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Abstract. Classification of different textures present in chest CT scans
of patients with pulmonary tuberculosis (TB) is of crucial importance
for the success of ongoing vaccine and drug testing trials. In this paper, a
new multi-classifier semi-supervised method (MCSS) is proposed that is
trained with a small set of labeled examples and improves classification
performance by sampling interesting samples from unlabeled scans based
on uncertainty among a pool of classifiers. The interesting samples are
added to the small labeled set with a label assigned by ’expert’ classifiers.
MCSS is applied to 20 scans of patients with proven TB for which a
reference standard was obtained by a consensus reading. Another set of
35 scans was used without manual labels. The performance of MCSS is
compared to conventional supervised classification and two other semi-
supervised methods and shown to outperform all other methods.

1 Introduction

Pulmonary tuberculosis (TB) is a major cause of morbidity and mortality world wide
with 9.4 million new cases and 1.8 million deaths reported in 2008 [1]. Computed
Tomography (CT) imaging is the most sensitive imaging technique for monitoring lung
disease and can be used both for detecting and evaluating the progression of TB. On
chest CT scans, TB presents as a wide variety of textural abnormalities. Quantifying
the extent of TB is hard and time consuming even for expert radiologists. In addition,
TB is most frequent in regions in the world where not many expert radiologists are
available. Therefore, the development of computer aided diagnosis systems for detecting
and quantifying TB is of crucial importance for the success of ongoing vaccine, drug
testing, and screening programs. Some research toward detection and quantification of
TB from chest radiographs has been performed, e.g. [2], however, no previous work on
automatic quantification of TB from chest CT scans is available.

The large amount of data, combined with the difficulty of obtaining expert anno-
tations, makes the problem of quantification of TB an excellent candidate for semi-
supervised learning approaches. Semi-supervised learning is a popular technique in
pattern recognition in which the performance of a classifier is improved by learning
from unlabeled data, next to labeled data. There are a plethora of semi-supervised
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methods available, an overview can be found in [3]. Two common paradigms are self-
training and co-training. In self-training, a classifier is first trained with a small amount
of labeled data. The trained classifier is then applied to the unlabeled data and the
samples for which the classifier is most confident about the label are added to the
labeled set. This process is iterated several times. A problem of self-training is that it
mainly enforces already known knowledge and errors in the classifier. Co-training [4]
requires the feature set to be divided into two sets that are conditionally independent.
Using these two feature sets, two classifiers are trained, and each classifier teaches the
other with unlabeled examples of which it is sure of the label. The assumption underly-
ing co-training that conditionally independent feature sets exist is a limiting factor for
many applications. Therefore, several studies have been performed applying so-called
multiview learning, in which multiple models are trained using the same set of labeled
data, e.g. [5, 6].

In this paper, a variation of multiview learning is proposed in which an active
learning based uncertainty sampling strategy to find interesting samples in the unla-
beled data to be added to the labeled set is used. Instead of the human experts used
in active learning, a set of three classifiers which can be regarded ’expert’ classifiers
are employed. The main contributions of this paper are the uncertainty based selection
method of unlabeled samples for semi-supervised learning and the application of semi-
supervised learning to a multi-class problem. A similar approach coined ’tri-training’
was proposed for two-class problems in [6]. In tri-training, three classifiers are trained.
If two classifiers agree on the label, the label is added to the training dataset of the
third classifier not taking into account the label or confidence of the third classifier.
A disadvantage of tri-training is that if the models in tri-training are not sufficiently
different, the method degenerates to single-classifier self-training.

Multi-classifier semi-supervised classification (MCSS) is applied to the classification
of TB patterns in 20 scans from 20 different patients enrolled in a vaccine-testing trial.
For all 20 scans manual annotations were obtained by a consensus reading of two expert
radiologists. Scans of 35 additional patients were used as unlabeled data. The results
of MCSS are compared to conventional supervised classification, multi-classifier self-
training, and multiview learning with majority voting in a cross-validation procedure.

2 Materials

In this paper, 55 scans from 55 different patients with smear positive TB were used.
All scans are low dose CT (30mAs at 120 kV), reconstructed to 512 × 512 matrices
with a pixel size of 0.7 × 0.7 mm and a slice spacing and slice thickness of 1 mm. As a
preprocessing step, the lungs in all scans were automatically segmented [7]. Next, the
lungs in all scans were automatically divided into small volumes of interest (VOIs) with
roughly similar texture [8], which was shown to outperform square regions of interest.
On average 4170 VOIs with an average volume of 1.2 ml per VOI were produced
per scan. For both the manual labeling and automatic method these volumes will be
classified instead of single voxels.

