitting. The au-
thors discriminated tumors diagnosed as GGO in the LIDC/IDRI dataset
into malignant or benign GGO. In the experiment, the proposed method
classified 91 GGOs with 89% accuracy.
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1 Introduction

Discrimination between malignant and benign lung tumors in CT images for
computer-aided diagnosis (CAD) is being actively investigated [1][2][3][4]. Lung
tumors are clinically classified as solid, mixed, or ground-glass opacity (GGO).
It is difficult to discriminate malignant GGO from benign GGO because of their
pale intensity and ambiguous boundary. Although methods have been proposed
to discriminate malignant GGO from benign GGO, they use high resolution
CT (HRCT). However a more practical method is required that can be applied
to thick CT images. A dataset of lung tumors has been published named the
LIDC/IDRI (the Lung Imaging Database Consortium and Image Database Re-
source Initiative) dataset [5]. This dataset contains not only CT images but also
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the boundaries of tumors and annotations such as malignancy of the tumors
and texture in the tumors. Because the LIDC/IDRI dataset has various values
of pixel spacing and slice thickness of CT images, it is suitable to evaluate the
performance of discrimination methods in actual situations.

This paper describes a novel method to calculate gray level co-occurrence
matrix (GLCM) and its application to discriminate malignant GGO from be-
nign GGO in CT images. In this method, three-dimensional (3D) gray images
are locally converted into continuous functions using the hyper-surface fitting
[6]. Then GLCM and texture features [7] are calculated using this continuous
function. The obtained texture features are used to discriminate GGO. There is
no need to reduce noise in the images because of the hyper-surface fitting. Fur-
thermore, GLCM can be calculated in an arbitrary direction and an arbitrary
distance.

The proposed method is based on texture features using GLCM and hyper-
surface fitting. Texture features based on GLCM were originally proposed for the
texture analysis for 2D images and then applied to 2D medical images [3][8][9].
GLCM for 3D images was proposed and applied to 3D medical images in the
literatures [10][11]. However, because these methods were proposed for discrete
images, the direction and the distance in the calculation of GLCM are also
discrete. The method proposed in this paper solves these problems. Because
GLCM and Haralick’s features are still widely used in this field, it is thought that
they have great ability to analyze texture and there is a great demand for them.
But they have been used for 40 years with little expansion about dimensionality
and normalization of the orientation of objects. Hence, the authors propose a
novel GLCM.

Furthermore, the classification method based on the oriented GLCM was
evaluated using LIDC/IDRI dataset, and sensitivity, specificity and accuracy
of discrimination were 77%, 94% and 89%. For example, sensitivity, specificity
and accuracy of the method proposed in the literature [1] were 100%, 48% and
56%, respectively. Comparing these two results, the performance of the proposed
method in this paper is high enough.

2 Method

In the proposed method, the hyper-surface fitting at each voxel in the GGO
region is performed to locally obtain a quadratic polynomial of three variables
as the approximation of the CT image. Next, by using the coefficients of the
obtained function, eigenvectors of Hessian matrix are calculated. Then, by using
the CT value on the point of interest (POI) and that on the point in the direction
of the eigenvector away from POI, GLCM is calculated. Finally, Haralick’s tex-
ture features for discrimination are calculated using the GLCM. The flowchart
of the proposed method is shown in Fig.1.
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Fig. 1. Flowchart of proposed method

Fig. 2. Two sets of values (circles and
stars) used to calculate oriented GLCM

2.1 Hyper-surface fitting

The hyper-surface fitting is a method to estimate values on voxels in the neigh-
borhood of POI under a certain criterion [6]. Generally, the values on the voxels
are expressed by a locally defined function. For example, we assume that the
criterion is “the minimum square error criterion”, and a 3D gray discrete image
f(x, y, z) will be fitted using the following known continuous function

u = φ(x, y, z; a), (1)

where a = (a1, . . . , aM ) are unknown coefficients of variables in the function.
The local square error between f and φ is given as

εi,j,k =
∑

(x,y,z)∈RN (i,j,k)

{f(x, y, z)− φ(x, y, z;a)}2, (2)

where
∑

(x,y,z)∈RN (i,j,k) means a summation on voxels in the neighborhood re-

gion RN (i, j, k) at the POI (i, j, k), and POI can be the origin of the neigh-
borhood region without loss of generality. To minimize this error, the εi,j,k is
differentiated partially with am, (m = 1, . . . ,M), and partial differentials are set
to be 0 as follows,

∂εi,j,k
∂am

= −2
∑

(x,y,z)∈RN (i,j,k)

{f(x, y, z)− φ(x, y, z;a)} ∂φ

∂am
= 0. (3)

By solving these M equations, the M coefficients of the function φ are decided.
The advantages of the hyper-surface fitting are as follows.

– Noise is reduced without applying any filters such as a Gaussian filter or a
median filter.

– Because discrete images such as CT images are converted to continuous
images, CT values on arbitrary locations can be obtained.
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In the remaining part of this paper, the authors use a quadratic polynomial of
three variables as the function φ. The coefficients of the polynomial are denoted
as a1 for the constant term, ax2 for x2, and so on. Each POI has different values
of coefficients.

