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Abstract. This paper presents a novel graph-cuts algorithm that can take into 
account a multiple-shape constraint and reports a lung segmentation process 
from a three-dimensional computed tomography (CT) image, based on the 
graph-cuts algorithm. A major contribution of this paper is the proposal of a 
segmentation algorithm that can consider multiple shapes in a graph-cuts 
framework. Using experiments, we demonstrate the effectiveness of the 
proposed multi-shape graph-cuts by comparing them to conventional single-
shape graph-cuts using a synthetic image and clinical thoracic CT volumes. 
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1   Introduction 

Accurate segmentation is a prerequisite for quantitative lung CT image analysis and 
also for computer-aided diagnoses. Many methods have been proposed to extract the 
lung regions automatically from three-dimensional (3D) CT volumes [1]. Since a 
normal lung appears dark in a CT image and is surrounded by denser regions, most 
methods focus on this contrast information. Although such methods are known to be 
simple and effective [2], they often fail to extract the region affected by pathologies. 

For the segmentation of cases with pathologies, many approaches use the different 
features of lungs, rather than contrasts (e.g., using the shape of the lungs). Sluimer et 
al. proposed a registration-based approach in which a shape template was registered 
to an input CT volume [3]. They achieved significant improvements in the 
segmentation of lungs with pathologies, but the algorithm is time-consuming because 
of the combination of registration and classification processes. In addition, it suffers 
from a low accuracy in segmentation as a result of registration and classification 
errors. Hua et al. proposed a method that combines the classification process and a 
graph-search algorithm, and has been shown to be effective in cases containing 
pathologies [4]. However, the construction of the graph was limited to the narrow 
band around the pre-segmented lung surface obtained from the gray-value statistics-
based method, which might fail in cases with a large pathology.  

This paper proposes an s-t graph-cuts-based [5] segmentation algorithm with 
multiple shape priors, which can optimize an energy function defined in an entire CT 
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scan. A number of researchers have introduced a shape prior into a graph-cuts 
approach [6-8]. These papers show several ways to incorporate a general shape 
constraint, such as an ellipse, a star-shape, or an arbitrary shape defined by the user. A 
reference shape-based energy, computed by the Parzen window method, was 
proposed in [9]. The paper in [10] combined a patient-specific shape, estimated by a 
statistical shape model (SSM), with a graph-cut. However, all of the above methods 
consider single-shape information only, which might be different from the true shape, 
resulting in insufficient performance. Combining multiple-shape information will help 
to reduce such differences. A major contribution of this paper is the proposal of a 
graph-cuts-based segmentation algorithm that can consider multiple shapes. In the 
remainder of this paper, we will explain the details of our method and demonstrate its 
effectiveness using the experimental results of a synthetic image and thoracic CT 
volumes in clinical medicine. 

2   Proposed Segmentation Framework 

2.1   Single-shape graph-cuts  

Graph-cuts formulate a segmentation problem as an energy minimization problem [5]. 
Given a set of voxels, P, and a set of labels, L, the goal is to assign a label l ∈ L to 
each p ∈ P. Let Ap denote a label assigned to voxel p, and let A = {A1, A2, …, Ap…, 
A|P|} be a collection of all label assignments. This gives the energy function: 

E(A) = λR(A) + B(A) = λΣp∈P Rp(Ap) + Σ{p,q}∈N Bp,qδAp≠Aq (1) 

There are two types of energy terms in equation (1). The first term is called a data 
term, which expresses a penalty for assigning label Ap to voxel p. Generally, we use 
the negative log likelihood of the gray value for this term. The second term, Bp,q, is 
called a boundary term. This term expresses a penalty for assigning labels Ap and Aq 
to the two neighboring voxels, p and q. Originally, this term relies on a gradient value 
between voxels p and q. The set N is a collection of neighboring voxel pairs. The 
function δ is 1 if Ap ≠ Aq, and 0 otherwise. The coefficient λ in the equation is a 
constant value balancing the two terms. In the following paragraphs, we briefly 
review the method of [10], which uses “single-shape graph-cuts”.  

