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Abstract. Chest radiography is one of the key techniques for investigat-
ing suspected tuberculosis (TB). Computerized reading of chest radio-
graphs (CXRs) is an appealing concept because there is a severe short-
age of human experts trained to interpret CXRs in countries with a high
prevalence of TB. This paper presents a comprehensive computerized
system for the detection of abnormalities in CXRs and evaluates the
system on digital data from a TB prevalence survey in The Gambia.
The system contains algorithms to normalize the images, segment the
lung fields, analyze the shape of the segmented lungs, detect textural
abnormalities, measure bluntness of the costophrenic angles and quan-
tify the asymmetry in the lung fields. These subsystems are combined
with a Random Forest classifier into an overall score indicating the ab-
normality of the radiograph. The results approach the performance of an
independent human reader.
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1 Introduction

Tuberculosis (TB) is the only disease in the top 10 of global causes of mortality
for which a cheap and effective cure is available [1]. In 2011 an estimated 8.7
million new cases and 1.4 million deaths were reported. The incidence of TB is
highest in Africa, followed by the Asian countries [2].

The World Health Organization (WHO) has identified 21 global focus coun-
tries for TB prevalence surveys for accurate assessment of the disease burden and
impact of TB control programmes [3]. The screening algorithm for TB preva-
lence surveys recommends screening of eligible target population first with a
symptom questionnaire and then chest radiography (CXR). Stationary or mo-
bile digital chest radiography units are now being increasingly used for these
surveys. Subjects with symptoms indicative of TB, or abnormalities on the ra-
diograph, submit a sputum sample which is analyzed with microscopy, culture
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or other tests to determine if that person has TB [4]. It is too time-consuming
and costly to analyze sputum of all participants. In this scenario it is vital that
the decision whether the chest radiograph is normal or abnormal can be made
quickly. Ideally, this decision is made directly after obtaining the image, so that
a survey participant with an abnormal radiograph can immediately be asked to
submit sputum. To facilitate such a high throughput prevalence screening sce-
nario, which could also be applied in active TB case finding among high risk
groups, we aim to develop a computerized system that runs on standard com-
puter hardware, analyzes a chest radiograph automatically, and produces a score
that indicates how abnormal the radiograph is within minutes. This score can
be thresholded to determine which subjects should undergo further testing. The
threshold can be optimized depending on the requirements and capacity of the
screening program.

This paper describes a platform and its components that comprise such an
automated image analysis solution. We evaluated the performance of the system
on data from a pilot phase of the TB prevalence survey of The Gambia, that
was carried out during 2012 using the WHO recommended protocol.

A large diversity of pathologic changes in the lungs can be observed on CXRs
because of the complex pathophysiology of TB and manifestations also differ with
different severity and stages of the disease [5]. A generally applicable computer
system therefore should be able to detect the presence of all these patterns. More-
over, the software should be able to process images from different radiography
units.

In this work we describe such a system that has the following components:
image normalization (to be able to deal with images from different machines);

Novel contributions of this paper are the integration of the various compo-
nents into a combination classifier and the symmetry analysis system. Further-
more, this is the first paper to evaluate automated detection of TB on a database
of digital chest radiographs obtained from TB prevalence survey.

2 Methods

This section describes the components of the automated analysis system.

2.1 Image normalization

Supervised computer analysis systems are typically trained on data from a small
number of sources and as a result, they may not perform optimally on data
from different sources. For example in this work, training data was provided
by a digital slotscanner system and the completely independent test data was
obtained from mobile units with full field digital detectors. We therefore applied
an energy normalization procedure to both training and test data prior to further
processing.

This procedure started by resizing the image to a standardized width of
1024 pixels and scaling the pixel values such that they have zero mean and unit
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standard deviation. The image was then divided into frequency bands. Starting
with the original image, a blurred version of the original image I, obtained by
convolution with a Gaussian kernel with standard deviation σ1 was subtracted
from it which resulted in a high frequency image I1. The same procedure was
applied to the blurred image now using a larger standard deviation σ2, and so
on, and in this way 6 energy bands were obtained with σi = 2i−1. From a set
of reference radiographs obtained from a single type of digital radiography unit,
we determined the average standard deviation (energy) in the central 70% of
the image for each energy band. We now scaled the pixel values in each band so
as to match these reference energy levels and reconstructed the radiograph by
adding the energy bands.

