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Abstract. Segmentation of pathological lungs is a non-trivial prob-
lem. We present a new approach for the segmentation of lungs with
high-density pathologies like lung cancer. Our method consists of two
main processing steps. First, a novel robust active shape model match-
ing method is applied to roughly segment the outline of the lungs. Sec-
ond, an optimal surface finding approach is utilized to refine the initial
segmentation result. Left and right lungs are segmented separately. A
comparison to an independent reference on eleven abnormal (lung can-
cer) and nine normal test cases resulted in an average Dice coefficient of
0.9741 and 0.9758, respectively. Our algorithm was specifically designed
for general-purpose computation on graphics processing units (GPGPU)
and requires on average 116 seconds for segmenting a left or right lung.

1 Introduction

Many computer-aided lung image analysis methods require the segmentation of
lung tissue in an initial processing step. In the case of normal lungs imaged with
X-ray computed Tomography (CT), lung segmentation is a rather simple task
because of the large density difference between air-filled lung tissue and sur-
rounding tissues. Many algorithms can be found in the literature that deal with
the segmentation of normal lungs [1–5]. In the case of lungs with high density
pathology (e.g., cancer, pneumonia, etc.) as shown in Fig. 1(a), segmentation
becomes a non-trivial problem and conventional algorithms fail to deliver cor-
rect segmentation results (Fig. 1(b)). Pathological cases are frequently occurring
in clinical practice and constitute the crucial cases for computer-aided diagnosis
and treatment planning/monitoring.

There is scant literature about robust lung segmentation methods.
Sluimer et al. propose a segmentation by registration scheme in which scans of
normal lungs are elastically registered to a scan with pathology [6]. While deliver-
ing promising results, not all pathological cases could be handled successfully [6].
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(a) (b)

Fig. 1. Lung segmentation. (a) Axial CT image showing normal right and patho-
logical (cancer) left lung tissue and (b) corresponding segmentation result gen-
erated with a standard lung segmentation method.

In addition, the authors also identified the need to reduce the time needed by the
registration algorithm from three hours to a clinically more acceptable process-
ing time [6]. To address this problem, a hybrid lung segmentation method was
presented in a recent publication [7]. The idea is to first use a fast conventional
lung segmentation algorithm followed by a segmentation error detection step. If
errors are detected, the more complex algorithm is utilized. An adaptive border
marching algorithm was presented in [8] to include juxtapleural nodules in lung
segmentations. Larger areas of under-segmentation were reported in hilar and
pulmonary consolidation regions [8]. A combination of a Bézier surface model
for the side walls of lungs and a conventional lung segmentation technique was
proposed in [9] to deal with lesions located at the lung border. An approach for
the robust segmentation of lung parenchyma based on the curvature of ribs was
presented in [10]. The method is based on an adaptive thresholding scheme and
utilizes a comparison of the curvature of the lung boundary to the curvature of
the ribs to select thresholds. Because lung pathologies like cancer can have den-
sity values similar to other tissues surrounding the lung, the method will likely
produce errors in such cases.

In this paper we present a new approach for the segmentation of lungs with
high-density lung disease (e.g., cancer, fibrosis, pneumonias, etc.) that addresses
limitations of existing methods like robustness or processing speed. Our approach
is based on a lung model and utilizes a novel robust model matching method. To
be suitable for routine application, the time required for lung segmentation must
be low. The model-based 3D segmentation of lungs is particular challenging,
because of the size of lungs and the amount of image data to be processed.
Our approach to robust lung segmentation addresses this issue—the algorithm
is specifically designed to take advantage of general-purpose computation on
graphics processing hardware, which reduces the execution time considerably.
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2 Methods

In the following Sections, we describe the individual processing steps of our
robust lung segmentation approach.

