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Abstract. Cavities are air-filled spaces within a pulmonary consolida-
tion and can be indicative of various diseases like primary bronchogenic
carcinoma, mycobacterium tuberculosis, cancer and infections. Segmen-
tation of cavities is a challenging task in chest radiographs due to the
presence of superimposed structures. It is important to accurately mea-
sure the extent of cavitation to measure temporal changes and response
to therapy. In this paper, we propose a semi-automatic technique for cav-
ity border segmentation based on dynamic programming. A pixel clas-
sifier is trained using cavity border pixels based on Gaussian, location
and Hessian features to construct a cavity wall likelihood map. A polar
transformation of this likelihood map around the seed point is then used
as a cost function to find an optimal border using dynamic program-
ming. We have validated our technique on 50 chest radiographs (2048 ×
2048 resolution, pixel size 0.25 mm, Delft Imaging Systems, The Nether-
lands) containing in total 50 cavities. These cavities have been manually
outlined by three human experts, one chest radiologist and two readers
certified to read chest radiographs according to a tuberculosis scoring
system. The automatic border segmentations are compared with manual
segmentations provided by the readers using Jaccard overlapping mea-
sure. The agreement between the automatically determined outlines is
comparable to the inter-observer agreement.
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1 Introduction

Cavitation at the lung parenchyma is a hallmark sign of tuberculosis, a common
deadly infectious disease. It is defined as a gas-filled space within a pulmonary
consolidation, a mass, or a nodule, produced by the expulsion of the necrotic
part of the lesion via the bronchial tree. Cavities can also occur in diseases
such as primary bronchogenic carcinoma, lung cancer, pulmonary metastasis
and other infections. Cavities are quite visible and distinct in CT images but
are often barely visible in chest radiographs due to other superimposed 3D lung
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structures in the 2D projection image. In chest radiographs, the appearance of
cavities is hazy, and the cavity walls are often ill-defined or completely invisible
(Fig. 2(2a)). This poses a big problem for radiologists to detect and accurately
segment cavities in chest radiographs.

Assessing the size of cavity and its variation between temporal scans is impor-
tant for disease diagnosis and to measure the response to therapy. Studies have
shown the existence of cavitation in postprimary tuberculosis (TB) [3] which
is even higher in TB patients having diabetes [5]. The number and the size of
cavities is a vital element in tuberculosis scoring systems for chest radiographs
[2]. Small agreement (0.55 kappa statistic) has been reported on detection of
cavities in 56 chest radiographs obtained from a TB screening database [1].

Automated detection and segmentation of cavities is a less explored research
area. Shen et al. [4] proposed a detection system for cavities in chest radiographs
for screening of TB. Their system is based on a supervised learning approach in
which candidates are segmented using a mean shift segmentation technique with
adaptive thresholding for initial contour placement followed by segmentation
using a snake model. Segmented candidates are then classified as cavity or non-
cavity candidate using Bayesian classifier trained on gradient inverse coefficient
of variation and circularity measure features. The technique was tested on only 16
cavity chest radiographs. Threshold on Tanimoto overlapping measure has been
used to classify detected cavity regions as true or false positives. The accuracy
of contour segmentation of cavities has not been mentioned in the work . Xu
et al. [6] proposed cavity segmentation based on an improved edge-based fluid
vector flow snake model. This was validated on 20 chest radiographs and resulted
in a Jaccard overlapping degree of 68.8%.

In this work, we propose a dynamic programming based approach for cavity
border segmentation. The center of the cavity is taken as an input to define
the region of interest for dynamic programming. A pixel classifier is trained
to discriminate between cavity borders and normal lung pixels using texture,
Hessian and location based features constructing a cavity likelihood map. This
likelihood map is then used as a cost function in polar space to find optimal
path along the cavity border. The proposed technique is tested on a large cavity
dataset and Jaccard overlapping measure is used to calculate the segmentation
accuracy of our system.

2 Methods

We propose a two step method to segment the cavity borders (Fig. 1). First, a
pixel classifier is trained to detect the border pixels of the cavity. Cavity border
typically has a distinct fuzzy appearance on the chest radiograph (Fig. 2(1a,2a,3a)).
The pixel classifier assigns each pixel a likelihood of belonging to the cavity
border. This likelihood map is then used as input cost image for dynamic pro-
gramming to trace the optimal path in the polar transformed image space. This
constructed path corresponds to the cavity border in image space. We discuss
the details of each step in the rest of the section.
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Fig. 1. Proposed cavity contour segmentation approach

2.1 Feature extraction

Various features are calculated at pixel level to capture texture, shape and lo-
cation of cavity borders. The chest radiographs are subsampled by a factor of
two (to 0.5 mm pixel size) to speed up feature computation process. The feature
set is generated for each pixel at the subsampled level for train and test images.
These pixel level features from the training set are used to train the pixel classi-
fier, and then the classifier is applied to test images to generate a cavity border
likelihood map.