The result of this preprocessing operation is that the intensity ranges and
perceived sharpness of the high and medium frequency details is similar in all
images. We have recently described this algorithm in more detail [6] and shown
that after application of this energy normalization, a lung segmentation algo-
rithm similar to what we describe here (Sect. 2.2) that is trained with data from
one source can successfully be applied to data from other sources.

2.2 Lung field segmentation

A lung segmentation is required to limit subsequent analysis to the region inside
the lung fields, where radiographic patterns associated with TB are primarily
visible. The method we used to segment the lung fields (see [7] for details) is
based on pixel classification and postprocessing. For computational efficiency, the
normalized images were subsampled to a width of 256 pixels. A multi-scale local
jet [8] of second order was computed at scales 1, 2, 4, 8, 16 pixels. In addition, the
original pixel value and the x and y position were used as features. From a set of
309 training images, examples of pixels in- and outside manually outlined lung
fields were sampled (a random selection of 0.6% for both classes). A k-nearest-
neighbor classifier (k = 15) was trained and used to assign all pixels in a test
image a lung likelihood p. The resulting lung likelihood map was converted to a
binary segmentation in a series of steps: Gaussian blurring with σ = 0.7 pixels,
thresholding at p = 0.5, selection of the two largest components, morphologically
closing with a spherical kernel of radius = 10 pixels, and applying hole filling.

2.3 Lung field shape analysis

When severe abnormalities are present in the image, lung field segmentation may
fail. In the worst case scenario, the segmented part would contain only normal
lung parenchyma and subsequent texture analysis would not flag the image as
being highly abnormal. Therefore, we added an analysis step that evaluates the
shape of segmented lung fields for normality.

For each lung, 80 equiangular rays were cast from the center of gravity of
the object and the distances to the intersection with the boundary, normalized
by the height of the bounding around both lungs, were computed. All distances
were stacked in a feature vector. For a set of normal images with correct lung
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segmentation, principal component analysis was applied retaining 95% of the
variance. For new shape vectors, the Mahalanobis distance after projecting on the
principal components was computed as a lung shape score. A large Mahalanobis
distance of a test shape to the model indicates a more abnormal shape and is
indicative of a grossly abnormal image.

2.4 Costophrenic recess analysis

Pleural fluid in the costophrenic recesses may cause the costophrenic angle, the
point where the diaphragm meets the outer rib cage, to appear ‘blunted’. Al-
though such a sign is not always associated with TB, in areas with a high preva-
lence of TB it is possible that a TB patient exhibits no abnormalities on a
CXR except for a blunt costophrenic angle. We therefore developed an algo-
rithm exclusively devoted to detecting the presence of blunt costophrenic (CP)
angles caused by pleural effusion on chest radiographs. The CP angle is the angle
formed by the hemidiaphragm and the chest wall. We defined the intersection
point of both as the CP angle point. We detected the CP angle point automati-
cally from the lung segmentation by locating the foreground pixel of each lung
with maximum y location. Patches were extracted around the CP angle point
and boundary tracing was performed to detect 10 consecutive pixels along the
hemidiaphragm and the chest wall and we computed the CP angle from these.
The method was recently evaluated by Maduskar et al. [9]. The two angular
measurements (for the left and right costophrenic angle) were used as features
indicative of pleural effusion in the costophrenic recesses.

2.5 Texture analysis

Textural abnormalities in CXRs occur often as a result of TB infection and they
typically reflect inflammatory changes in the lung parenchyma, but can also be
the result of fluid accumulation or fibrotic changes in the pleural space. The
texture analysis system applied, has been previously described in Hogeweg et
al. [10] and was inspired by Arzhaeva et al. [11] and Van Ginneken et al. [12].
The algorithm operates on normalized images resampled to a width of 1024
pixels. On a grid with a spacing of 8 pixels circular patches with a radius of 32
pixels were defined. Within these patches, the first four moments of the output of
the multiscale jet described above were computed as texture features. In addition
several spatial features (normalized x and y position and distance to the lung
wall and center of gravity of both lungs) were computed. Pixels were classified
with a k-nearest-neighbor classifier. Training samples have been obtained from
a set of 1,000 digital CXRs of TB suspects collected at a busy urban clinic in
Lusaka, Zambia. In these images, all abnormal regions were manually outlined
and pixels in such regions count as abnormal examples. Normal samples were
obtained from completely normal images.