2.1 Lung Model Generation

To represent lung shapes, a model describing the mean shape and variation
around the mean was generated. For this purpose, n = 41 segmented normal
lung CT data sets imaged at total lung capacity (TLC) were used, and a set of
corresponding landmarks {s1, s2, . . . , sm} with m = 2562 were identified on all
lung shapes by means of minimum description length (MDL) approach [11]. All n
landmark sets were aligned into a common coordinate frame by using procrustes
analysis, resulting in a mean shape vector x̄. For each learning shape, a shape
vector xi with i = 1, 2, . . . , m was generated by concatenating the coordinates:
xi = [xi,1, yi,1, zi,1, xi,2, yi,2, zi,2, . . . , xi,m, yi,m, zi,m]T . A principal component
analysis (PCA) was applied to generate a point distribution model (PDM) [12].
The above outlined process was applied to left and right lungs, yielding indepen-
dent left and right lung PDMs. An instance of a left or right lung shape can be
generated from the corresponding PDM by the linear model: x = x̄+Pb, where
P denotes the shape eigenvector matrix and b represents the shape coefficients.

2.2 Robust Active Shape Model Matching

a) Standard Matching Scheme The PDM described in the previous Section
can be used for lung segmentation by matching the model to the target struc-
ture. This could be accomplished by utilizing a standard active shape model
(ASM) matching framework [12]. First, an instance of the shape model (e.g.,
mean shape) is generated and placed in proximity to the target structure in
the image volume. Second, to match the model, shape points are updated by
searching from the current landmark position along a profile of length lASM per-
pendicular to the model surface. To identify suitable update points y, we use the
following cost function ci = gmagi

, and update point locations with ni ·gdiri < 0
are ignored. ci represents the cost of the i-th column element, and the associated
sampled gradient magnitude, gradient direction, and normal vector are denoted
as gmagi

, gdiri, and ni, respectively. The gradient calculation is based on Gaus-
sian derivatives with a standard deviation of σASM , and the calculation of gdir

and gmag is done for each voxel of the volume before the model matching is
started. These pre-calculated gradient values are then used to interpolate gra-
dient vectors during model matching. If a gradient value outside the volume is
required during model matching, a value closest to the boundary is utilized. In
case that no new update point can be found, the old position is used.

Once all shape points are updated, pose parameters are adjusted to map
the updated shape points to the mean model. For this purpose, a procrustes
alignment step is used to estimate transformation matrix T, which consists of
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scaling, rotation, and translation parameters, by minimizing (T[y]− x̄)T (T[y]−
x̄). Model parameters b are updated by using

b = PT (T[y] − x̄) . (1)

The outlined process is repeated until the model converges.
We are especially interested in the segmentation of pathological lungs that

contain areas of lung disease with high density (e.g., pneumonia, cancer, etc.).
Thus, it is very likely that some update points are found during the model
matching procedure that do not represent lung surface and belong to an area of
transition between normal and diseased lung tissue. Consequently, the standard
matching approach will fail, since it is a least squares optimization procedure
that is not suitable to handle outliers. Therefore, a robust shape model matching
approach is needed.

b) Robust Matching Approach The basic idea behind robust ASM match-
ing is to only use inlier components of y to update model parameters. In this
context, Rogers et al. investigated M-estimators and random sampling-based
robust parameter estimation techniques for 2D ASM matching [13]. It is well
known that the effectiveness of M-estimators strongly depends on the selection
of the weighting function and its parameters. Usually, this selection is not triv-
ial, and the optimal selection might change from case to case. Random sampling
techniques try to find a subset of inliers by evaluating a number of randomly
sampled subsets of update points. Such approaches work well, if the required
subset of inliers is quite small. In case of large ASM models, this strategy can
lead to suboptimal results, because a small set of inliers might not be representa-
tive enough to describe a complex lung shape (many landmark points), and thus
can negatively impact the matching result. For our application, it is desirable to
use as many inliers as possible for the model update.

In the following, we present a new robust ASM matching algorithm that
extends the standard matching approach (Section 2.2.a) by an outlier detection
step. For this purpose, we use a robust PCA coefficient estimation scheme that
builds on the work of Storer et al. [14]. The method presented in [14] was designed
for robust image reconstruction and targets a pre-defined number of inliers. In
this paper, we propose a novel voting scheme that does not require to specify a
targeted number of inliers. Our method consists of two processing steps. First,
normal shape patterns of landmark subsets are learned. Second, these patterns
are then utilized during ASM matching to identify and reject outliers.