A team of expert radiologists predefined a set of five textures that can be found in
chest CT scans of patients with TB: normal lung, consolidations, nodules (cavitated
and non-cavitated), TB fibrosis, and (small) airway disease. Examples of each texture
class are shown in Figure 1. It can be appreciated that especially in the classes nodules
and airway disease there is some variation in the appearance of the lung parenchyma.
For 20 out of the 55 scans, manual annotations were obtained by a consensus reading
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Fig. 1. Example patches of the different texture categories used. The first two images
in the top row show examples of nodules (NOD), the second two images show normal
lung regions (NL), the last image shows a consolidation (CONS). In the bottom row,
the first two images show TB fibrosis (TBF), the second two images are examples of
airway disease (AIR), an finally the last image is another example of a consolidation.
It can be appreciated that even within the classes textures vary.

as follows: first, one expert radiologist annotated all 20 scans. Next, the second expert
radiologist joined and together they went over all annotated regions. In case of doubt
a consensus reading was performed. Since annotating is very time consuming and not
all patterns occur in each scan, the radiologists were instructed to freely annotate in
each scan classical examples of the available textures. Counters of the lung volume
annotated were shown to the radiologist. In total, the first radiologist spent 8.5 hours
annotating the scans. Consensus reading took another 3 hours. In total 2148 volumes
were annotated after consensus reading. The division of the labeled VOIs over the
different texture classes was: normal lung 423, consolidations 19, nodules 362, TB
fibrosis 304, and airway disease 1040.

3 Methods

All supervised methods consist of a training phase, in which the classifier is trained,
and a test phase in which the trained classifier is applied to test data. The difference
between the different methods described in this section is the training phases, the
outputs of all systems is a trained classifier, which is applied to test data to label each
VOI in the test scans.

This section consists of four parts. First, the features and classifiers used for all
methods are provided. In the second part, a conventional supervised texture classifi-
cation system is described followed by a description of the proposed multi-classifier
semi-supervised classification method in the third part. Finally, the semi-supervised
methods implemented for comparison are briefly introduced.
Features and classifiers For each VOI, the first four statistical moments (kur-

tosis, skew, mean, standard deviation) of a set of 14 features on four scales were
used, resulting in 224 features in total. The image features used were the output of
Gaussian filters up to and including second order derivatives (𝐿, 𝐿𝑥, 𝐿𝑦, 𝐿𝑧, 𝐿𝑥𝑥,
𝐿𝑥𝑦, 𝐿𝑥𝑧, 𝐿𝑦𝑦, 𝐿𝑦𝑧, 𝐿𝑧𝑧),the gradient (𝐿𝑖), and the eigenvalues of the Hessian matrix
(∣𝜆0∣ ≥ ∣𝜆1∣ ≥ ∣𝜆2∣). All features were calculated on scales 1, 2, 4, and 8. Classification
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Fig. 2. Flowchart of multi-classifier semi-supervised (MCSS) segmentation. Steps in-
dicated in gray are the steps performed during conventional supervised classification.

was preceded by a principal component analysis (PCA) retaining 95% of variance for
the purpose of dimensionality reduction.

For training purposes, the initial labeled set was randomly sub sampled to contain
equal class sizes for all 5 classes. However, since for one class, consolidations, the
number of samples is substantially lower than for the others, this class is not taken
into account during subsampling. As a result, all classes contain 304 labeled examples
except consolidations, which contains 19 labeled examples. All 2148 labeled VOIs will
be used for evaluation in a leave-one-patient-out cross validation procedure.

For conventional supervised texture classification a support vector machine (SVM)
classifier with radial basis kernel functions was used as a classifier. The settings of
the SVM were determined on the initial labeled set using cross validation [9]. For
MCSS and other semi-supervised methods a linear discriminant classifier (LDC) and
𝑘-NN classifier (KNN) with 𝑘 equal to 7 were added to the pool of classifiers. The
final classifier after all semi-supervised methods is the SVM trained with the extended
labeled set.

Conventional supervised texture classification (CVS) In the training phase
of CVS, the set of features is computed for all VOIs which have been labeled. Based on
the features and the known output labels, the SVM classifier is trained to be able to
assign a label to previously unseen VOIs. In the flowchart in Figure 2 the steps to train
a classifier in a conventional supervised texture classification system are indicated in
gray.

For a test scan, the feature vector is calculated for each VOI and the trained SVM
classifier assigns a label to each feature vector.