One of the contributions of [10] was the proposal of an energy term that can 
penalize the segmentation boundary based on a patient-specific shape, a priori. The 
following shape-constrained term, Sp,q, was introduced in the boundary term:  

E(A) = λΣp∈P {Rp(Ap) + NBp(Ap)} + Σ{p,q}∈N {Bp,q + Sp,q}δAp≠Aq (2) 

Sp,q = sqrt{[1 − cos(θ)]/2} (3) 

where θ represents an angle between a vector connecting voxels p and q and a 
gradient vector of a signed distance φ(p) from the boundary of given shape, a priori. 
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This term encourages the energy to be low when the direction of a vector connecting 
p and q is similar to that of the gradient vector of φ(p). As a result, the surface 
normals of an extracted region tend to be parallel to those of the given shape. Thus, 
the extracted region is similar to the shape given to the algorithm.  

Although the shape-constrained energy term Sp,q has been shown to be effective, 
the algorithm still suffers from low accuracy, especially with test data. A 
patient-specific shape prior was estimated using an SSM beforehand. The estimation 
process works quite well for most cases, but it is still a challenging problem when 
dealing with test data in which an organ’s shape is different from that in a training 
dataset. Therefore, there is a risk when using only a single shape. In this case, a 
collection of multiple shapes could account for the shape in a test dataset. This is why 
we propose a framework that can take into account multiple shape constraints. 

NBp(Ap) in equation (2) is a neighbor-constrained term defined by the distance 
from the dorsal ribs. Since the lungs are surrounded by ribs, the term shows that 
regions inside and near the ribs are more likely to belong to the lungs. 

2.2   Multi-shape graph-cuts 

This section presents a graph-cuts-based segmentation algorithm that can solve the 
problem of a combination of multiple shape priors. Unlike a conventional graph-cuts 
algorithm, which deals with a binary label problem, we now consider multiple-shape 
priors, or multiple labels. Let a set, L, be a label set {0, 1, 2, …, n} in which each 
label corresponds to a prior shape. Fig. 1 shows examples of labels, each with its 
original shape. Our goal is to develop an algorithm that will select an optimal shape at 
each voxel by minimizing an energy function, including the shape energy, of 
equation (4).  
 

 
Fig. 1. A set of labels with their corresponding shapes. 

Eshape = Σ{p,q}∈N Sp,q δ 

Sp,q = MIN(sqrt{[1 − cos(θAp)]/2}, sqrt{[1 − cos(θAq)]/2}) 
(4) 

where θAp represents an angle between a vector connecting voxels p and q and a 
gradient vector of a signed distance φAp (p) from the boundary of a shape 
corresponding to a label Ap ∈ L. Here, δ is a function that equals 0 when the 
neighboring voxels belong to same class, and 1 otherwise. Note that there are two 
classes, a lung (“object”) class and background class in our problem. 

Ideally, it is best to solve multi-label problems in one step. However, there is no 
algorithm that can handle problems in this manner. Instead, researchers use an 
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approximation algorithm that employs an iterative scheme, such as alpha-expansion 
[11] or fusion move [12]. These methods sequentially propose a label against a 
current label at each voxel. An important difference between the two algorithms is 
that the fusion move algorithm can propose different labels according to locations in 
each iteration, but the alpha-expansion algorithm cannot. As explained below, our 
algorithm proposes labels that differ by location so as to ensure the sub-modularity of 
the shape energy of equation (4). Consequently, we employ the fusion move 
algorithm, which iteratively solves a series of problems between a set of current labels 
and a set of proposed labels using the QPBO min-cut algorithm [13]. 