i) Offline learning Corresponding landmark points of all learning shapes
are partitioned randomly into k shape subsets of approximately equal size.
This process is repeated l-times, resulting in a set of subsets: Ω = {ωi,j|i ∈
1, 2, . . . , l, j ∈ 1, 2, . . . , k}. Note that corresponding landmark points of all n
learning data sets are always assigned to the same subset. Consequently, each
subset ωi,j consists of n subset samples. For each subset ωi,j , a mean shape
x̄ωi,j

is calculated by using procrustes analysis, and all shapes of the subset are
aligned. The subset shapes are then converted to shape vectors by concatenating
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their x-, y-, and z-components. By means of PCA, the corresponding eigenvec-
tors Pωi,j

are calculated. x̄ωi,j
and Pωi,j

are stored and will be utilized for robust
ASM matching.

ii) Robust matching To robustly match the model to image data, we must
identify outliers in the update point vector y in each iteration. This is accom-
plished by analyzing subset combinations of y and by utilizing a voting scheme.
Let yωi,j

represent the components of y that are corresponding to the land-
mark points that constitute subset ωi,j. For each subset, a reconstruction error

eωi,j
=

∥∥∥Tωi,j
[yωi,j

] −
[
x̄ωi,j

+ Pωi,j
b̃ωi,j

]∥∥∥ is calculated, where Tωi,j
is a trans-

formation matrix that aligns yωi,j
to the corresponding mean x̄ωi,j

. The vector

b̃ωi,j
is derived from bωi,j

= PT
ωi,j

[
Tωi,j

[yωi,j
] − x̄ωi,j

]
by limiting the compo-

nents of the parameter vector bωi,j
to a value of ±ξ-times the square-root of the

corresponding eigenvalue.

A large reconstruction error eωi,j
is an indication that subset ωi,j is very

likely contaminated by one or more outliers. To identify the outliers, the re-
construction error eωi,j

is interpreted as a vote, which is casted for all update
points that are included in the subset yωi,j

. This voting process is carried out
for all subsets ωi,j ∈ Ω. The casted votes are collected in a matrix Verr of size
m× l, in which rows correspond to shape points in y. After all votes are casted,
Verr is analyzed to detect outliers. First, to increase robustness, a rank order
statistics filter is applied to each row; the values are sorted, and the g-lowest
value is selected to represent the filter result. The filtering step reduces Verr to
a vector verr = [v1, v2, . . . , vm]T and helps to reject accidental occurring point
constellations that contain outliers, which are similar to constellations of inlier
points. Second, a threshold δ is derived from verr by analyzing the distribu-
tion of vector components vi: δ = μ + βσ with μ = mediani∈1,2,...,m{vi} and

σ =
√

1/m
∑m

i=1
(vi − μ)2, where β represents a constant. If needed, this step

can be replaced by a more advanced mean shift-based analysis step, similar to
the approach reported in [15]. Third, the threshold is applied to verr to yield a
selection vector: psel = [p1, p2, . . . , pm]T with

pi =

{
1 : vi < δ
0 : vi ≥ δ

(2)

to discriminate between inliers (pi = 1) and outliers (pi = 0). Once the inliers
are identified, an update of the model parameter vector is calculated by utilizing
a modified version of Eq. 1 which takes psel into account. An advantage of our
outlier detection algorithm is that it is well suited for parallel processing. For
example, we utilize a general-purpose computing on graphics processing units
(GPGPU) implementation.

For our application, we used the following parameters: lASM = ±40 mm, k =
200, l = 60, ξ = 2, g = 10, and β = 1.3. To update the robust ASM, a gradient
image was calculated based on Gaussian derivatives with a standard deviation of
σASM = 4. The maximum gradient position along the search profile was used to
calculate updates for shape points. The maximum number of iterations during
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model matching was set to 100, and model matching was stopped if the average
of the shape point movement was below 0.04 mm.