Multi-classifier semi-supervised texture classification (MCSS) The goal
of semi-supervised classification is to extend the initial labeled set using unlabeled ex-
amples to increase classifier performance. A flowchart of the proposed semi-supervised
method is provided in Figure 2. Globally, the procedure of MCSS is as follows: given
a set of labeled VOIs, 𝐿, and a set of unlabeled VOIs, 𝑈 , a pool of 𝑛 classifiers
𝐶𝑖, 𝑖 = 1, . . . , 𝑛 is trained using 𝐿. The trained classifiers 𝐶𝑖 are applied to all samples
𝑠𝑢 of 𝑈 . Inspecting the posterior probabilities 𝑝 of each 𝐶𝑖 for each 𝑠𝑢, ‘interesting’ 𝑠𝑢
are identified that should be removed from 𝑈 and added to 𝐿 with the label assigned
by the pool of classifiers. This process is iterated until a stopping criterion 𝑆 is reached.
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When 𝑆 is reached, the extended labeled set 𝐿 is used to train a final classifier. The
key point of this scheme is the identification of ‘interesting’ samples in the unlabeled
data.

We propose to use a paradigm that is used in active learning to identify interesting
samples: if there is uncertainty about the label of a sample, this is an informative
sample and an expert opinion should be obtained. In MCSS we view the set of classifiers
used as individual experts. Uncertainty is defined in two ways: if one of the classifiers
is unsure about the label to assign but the other classifiers agree on the label with
high confidence, the sample is added to the labeled set with the label of the agreeing
classifiers. Or secondly, uncertainty about the label exists if two classifiers agree with
a high confidence on the label of a sample but the third classifier is confident about
another label. In this case the sample is added to the labeled set with the label of
the agreeing classifiers. The labeled example is added to the training dataset of all
classifiers, which leads to a combination of majority voting (all but one classifiers agree
with high confidence) and uncertainty sampling (only if the remaining classifier is
unsure or disagrees on the label). The rationale behind this approach is twofold. First,
samples for which uncertainty exist are the most informative since they change the
classifier as opposed to samples for which all classifiers agree. And second, the high
agreement between the two ’expert’ classifiers makes it more likely that they made
the right decision. MCSS is implemented by setting three parameters: the posterior
probability 𝑝 at which a classifier is confident, 𝑝 > 𝑝𝑐, and the posterior probabilities
between which a classifier is unsure of its label, 𝑝𝑢𝑙 < 𝑝 < 𝑝𝑢ℎ. For classification of TB
textures, 𝑝𝑐 was set to 0.6 and 𝑝𝑢𝑙 and 𝑝𝑢ℎ were set to 0.2 and 0.5, respectively.

Once all unlabeled samples have been processed, the classifiers are retrained with
the extended labeled set and the process is iterated. Due to the unbalanced appearance
of the different structures in the data, a pruning step is performed in each iteration of
MCSS; the classes are pruned to be of equal size, the size being the size of the one but
smallest class. Since all classifiers used are provided new examples, they are refined in
each iteration and therefore different results will be obtained after each iteration. It is
important to note that the classifiers used in this scheme should be diverse since if their
labeling of unlabeled samples is identical, no interesting features can be identified. The
final parameter to be set is a stopping criterion 𝑆 for iterating this process. In this
paper, 𝑆 was set to no more interesting samples being identified for at least 2 of the
classes. As a final classifier, any of the classifiers used can be trained or a combination
of them can be used. In this paper the SVM classifier trained with the final extended
labeled set is used as a final classifier.

It is obvious that if the class label assigned by the agreeing classifiers is correct, the
training data is augmented with a sample with a valid label. Otherwise, a noisy label
will be added to the training dataset. In [6] it is shown that if the amount of newly
added examples is sufficient, the increase in classification noise can be compensated
for.

Semi-supervised methods implemented for comparison For comparison,
two other semi-supervised classification methods were implemented: multi-classifier
self training (MCST) in which a label is added when all classifiers agree with high
confidence, and multiview majority voting (MMV), in which a label is added if at least
two classifiers agree with high confidence. For MCST and MMV the same 𝑝𝑐 as for
MCSS was used.
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4 Experiments and Results

Normal lung

Consolidation

TB fibrosis

Airway disease

Nodules

Fig. 3. Example output of MCSS and the ground truth for several slices of different
scans. For each group of 3 slices, the left slice is the original slice, the middle slice is the
output of MCSS, and the last slice shows the ground truth. Two wrong assignments
can be seen in these examples: the top left example shows a VOI that was labeled
as normal lung by MCSS and as airway disease by the observers. The left images in
the bottom row show an example of fibrosis mislabeled as lesion, which is the most
common mistake of MCSS.