Let Xcur be a collection of current labels and Xpro be a set of proposed labels. Note 
that both Xcur and Xpro include multiple labels, each of which corresponds to an 
original shape. In order to ensure the sub-modularity of the shape energy, we divided 
the current labels into object labels and background labels. First, the fusion move 
algorithm proposes an “object” label, l, against voxels whose current labels, Xcur, are 
“background”, and proposes the same labels as current for other voxels (Xpro ← Xcur). 
The QPBO min-cut algorithm can find a combinatorial optimal solution of labels, or 
shape. This step can reduce false negatives, but cannot deal with false positives. The 
second step focuses on false positives, based on the same analogy. It proposes a 
“background” label l against voxels whose current labels Xcur are “object”. To 
compute the shape energy Sp,q in the case of a background proposal, we extend the set 
of labels L to L = {1, –1, 2, –2, …, n, –n}, where the absolute value of a label refers 
to the number of a shape, and its sign represents the state of a voxel. Here, positive 
labels represent “object” labels and negative labels represent “background” labels. 
The QPBO min-cut algorithm can again find combinatorial optimal solutions of labels. 
We iterate a pair of object proposals and background proposals by changing a label, 
or a shape. The algorithm stops the iteration process when no label changes or when it 
reaches the maximum number of iterations defined by the user. Our method is 
summarized in Algorithm 1 and the differences over the single-shape graph-cuts are 
listed in Table 1. 

 
Algorithm 1. Multi-shape graph-cuts 
Input: a set of labels L, Xcur 
Result: segmented regions 
Initialize Xcur = {–1, …, –1} 
Repeat 
 for each l ∈ L do 
  Generate a set of labels Xpro where either l or an element of Xcur is assigned at each voxel  
  Xcur ← Xcur  Xpro   : fusion move operator [12] 
 end for 
until Convergence: no label changes or reaches maximum number of iterations  
 

Prior to executing the proposed algorithm, we must decide a total number and an 
order of proposal of shape priors. As with the single-shape graph-cuts, patient-specific 
shape priors are estimated by combining an SSM and a pre-segmented result that is 
obtained by thresholding and morphological operations. Shapes similar to a 
pre-segmentation result are extracted from an eigen shape space. Actually, the top n 
shapes with a minimum distance between a shape in an eigen shape space and a 
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pre-segmented region are selected as the shape priors and used in the proposed 
multi-shape graph-cuts. 

Table 1. Differences between a single-shape and multi-shape graph-cuts. 

 Single-shape Multi-shape 
Number of shapes 1 n 
Labels in A binary multiple labels (2n) 
“Object” label(s) 1 {1, 2, …, n} 
“Background” label(s) 0 {–1, –2, …, –n} 

 
Finally, we will give an intuitive proof of the following inequality [12] to show the 

sub-modularity of the proposed energy term: 

fpq(Xp
cur, Xq

cur) + fpq(Xp
pro, Xq

pro) ≤ fpq(Xp
cur, Xq

pro) + fpq(Xp
pro, Xq

cur)  (5) 

where Xp
cur is a current label and Xp

pro is a proposed label at voxel p, and fpq means 
Sp,q δ. 
Proof. There are three cases with different signs of the product of Xp

cur, Xq
cur and the 

proposal label l ∈ L, where the three cases are mutually exclusive events and together 
cover all possible events. Note that a product of two labels is positive if the labels 
belong to the same class and negative otherwise. 
Case 1: Xp

cur Xq
cur > 0 

fpq(Xp
cur, Xq

cur) = fpq(Xp
pro, Xq

pro) = 0, because of the function δ. Therefore, we can 
write equation (5) as (5) , as follows: 

0 + 0 ≤ fpq(Xp
cur, Xq

pro) + fpq(Xp
pro, Xq

cur) (5)  

Since fpq is greater than or equal to 0, the above inequality is always met.  
Case 2: Xp

cur Xq
cur < 0 and Xp

cur  l > 0 
Since Xp

cur belongs to the same class as proposal label l, Xp
pro ← Xp

cur. 
Since Xq

cur belongs to a different class from proposal label l, Xq
pro ← l. 