This texture analysis produced a ‘heat map’ indicating regions with abnor-
mal texture. To aggregate this analysis into an image score, the 95% percentile
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from the cumulative distribution of patch likelihoods was computed. This score
measures in a robust way the extent and the severity of the affected lung [13].

2.6 Symmetry analysis

Symmetry is an important feature of human anatomy and the absence of symme-
try in medical images may indicate the presence of pathological changes. Quan-
tification of image symmetry can be used to improve the automatic analysis
of medical images. We have developed a method that computes global symme-
try in 2D medical images for which two regions that should be roughly mirror
symmetric have been defined. The segmented lung fields serve as those regions.

First, an initial vertical symmetry axis was determined based on a vertical
projection of the lung fields and an analysis of the projection profile. With this
axis available, the lung fields were converted to a mirror symmetric representa-
tion. Now for each position p in the left lung field, a mirrored position p′ can
be determined in the right lung field, and vice versa. In the neighborhood of
p′, an optimally corresponding position p′′ was determined by minimizing a cost
function d that adds intensity differences in an n by n patch around p and the
mirrored patch around p′′ and the Euclidean distance between p′′ and p′, multi-
plied by a weighting term m. The optimal value of d was used as a measure of
local symmetry, and all values of d were averaged to obtain the global symmetry
D.

One major issue with this approach is that a slight rotation of the CXR has
a large effect on D. The measure was therefore optimized by a greedy minimiza-
tion of D for a rotation between -10 and +10 degrees, and for slight horizontal
displacements of the vertical symmetry axis. The free parameters n and m have
been optimized in pilot experiments where settings were determined that yielded
optimal separation between normal and abnormal images using only D as a mea-
sure.

An attractive property of symmetry computation is that it is self-normalizing:
the contralateral side of the image is the ’control image’, and this circumvents the
problem of supervised schemes where CXRs of different subjects are compared
with inherent variation in image appearance due to anatomical and physiological
variation. A limitation of this approach is that cases where the both sides exhibit
similar abnormal patterns may achieve a high symmetry score, similar to nor-
mal cases. It is hypothesized that such cases, because of their more widespread
abnormalities, will usually be detected by the texture analysis.

2.7 Classifier combination

The analyses described above yield for each image 5 scores (lung shape, left
and right costophrenic angle, texture and symmetry). These scores were used
as features for a Random Forest classifier [14] using 50 decision trees with a
maximum tree depth of 7. This classifier was trained with a reference set of
1,000 radiologically normal and abnormal images.
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Fig. 1. ROC curves for each of the individual components, the combined system, and
an independent second observer.

3 Materials

The training database used to train the texture analysis system, the lung shape
analysis system, and the Random Forest classifier consisted of 1,000 images from
a digital Odelca-DR system with a slotscan detector (Delft Imaging Systems,
The Netherlands). The CXRs were collected in an African country with a high
incidence of tuberculosis (TB). The radiographs had image widths in the range
of 1500-1800 pixels and a pixel spacing of 256x250μm. Each image was read by a
chest radiograph and recording system (CRRS) [15] certified ”B” reader. Three
types of abnormalities were manually outlined: small and large opacities, and
consolidations. A subset of this data set was used to train the lung segmentation
system.
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Shape Left CA Right CA Texture Symmetry Combination

Components individually 0.707 0.600 0.592 0.809 0.786 0.867
Combination without 0.858 0.851 0.758 0.823

Table 1. Performance in terms of area under the ROC curve for the individual sub-
systems, the combination, and the combination without individual subsystems, where
both costophrenic angle measurements were taken together. CA = costophrenic angle.

The performance of the individual components and the combined system was
tested on a set of 304 images from a digital Atomed mobile X-ray system (Delft
Imaging Systems, The Netherlands) with a Canon CXDI detector acquired in
a prevalence survey in The Gambia. The CXR widths were in the range of
2000-2500 pixels and have a pixel spacing of 160 μm isotropic. The radiological
reference standard for each image was set by the same reader. 96 images were
read as abnormal. This set was also read by an independent second observer who
rated each image on a scale from 0 (normal) to 100 (very abnormal) so that an
ROC curve could be constructed.