All experiments were performed in a leave-one-patient out cross validation proce-
dure. On average, MCSS performed 5 iterations, adding 6024 samples to the labeled set
in total. 1477 samples were added with the label nodules, 50 samples were added to the
consolidations class, and 1499 labels were added to the other three classes. The equal
number for the last three classes is due to the pruning that is performed after each
iteration. To show the validity of the classifiers used as experts during semi-supervised
learning, we calculated their accuracy on the initial labeled set for those labels for
which 𝑝 > 𝑝𝑐. The LDC classifies 93% of the samples with 𝑝 > 𝑝𝑐 with an accuracy of
0.83. For the KNN classifier 66% of the samples has 𝑝 > 𝑝𝑐 with an overall accuracy
of 0.81, the SVM classifier classifies 88% of the samples with 𝑝 > 𝑝𝑐 with an accuracy
of 0.85.

Figure 3 shows for several scans an original slice, the result of MCSS, and the
manual labeling. Table 1 provides the confusion matrices for CVS, MCSS, MCST,
and MMV. The accuracies for the different classes are provided next to the confusion
matrix, both in total and per class. Next to overall improvement in performance, it can
be seen that especially classes with a low accuracy (consolidations and TB fibrosis) in
the CVS get boosted when applying MCSS. In addition, MCSS performs better than
the other semi-supervised methods, not only in total but also for every class separately;
there is no class for which one of the other methods performs better.
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Table 1. Confusion matrices and accuracies for CVS, MCSS, MCST, and MMV. The
rows depict the ground truth, columns the output of the automatic methods.

CVS acc MCSS acc
N C N F A 0.816 N C N F A 0.863

G
T

NL 405 0 0 4 14 0.957 418 0 0 0 5 0.988
CONS 0 11 7 0 1 0.579 0 17 2 0 0 0.895
NOD 5 2 270 75 10 0.746 3 0 302 54 3 0.834
TBF 8 0 87 185 24 0.609 2 0 51 235 16 0.773
AIR 74 0 32 51 883 0.849 70 0 42 45 883 0.849

MCST acc MMV acc

N C N F A 0.831 N C N F A 0.837

G
T

NL 409 0 0 1 13 0.967 416 0 0 1 6 0.983
CONS 0 15 3 0 1 0.789 0 17 2 0 0 0.895
NOD 6 0 282 65 9 0.779 4 0 275 73 10 0.760
TBF 8 0 59 214 23 0.704 11 0 58 214 21 0.701
AIR 99 0 29 47 865 0.831 88 0 30 44 878 0.844

5 Conclusion & Discussion

This paper presents a multi-classifier semi-supervised approach (MCSS) for classifi-
cation of TB textures on chest CT scans. The problem of TB classification is highly
appropriate for a semi-supervised approach due to the difficulty of obtaining manual an-
notations. The main contribution of this paper is the selection of interesting unlabeled
samples to add to the labeled set based on uncertainty sampling. The proposed method
performs well for the task of classification of TB textures and outperforms conventional
supervised classification as well as other well-known semi-supervised methods. The pro-
posed method of identifying interesting samples from unlabeled data is especially fit
for multi-class problems since classifiers are more often unsure in these cases.

A limitation of this study is the relatively small number of scans that were manually
annotated. In addition, due to the difficulty of the task, the the observers only indicated
classical examples of the different textures. This potentially makes the classification
task easier and boosts the performance of the automatic classification. To improve the
manual annotations for future work, an active learning step will be introduced in which
observers are asked to annotate VOIs for which the classifier is unsure.

Several parameters have to be set in MCSS. The influence of the setting of these
parameters has not been studied in this paper. In general, the higher 𝑝𝑐, the less samples
will be added to the labeled data but the more confident the classifiers are about the
assigned label. For the application of TB classification setting 𝑝𝑐 above 0.90 leads to
only sampling normal VOIs from the unlabeled data. The setting of 𝑝𝑢𝑙 and 𝑝𝑢ℎ in
this paper were based on the fact that a five class classification task was performed;
a posterior probability between 0.2 and 0.5 in a five class problem indicates that the
posterior probabilities are relatively spread over at least 3 classes.

For any semi-supervised method it is important that the samples added to the
labeled set have correct labels. Since it is unavoidable that also samples with incorrect
labels are added to the labeled set, it is important to have a large pool of unlabeled data.
In this paper a set of 35 unlabeled scans was used. Due to the variation in appearance
of the abnormalities and the difference in their prior probability (e.g. consolidations vs.
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airway disease) future work includes extending the set of unlabeled scans used during
MCSS.

To conclude, a multi-classifier semi-supervised classification method was presented
that was applied to the classification of TB texture patterns. The proposed method
was shown to be able to increase classification performance compared to conventional
supervised classification by adding unlabeled samples to the labeled dataset and out-
perform other semi-supervised methods implemented for comparison.
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