2.2 Hessian matrix

The Hessian matrix is obtained using the second order partial differentials of the
function φ as follows.

H =

⎛

⎜⎝

∂2φ
∂x2

∂2φ
∂x∂y

∂2φ
∂x∂z

∂2φ
∂y∂x

∂2φ
∂y2

∂2φ
∂y∂z

∂2φ
∂z∂x

∂2φ
∂z∂y

∂2φ
∂z2

⎞

⎟⎠ (4)

where ∂2φ
∂x2 ,

∂2φ
∂x∂y , etc. are the second derivatives of the function φ. Here, because

POI is the origin of the neighborhood region in hyper-surface fitting, ∂2φ
∂x2 at POI

is
∂2φ

∂x2
|x=0,y=0,z=0. (5)

By re-substituting the polynomial obtained in Section 2.1 into Eq. (5),

∂2φ

∂x2

∣∣∣
x=0,y=0,z=0

= 2ax2 (6)

is obtained. In a similar fashion,

∂2φ

∂x∂y

∣∣∣
x=0,y=0,z=0

=
∂2φ

∂y∂x

∣∣∣
x=0,y=0,z=0

= axy. (7)

Thus, the Hessian matrix at POI is given as the following equation:

H =

⎛

⎝
2ax2 axy axz
axy 2ay2 ayz
axz ayz 2az2

⎞

⎠ . (8)

Because the entries in this Hessian matrix are obtained by the hyper-surface
fitting, the eigenvalues and eigenvectors of the Hessian matrix are easily calcu-
lated. The authors denote the eigenvector as en = (enx , e

n
y , e

n
z )

T , (n = 1, 2, 3),
which corresponds to the n-th greatest eigenvalue, and the eigenvectors are nor-
malized so as that their norms are 1. The eigenvalues represent the magnitudes
of the change of voxel values along the corresponding eigenvectors.

2.3 Estimation of CT value and calculation of the oriented GLCM

The CT value at the point d away from POI along with the direction en is given
as

φ(den) =ax2(denx)
2 + ay2(deny )

2 + az2(denz )
2+

axyde
n
xde

n
y + ayzde

n
yde

n
z + axzde

n
xde

n
z+

axde
n
x + ayde

n
y + azde

n
z + a1,

(9)
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and the estimated CT value at the POI is given as φ(0) = a1. By using these
values, GLCM is calculated using all voxels in the GGO region defined by radi-
ologists.

Assuming the gray level (bin) at the POI is α, and the gray level at a point
in the direction t and the distance d away from the POI is β, the authors denote
the joint probability of α and β over the GGO region as p(α, β; t, d) or p(α, β)
if there is no confusion. The GLCM is a matrix composed of p(α, β) as the
(α, β)-th entry of the matrix. In addition, each p(α, β) is normalized so that the
summation of all p(α, β) in a GLCM is 1. Generally, both the direction t and
the distance d are discrete. The direction t can be one of only four directions
in a 2D case and 13 directions in a 3D case. In the proposed method, both the
direction t and the distance d are allowed to be continuous values by the hyper-
surface fitting in Section 2.3. The authors use the eigenvectors en of the Hessian
matrix as the direction t. Hence, the direction at each POI is different, but the
GLCM is normalized by the direction of the eigenvector. Therefore, the authors
named this GLCM the oriented GLCM. Fig. 2 shows the example of calculation
of the oriented GLCM. The values φ(0) are used as the value at POIs (indicated
with circles), and the values φ(de1) are used as the values on the paired points
(indicated with stars) of the POIs.

2.4 Texture features, feature selection, and classification

Haralick’s texture features [7] are calculated using the oriented GLCM obtained
in Section 2.3. Denoting N as the number of the gray levels and p(α, β) as the
(α, β)−th entry in the oriented GLCM, the examples of calculation methods for
Haralick’s texture features are as follows.

(Sum Entropy) = −
2N∑

α=2

pu+v(α) log pu+v(α) (10)

(Entropy) = −
N∑

α=1

N∑

β=1

p(α, β) log p(α, β) (11)

where pu+v(γ) =
∑N

α=1

∑N
β=1 p(α, β), (α + β = γ, γ = 2, 3, . . . , 2N). There are

14 Haralick’s texture features in all [7]. In this paper, 252 features (= 14 Har-
alick’s features × 3 directions × 6 distances(d = 1, 2, . . . , 6mm in plain scale))
are calculated. The elements of the direction t and the distance d can be ar-
bitrary real numbers with no relation to the pixel spacing or slice thickness of
the original CT image, because the CT image is converted to local continuous
functions by using the hyper-surface fitting. Then, some features that have high
correlation with the ground truth are selected. By using the selected features,
GGOs are classified into malignant GGO or benign GGO by a support vector
machine (SVM) [12]. The kernel function is radial basis function (RBF), and the
parameters of the kernel function are decided by using a grid search.
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3 Experiments