4 Results

Fig. 1 shows the results of the individual systems and the combined system as
ROC curves. The area under the curve, Az, a global performance measure, is
listed in the legend. Additionally, the performance of an independent human
observer is provided. Fig. 2 provides illustrative examples of the output of the
individual systems. Table 1 lists Az values of individual systems, the combined
system and instantiations of the combined system in which the texture, shape,
symmetry and costophrenic angle measurements were removed. In this way it
can be seen what the effect of removing one type of analysis was on the combined
approach.

5 Discussion and conclusion

From all the individual systems, the measurements of the costophrenic angles
were performing the poorest. This is not surprising. Not all abnormal chest radio-
graphs have a left of right blunt costophrenic angle, so these two systems at best
detect only a subset of the abnormal cases. Still, inclusion of the costophrenic
recess analysis in the combined system demonstrated added value: performance
increased from 0.851 to 0.867. It appears there is room for improvement in the
blunt costophrenic angle detection system though: the ROC curves start below
the chance line, indicating that the images with the most blunt angles are actu-
ally normal, and close inspection of these cases revealed that in these cases the
costophrenic point has not been correctly detected.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2. Illustrative examples of the output of components of the analysis system. (a-b)
In this highly abnormal image the lung field segmentation failed. The dense abnormal-
ity in the middle part of the left lung was classified as background and the left lung
segmentation therefore consisted of multiple parts of which only the largest component
was retained. This image therefore received the largest shape score (most abnormal
shape) and was therefore considered highly abnormal. (c-d) Another case with clear
abnormalities and a cavity in the upper right lung field. These abnormalities were de-
tected by the texture analysis system. (e-f) A case where the only obvious abnormality
is a blunt costrophrenic angle of the left lung. This was detected by the costophrenic
recess analysis (100.5◦). (g-h) A case with an abnormal hilar structure that resulted
in high asymmetry on both sides. Other more subtly abnormal regions gave a lower
(greenish) output of the asymmetry detection.

The subsystem that estimates how abnormal the shape of the segmented
lung fields is performed admirably on its own, with an Az of 0.707. This indi-
cates that the lung segmentation partly fails quite often in the case of abnormal
radiographs. Given that the segmentation is based on pixel classification and
was largely trained with normal images, this is as may be expected: the lung
segmentation system effectively detects normal lung parenchyma. If we leave
out the shape system from the total system, performance dropped from 0.867 to
0.858. This implies that occasionally indeed the segmented part of the lungs is
completely normal and there is complementary information in the shape score.

The symmetry analysis achieved, on its own, a good performance of 0.786,
close to the best performing subsystem, texture analysis, which obtained Az =
0.809. This is remarkable because the symmetry system is not a supervised
system trained with other radiographic images, but a completely standalone
analysis of a single test image. The texture system was, as expected, the best
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single system. But the combined analysis improved substantially upon texture
analysis alone.

Observing the ROC curves, we note that performance of the combined sys-
tem was close to that of a human expert for operating points at either a high
specificity or a high sensitivity. At a sensitivity of 50% both the automatic and
the human observer had a false positive rate of only a few percent. And both
systems reached a sensitivity above 95% with a specificity of 40%. The human
observer still achieved better sensitivity in the specificity range between 50 and
90%. An inspection of the abnormal images that the human reader detected
additionally to the computer at these specificity levels showed that these images
contained relatively subtle abnormalities. Some of these were limited to the hilar
region. An additional subsystem focused on the detection of lymphadenopathy
will therefore be useful. The architecture of the system presented here naturally
supports the inclusion of an additional subsystems.

Besides further improvement of the underlying algorithms, and the develop-
ment of additional subsystems, future work will also focus on evaluation of the
system in an operational setting. Comparison to multiple human observers is
needed to reliably assess the potential of computerized reading versus current
practice.

This is the first paper to present a comprehensive approach to the detection
of abnormalities in chest radiographs acquired to detect signs of tuberculosis.
Moreover, it is the first validation of a computer-aided detection system for
tuberculosis using data obtained from a TB prevalence program. The promising
results indicate that automated reading may be incorporated in TB prevalence
systems employing digital chest radiography, which could greatly improve the
logistics and cost effectiveness of such programs.
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