Texture features The image is filtered with multi-scale feature bank of Gaus-
sian derivatives to capture texture and strong edges of cavities. In chest radio-
graphs, cavity borders give high response on higher order derivatives and this
response is captured by Gaussian derivatives. The image is filtered with Gaus-
sian derivatives of orders 0, 1, and 2 at scales σ = 1, 2, 4 pixels. In total 19
features are extracted in this step including the original intensity feature:

I(x, y), pixel intensity value

G(x, y) = 1
2πσ2 e

− x2+y2

2σ2 , zero order Gaussian derivative

Gx(x, y), Gy(x, y) , first order Gaussian derivatives

Gxx(x, y), Gxy(x, y) and Gyy(x, y), second order Gaussian derivatives

Hessian features Cavity walls appear like broken line segments in chest radio-
graphs (Fig. 2(2b). This line like structure can be captured using the eigenvalues
of Hessian matrix H of the Gaussian filtered images. If λ1 and λ2 (| λ1 | ≥ | λ2 |)
are two eigenvalues of H, then λ1 will be very large compared to λ2 for line like
structures. A total of 8 features at 4 Gaussian scales (σ) are extracted based on
largest eigenvalue and ratio of eigenvalues.
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Location features Studies have shown that cavitation mostly occurs in upper
lung lobe [3]. Therefore the x and y location linearly scaled to an automatically
determined bounding box around the lungs were added as features.

2.2 Pixel Classification

A pixel classifier is trained to assign likelihood values of being cavity border to
each pixel in the chest radiographs. For the cavity border class, samples from
manually annotated cavity borders are taken to train the positive class. For
negative class, random samples are chosen from normal chest radiographs having
no abnormalities. We have experimented with Linear Discrimant Analysis (LDA)
and k-Nearest Neighbor (kNN) classifiers with and without feature selection.
Similar performance was achieved with all the classifiers and feature selection
did not increase the performance much due to the small feature dimensionality
(29). Results for the kNN-classifier(with k=15) with feature normalization are
reported in this paper.

2.3 Contour Segmentation

There are various contour segmentation methods in literature including active
contour models [7], active shape models [8], and graph cut [9]. Accuracy of these
techniques is highly dependent on initial contour initialization or seed point
localization. Most of these methods assume the foreground object to have a uni-
form structure which is different from background pixels. In case of cavities, only
the border is visible whereas the inside of cavity shares similar characteristics
with other lung tissues due to 2D projection. To address these drawbacks, we
propose a dynamic programming based solution for cavity segmentation. Given
a cost image, dynamic programming can be used to find a minimum (or maxi-
mum) cost path between two pixels. Since cavities are mostly elliptical in shape,
optimal path calculation is done in polar space. The polar image is constructed
by extracting a circular region of interest (ROI) of radius R around the seed
point given as input by user. The radius R is chosen sufficiently large so as to
capture cavities of all sizes. In our application, we have chosen maximum radius
as 50 mm. The x axis in the polar image represents the angle from −π to π and
the y axis represents the radius from 0 to R. Optimal cost path here refers to the
maximum cost between two points since higher likelihood gives more confidence
in a pixel being cavity border. We calculate cost of the optimal path at vari-
ous radii starting from Rmin to Rmax with step size of δR. For our application,
we have chosen Rmin as 10 mm , Rmax as 50 mm and δR as 1 mm. Start and
end point for the path calculation is set to the same location to ensure a closed
contour when the maximum cost path is projected back to the original image
space.
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3 Dataset and Experiments

Chest radiographs for the experiment are selected from a large database of dig-
ital chest radiographs obtained from clinics in two areas of Africa with a high
TB incidence. 70 images each containing a single cavity were selected from the
database. Each image measured 2048 × 2048 pixels with a pixel size of 0.25 ×
0.25 mm. 30 normal images were selected from the same database for training
the pixel classifier. Cavity borders for the chosen 70 images have been inde-
pendently marked by three human experts, one chest radiologist (referred to as
the expert) and two readers certified to read chest radiographs according to the
CRRS tuberculosis scoring system [2].