3.1 Materials

Annotations about tumors contained in the LIDC/IDRI dataset are given by
at most four radiologists. The annotations include the boundaries, malignancy,
and texture. The authors classified tumors diagnosed as 1 (Highly Unlikely for
Cancer) or 2 (Moderately Unlikely for Cancer) in “likelihood of malignancy” by
over half the radiologists as “benign”, 4 (Moderately Suspicious for Cancer) or
5 (Highly Suspicious for Cancer) in “likelihood of malignancy” as “malignant”,
and 1 (Non-Solid/Ground Glass Opacity) or 2 in “internal texture” as GGO. The
number of GGOs used is 91 from 74 cases. These tumors contain 26 malignant
GGOs, and 65 benign GGOs. The authors used logical OR of the tumor regions
decided by radiologists as GGO regions.

Table 1 shows the variation of CT images used in this experiment from the
perspective of the pixel spacing and the slice thickness. Because these CT images
have a large variety of pixel spacing and slice thickness, discriminating between
benign and malignant GGOs is a challenging problem.

Table 1. Frequency of cases used in this experiment from the perspective of pixel
spacing and slice thickness

Pixel spacing [mm]
0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9

Slice
thickness
[mm]

0.5-1.0 0 15 9 2
1.0-1.5 4 10 17 1
1.5-2.0 0 9 4 0
2.0-2.5 2 6 7 2
2.5-3.0 1 1 1 0

3.2 Feature selection

First, correlation coefficients between the ground truth (malignant GGO:1 and
benign GGO: −1) and each of 252 features were calculated, where the features
were normalized so that they were distributed between −1 and 1. The method
of calculation of the correlation coefficients is a method similar to the training
phase of a kind of supervised machine leaning methods. Then, 10 features were
selected in descending order of correlation coefficients. Finally, the combination
of features that achieved the best accuracy was decided from any combinations
consist of features from the 10 features. The selected features were the entropy
with d = 6 and the direction e2, and entropy with d = 5 and the direction e1.
The correlation coefficients were 0.461 and 0.457, respectively.
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3.3 Experimental results

The performance of the proposed method was evaluated by using a leave-one-out
method. The confusion matrix is shown in Table 2, and the sensitivity, specificity
and classification accuracy were 77%, 94% and 89%, respectively. The characters
“M” and “B” in Table 2 mean “Malignant” and “Benign”, respectively. Figs. 3
and 4 show all misclassified malignant and benign GGOs, respectively.

(a) (b) (c) (d) (e) (f)

Fig. 3. Misclassified malignant GGO

(a) (b) (c) (d)

Fig. 4. Misclassified benign GGO

Table 2. Confusion matrix

Proposed
method
M B

Radiologist
M 20 6
B 4 61

Table 3. Frequency of misclassified cases from the
perspective of pixel spacing and slice thickness

Pixel spacing [mm]
0.5-0.6 0.6-0.7 0.7-0.8 0.8-0.9

Slice
thickness
[mm]

0.5-1.0 0 1 1 0
1.0-1.5 0 2 2 0
1.5-2.0 0 1 1 0
2.0-2.5 0 0 2 0
2.5-3.0 0 0 0 0

4 Discussion

When comparing misclassified GGOs (Figs.3 and 4) and correctly classified
GGOs (Fig.5), there is a tendency to misclassify GGOs that are small or non-
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(a) (b) (c) (d) (e) (f)
Benign GGO Malignant GGO

Fig. 5. Examples of correctly classified GGO

uniform in internal texture. Because these situations destabilize directions of
eigenvectors, Haralick’s features are also unstable. Additionally, GGOs that have
very low CT values(Fig.4(a)(b) and Fig.5(e)) tend to be classified into malignant
GGO, even if they are actual malignant GGOs or not. The almost same problem
occurs in GGO that has a cavity(Fig.4(c)). The CT values in this GGO itself has
relatively high, but almost all portion of the computational region is in a cav-
ity. To solve these problems, optimization of parameters in the classifier and/or
addition of features are required. Especially, the performance can be higher if
other features are used complementally.

On the other hand, the proposed method is insusceptible to noise(Fig.5(c)(f)).
It is thought that the hyper-surface fitting works effectively to reduce noise.

If Tables 1 and 3 are compared, the ability of classification of the proposed
method is less related with the pixel spacing or the slice thickness of the CT
images. Therefore, it is thought that the proposed method will be practical in
the actual situation.

5 Conclusion

In this paper, the authors proposed a novel method to discriminate malignant
GGO from benign GGO in CT images that have various pixel spacing and slice
thickness. The features were calculated using hyper-surface fitting and the ori-
ented GLCM that was also proposed by the authors. The sensitivity, speci-
ficity and accuracy of discrimination between malignant and benign GGO using
LIDC/IDRI dataset were 77%, 94% and 89%, respectively.

The future works include improvement of the feature selection method by
using a more common method, combination with other features[13], and dis-
crimination using GGO regions extracted automatically [14][15].
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