Therefore, we can write equation (5) as (5)  which is an algebraic identity. 

fpq(Xp
cur, Xq

cur) + fpq(Xp
cur, l) = fpq(Xp

cur, l) + fpq(Xp
cur, Xq

cur)  (5)  

Case 3: Xp
cur Xq

cur < 0 and Xp
cur  l < 0 

Since Xp
cur belongs to a different class from proposal label l, Xp

pro ← l. 
Since Xq

cur belongs to the same class as proposal label l, Xq
pro ← Xq

cur. 
Therefore, we can write equation (5) as (5)  which is also an algebraic identity. 

fpq(Xp
cur, Xq

cur) + fpq(l, Xq
cur) = fpq(Xp

cur, Xq
cur) + fpq(l, Xq

cur)  (5)  

QED. 
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2.3   Energy function used in a lung segmentation process 

This section explains the energy function used in this study. Although the proposed 
shape energy plays an important role in segmentation, it is not enough to extract the 
whole lung area precisely from a CT volume. As a conventional graph-cuts algorithm, 
a likelihood-based regional term, Rp(Ap), a neighbor-constrained term, NBp(Ap) [10], 
a statistical atlas-based energy, Atlasp(Ap), as well as a boundary term, Bp,q are 
combined with the proposed multi-shape energy. 

E(A) = λΣp∈P {Rp(Ap) + Atlasp (Ap) + NB p(Ap)} 

   + Σ{p,q}∈N {Bp,q + Sp,q}δAp Aq<0 
(6) 

Rp(Ap) = –log(Pr(Ip|“obj”)) (if Ap > 0) 

Rp(Ap) = –log(Pr(Ip|“bkg”)) (if Ap < 0) 
(7) 

Atlasp(Ap) = 1.0 – Patlas(p)  (if Ap > 0) 

Atlasp(Ap) = Patlas(p)    (if Ap < 0) 
(8) 

NBp(Ap) = 0       (if Ap > 0) 

NBp(Ap) = Drib      (if Ap < 0) 
(9) 

where Patlas(p) represents the prior probability of the lungs at voxel p calculated from 
training data. The function δ for boundary terms is defined as below. 

δAp Aq<0 = 1 (if Ap Aq < 0) 

δAp Aq<0 = 0 (if Ap Aq > 0) 
(10) 

Since positive labels represent an “object” class and negative labels represent a 
“background” class, the basic function of the equation is essentially the same as δ in 
equation (1).  

3   Experimental Evaluations 

3.1   Materials 

Synthetic image: A 2D synthetic image [10] was used for performance validation 
(Fig. 2(c)). The image includes not only an object (Fig. 2(a)), but also noises 
consisting of six structural noises (Fig. 2(b)) and an additive Gaussian noise 
(N(0,202)) (Fig. 2(c)). The structural noises mimic lesions and vessels with different 
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contrasts in an organ. The radius of the object in Fig. 2(a) is 40 [pixel] on average, 
and the amplitude, A, is 5 [pixel]. The distance dx and dy refer to the displacement of 
an object in the shape templates that were used as shape priors. In this experiment, we 
changed the amplitude A and distances dx and dy of the shape template to incorporate 
various deviations from the true shape. We used uniform random numbers for the 
parameters A, dx, dy (A: [5, 10], dx: [–10, –5], dy: [5, 10]), and generated 10 shape 
priors, as shown in Fig. 2(d). For the boundary term of the energy function, we 
employed an eight-neighborhood system for this experiment. 
 

    
(a) An object label 
and parameters 

(b) With 
structural noises 

(c) With Gaussian 
noise (N(0, 202)) 

(d) Shape 1 (a 
white line) 

Fig. 2. Illustrations for a synthetic image (150 × 150). Numerals in (a) and (b) are gray values 
of objects. 

Table 2. Parameters of the shape priors. 