The pixel classifier was trained with pixels within 1 mm from manually indi-
cated cavity borders in 20 chest radiographs as positive examples and randomly
chosen pixels from 30 normal chest radiographs as negative examples. The system
has been tested on the remaining 50 images and the results are compared with
expert manual segmentation. We have used Jaccard overlap measure (Equation
1) for assessing the segmentation accuracy of our system. Jaccard overlap mea-
sure is also calculated between trained human readers and the chest radiologist
to access inter-observer variability between human readers.

J(A,B) =
||A ∩B||
||A ∪B|| (1)

4 Results

4.1 Pixel Classification

Pixel classifier results for kNN (k = 15) classifier are shown in Fig. 2(1b, 2b, 3b).
It can be inferred from the results that likelihood value is low for subtle cav-
ity borders. Also the classifier occasionally responds to other structures in the
radiograph, but overall, the likelihood value of the cavity border is generally
higher in comparison to the surrounding tissues. This makes it possible to use
this likelihood map as a cost function for dynamic programming in a sub-image
to segment the cavity border.

4.2 Contour Segmentation

The likelihood map generated from the pixel classifier is used in polar space
as cost image (Fig. 2(1c, 2c, 3c)). Some outputs of the contour segmentation
overlaid on the original image are shown in Fig. 3. The proposed technique takes
30 seconds for border segmentation of one cavity at a standard desktop PC (Core
2 Quad (Q6700)).
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Fig. 2. Optimal contour path calculation. a) Original sub-image; b) Optimal path
overlaid in red on the likelihood map; c) Optimal path overlaid in red on the cost
image (likelihood map in polar space).

4.3 Quantitative assessment

Jaccard overlapping measure is calculated between Expert-Automatic computer
algorithm, Expert-Reader1 and Expert-Reader2. Table 1 shows the comparison
of overlap statistics between various readers and automatic segmentation. Analy-
sis of the manual segmentations revealed that there were a substantial number of
cases where the human readers exhibited large disagreement. This indicates that
the delineation of cavities is a very difficult task. We therefore subdivided the
test data in two groups. Set A contains 31 cavities having overlap degree greater
than 0.8, referring to prominent cavities with generally clearly visible borders.
Set B contains the remaining cavities (19) for which the degree of overlap was
below 0.8 between readers. Our segmentation results show slightly higher degree
of overlap of 0.76 for set A as compared to overall degree of overlap (0.75) for all
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Fig. 3. Cavity segmentation results for five cases. a) Original sub-image; b) Expert; c)
Reader1; d) Reader2; e) the automatically obtained segmentation.

the cavities. Results for set B(0.73) are comparable with the degree of overlap of
manual readers(0.73 and 0.73). Overall accuracy of the proposed technique(0.75)
is higher than the cavity segmentation technique presented in literature (0.69)
[6].

5 Discussion and Conclusion

We have proposed a novel technique to automatically segment cavities based on
dynamic programming which uses the likelihood map output of pixel classifier
as cost function. We have validated our results with those obtained by three
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J(A,B)
Set A (31) Set B (19) All (50)

μ σ median μ σ median μ σ median

Expert-Automatic 0.76 0.12 0.81 0.73 0.11 0.75 0.75 0.12 0.78

Expert-Reader1 0.88 0.04 0.89 0.73 0.12 0.78 0.83 0.11 0.85

Expert-Reader2 0.87 0.05 0.87 0.73 0.08 0.75 0.82 0.09 0.82

Table 1. Jaccard overlapping degree of segmentations for set A, set B and overall
between Expert-Automatic, Expert-Reader1 and Expert-Reader2.

human expert readers on a large dataset including prominent as well as subtle
cavities. Our results are very encouraging and comparable with the degree of
overlap between trained human readers and a chest radiologist. Cases with low
inter-observer agreement often contain subtle cavities or cavities in the diseased
regions. This indicates that accurate cavity segmentation is a difficult problem.

Our work has a few limitations. In some cases the dynamic programming
is attracted to rib borders. The accuracy of our technique for difficult cavities
can be increased by improving the pixel classifier and optimizing the parameters
for dynamic programming. It may be possible to develop pixel based features
more specific to cavity borders so as to differentiate it with ribs and other bone
structures. Alternatively we could include a rib suppression technique.

The dynamic programming path can be calculated more precisely if a few
reference points on the contour are clicked and the path is forced to pass through
those points. Providing more than one reference point can be useful for subtle
cavities for precise boundary segmentation. Such a tool could be very helpful in
treatment monitoring for tuberculosis.
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