Parameter 1 2 3 4 5 6 7 8 9 10 
A 8 6 5 7 8 7 8 9 7 7 
dx 9 8 –8 –7 –6 –10 –8 8 –7 9 
dy –7 8 8 –6 –8 –7 6 –7 –9 –9 

 
Clinical CT volumes: We performed lung segmentation using 97 cases with 
pulmonary diseases, such as lung carcinoma. These cases include both non-contrast 
and contrast CT volumes (image size: 512 × 512 × 204–561[voxel], pixel size: 0.625–
0.741[mm/pixel], slice spacing: 0.5–1.0 [mm], bits stored: 16 [bit]). In this 
experiment, we included the lungs and the regions of pleural effusion as target objects 
for segmentation. It is worth noting that all the processes are 3D automated. We 
employed a 26-neighborhood system for the graph-cuts. We divided the data into 49 
training and 48 test data sets and the performance of the algorithm was assessed by a 
holdout validation test. The training data were used for building a shape model (a 
level set distribution model (LSDM) [14]), which is based on a signed distance map 
from the contour of a shape. The data were also used to build a probabilistic atlas for 
energy Atlasp(Ap) and to calculate gray-value statistics of the lungs and other regions 
for energy Rp(Ap). In order to estimate patient-specific shape priors, we calculated a 
Jaccard Index (J.I.) as a metric to compute the distance between a pre-segmented 
region and the shapes in an eigen space. Specifically, we first projected the 
pre-segmented result to the eigen space, which has a 95% contribution rate, and 
picked the top five shapes close to the projection point. The shapes were generated by 
discretizing the eigen-shape space with 1σ spacing from an average shape and a range 
of ±2σ. We determined the parameters λ and σ in the energy function from 
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experiments so that the average sensitivity of pathological regions in lung areas was 
90%. 

3.2   Results 

Synthetic Image: This experiment showed the effectiveness of Sp,q δ directly by 
minimizing equation (6) without Atlasp(Ap) and NBp(Ap). The resultant images are 
shown in Fig. 3(c). Fig. 4 displays the number of iterations vs. J.I. between the 
extracted regions and the true regions, and the number of iterations vs. total energy of 
the equation. 

 

   
(a) A true boundary (a 

white line) 
(b) The result of single-

shape graph-cuts 
(c) The result of multi-

shape graph-cuts 

Fig. 3. Segmentation result of a synthetic image.  

 
Fig. 4. Number of iterations vs. energy and segmentation performance. 

In Fig. 4, the total energy was monotonically decreasing, and J.I. tended to increase 
as the energy decreased. Specifically, J.I. increased from 0.943 to 0.960. The first J.I. 
shows the performance of single-shape graph-cuts (Fig. 3(b)), and the last J.I. shows 
that of the proposed multi-shape graph-cuts (Fig. 3(c)). It was confirmed from these 
results that the multi-shape graph-cuts could reduce segmentation errors by 
considering multiple shapes. 

 
Clinical CT volumes: This experiment minimized equation (6). Figs. 5(a)–(c) show 
cases in which the single-shape graph-cuts were inferior to the proposed method as a 
result of false positives of the heart region, as indicated by an arrow. In order to 
evaluate the results quantitatively, we computed an average distance between an 
extracted surface and a manually delineated surface. The average distance of this case 
was improved from 0.835 to 0.523 [mm]. Figs. 5(d)–(f) show failure cases, using both 
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methods, in which the average distances are 0.862 [mm] for the single-shape graph-
cuts and 0.732 [mm] for the multi-shape graph-cuts. Figs. 6(a)–(c) show examples of 
segmentation results of cases that contain pathologies. Because we tuned our 
graph-cuts parameters to obtain an average sensitivity of 90%, in most cases, these 
lesions were extracted correctly as part of the lungs. Fig. 7 shows the average and 
standard deviation of the average distance over all testing data, which was improved 
from 0.719 ± 0.309 to 0.587 ± 0.176 [mm]. The Wilcoxon test told us that the 
difference was statistically significant, with a risk of p < 0.01.  
 

      
(a) (b) (c) (d) (e) (f) 

Fig. 5. Examples of segmentation results. (a) and (d): true boundaries, (b) and (e): single-shape 
graph-cuts, (c) and (f): multi-shape graph-cuts. 

 

   
(a) (b) (c) 

Fig. 6. Examples of segmentation results of cases containing pathologies. Blue lines: true 
boundaries; orange lines: resultant boundaries from the multi-shape graph-cuts. 

 

 
Fig. 7. Performance index of single-shape graph-cuts and multi-shape graph-cuts: average and 

standard deviation of testing 48 clinical cases. 
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4   Discussion 

Synthetic Image: Fig. 8 shows the segmentation results of the fourth and fifth 
iterations with their shape priors. Here, the performance changed rapidly during the 
iterations, as we can see in Fig. 4. The fourth iteration (proposal of “background” with 
second shape a priori) generated significant false negatives, as indicated by an arrow, 
as a result of the improper shape of (a). The result was a rapid decrease of the J.I. 
However, when the third shape a priori of (c), which is more similar to the true shape 
in terms of gradient vector distribution, was proposed, the multi-shape graph-cuts 
succeeded in extracting the region. The remaining iterations kept the shape of (d). The 
false negatives of (b) never recurred because the energy of (d) is smaller than that of 
(b). From the above, we concluded that if an appropriate shape prior that is similar to 
the true shape is included in a set of proposed shapes, our algorithm can combine the 
shapes appropriately, resulting in higher accuracy in segmentation than with single-
shape graph-cuts.  

 

    
(a) (b) (c) (d) 

Fig. 8. Shape a priori and the segmentation results of fourth and fifth iterations: (a) the shape a 
priori of the fourth iteration (“background” proposal), (b) the result of the fourth iteration, (c) 
the shape a priori of the fifth iteration (“object” proposal), and (d) the result of the fifth iteration. 

Clinical CT volumes: As presented in the results of clinical CT volumes in section 3, 
the multi-shape graph-cuts is statistically superior to the single-shape graph-cuts, 
while maintaining high sensitivity to lesions. Fig. 9(a) is a first shape prior, which 
differs from the true shape of the heart, resulting in the segmentation error of Fig. 5(b). 
However, the fourth shape a priori of Fig. 9(d), which is similar to the true shape, 
improved the segmentation performance (see Fig. 5(c) for segmentation result).  

 

     
(a) Shape1 (b) Shape 2 (c) Shape 3 (d) Shape 4 (e) Shape 5 

Fig. 9. Shape priors used for the case in Figs. 6(a)–(c).  

Fig. 10 presents the shape priors of Figs. 5(d)–(f). Since the shape of the aorta 
region of this case is unique and differs from those of SSM training data, it was 
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impossible to estimate the shape correctly. Consequently, there was no shape among 
the set of proposed shapes that resembled the aorta. The failure of Figs. 5(e) and (f) 
could be explained by the above reasons.  

 

     
(a) Shape 1 (b) Shape 2 (c) Shape 3 (d) Shape 4 (e) Shape 5 

Fig. 10. Shape priors used for the case in Figs. 6(d)–(f). 

5   Conclusion 

This paper proposed a novel graph-cuts algorithm that can take into account a 
multiple-shape constraint. A salient feature of our method is that it can choose an 
optimal shape a priori at each voxel by combining the proposal of multiple priors with 
the fusion move algorithm. The algorithm sequentially proposed multiple labels, each 
of which corresponds to a shape prior, and minimized the energy function by the 
QPBO min-cut algorithm, which guarantees the global optimum in each iteration.  

Using experiments, we demonstrated and discussed the effectiveness and 
limitations of our method using a synthetic image and 97 clinical CT volumes. The 
first experiment used a synthetic image to present the effectiveness of using multiple 
shapes. Secondly, a holdout validation test of clinical CT volumes showed that our 
method improved the average distance over all testing data from 0.719 ± 0.309 to 
0.587 ± 0.176 [mm], which was statistically significant (p < 0.01, Wilcoxon test). The 
computational time of our algorithm was approximately 30 min per CT volume 
(Intel(R) Core(TM) i7 3.07 GHz × 2). 

In future work, we will construct algorithms that provide proper shape priors and 
optimize the number of priors. We will also conduct further experiments in the near 
future with cases of severe pathologies, followed by an improvement of the shape 
energy. Lastly, we plan to apply the multi-shape graph-cuts to another segmentation 
problem, such as multi-organ segmentation from medical imagery. 
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