2.3 Model Constrained Optimal Surface Finding

Depending on the training data utilized for model building, the model might not
be able do describe smaller local shape variations. To capture this information,
we generate the final lung segmentation by applying a global optimal surface
finding method [16]. The algorithm transforms the segmentation problem into a
graph optimization problem, which is solved by means of a maximum-flow algo-
rithm [16]. Thus, an edge-weighted directed graph is built, and weights derived
from the volume are assigned to the graph edges to reflect local image proper-
ties. For this purpose, the final ASM mesh is utilized. Since the ASM vertices
are sparse, the mesh is restructured by adding triangles, before the graph is
built. For graph generation, columns along the surface normal of each vertex
(search profile) are generated. The length lp of the profile is utilized to constrain
the segmentation to the proximity of the initial ASM segmentation. In addition,
a surface smoothness constraint Δ is incorporated into the graph as described
in [16]. For segmentation we use the following cost function:

ci =

{
gmax if ni · gdiri < 0
gmax − gmagi

otherwise
, (3)

where ci represents the cost of the i-th column element and gmax the maxi-
mum gradient magnitude of the volume. The gradient calculation is based on
Gaussian derivatives with a standard deviation of σg. We utilize the optimal
surface finding in an iterative fashion, and the used sequence of values for σg

and Δ was {6.0, 3.0, 1.0, 0.5} and {10, 8, 5, 2}, respectively. For the search profile,
lp = ±10 voxel was selected.

3 Case Studies

To evaluate the performance of our method, 20 segmentations were performed
on 10 multidetector computed tomography (MDCT) scans (Fig. 2). For each
data set, left and right lungs were segmented, and either the left and/or right
lung contained diseased lung tissue with a significant higher density compared
to normal tissue. The image size varied from 512 × 512 × 458 to 512 × 512 ×
572 voxel. The in-plane resolution of the images ranged from 0.580 × 0.580 to
0.809 × 0.809 mm and the slice thickness from 0.6 to 0.7 mm. To generate an
independent reference standard, a reference segmentation of left and right lungs
was generated by an expert for all 10 scans. This process took several hours per
case.

The initialization of the model was done manually by placing the correspond-
ing left or right mean shape model with a fixed size in the individual data sets.
For each method investigated in this paper, the same starting position and initial
shape was used.
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Fig. 2. Examples of lung data sets with high-density pathology that were utilized
for evaluation of our approach. From left to right and top to bottom: hdl01,
hdl03, hdl04, hdl07, and hdl10.

(a)

(b) (c)

Fig. 3. Segmentation of an incomplete lung CT data set; the top portion was not
scanned. (a) Standard ASM. (b) Robust ASM. (c) Combination of robust ASM
and optimal surface finding. Note that the standard and robust ASMs are not
aware of the spatial extent of the data set, because of the clamping of gradient
values to the boundary (Section 2.2.a). Surfaces outside of the data set were
clipped after the segmentation process was completed.
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Segmentation results obtained with a standard ASM, our robust ASM, and
the proposed approach (robust ASM and optimal surface finding (OSF) com-
bined) are summarized in Table 1. To quantify segmentation performance, the
Dice coefficient D(S, R) = 2(|S ∩ R)/(|S| + |R|) was calculated, where S repre-
sents the segmentation and R the reference.

On average, 115 seconds and 116 seconds were required by our robust lung
segmentation method for right and left lung segmentation, respectively. The
average time required for the intrinsic robust ASM matching process was 24 sec-
onds. All computations were performed on a standard workstation equipped with
a NVIDIA Tesla C1060 Computing Processor.

To assess the robustness of our approach, we applied our method to a CT
data set where the top of the lung was not imaged (Fig. 3(b) and 3(c)). For com-
parison, the standard ASM result is depicted in Fig. 3(a). Figs. 1 and 4 allow us
to compare our segmentation approach with a clinically used lung segmentation
method.

4 Discussion and Conclusion

The experiments presented in Section 3 demonstrate the ability of our lung seg-
mentation method to successfully deal with high-density lung pathology (Fig. 4)
or other disturbances (Fig. 3). Our robust ASM matching clearly outperforms
the standard ASM approach (Table 1). Even on normal lungs, the standard ASM
delivers inferior performance. Pathologies like lung masses degrade matching per-
formance even further, as demonstrated by the results in Table 1. These results
are not surprising, because (standard) ASM matching is a least squares opti-
mization, which is sensitive to outliers. Since the model is only roughly placed
in proximity to the lung during initialization, all obstacles between model and
target structure can cause problems.

The optimal surface finding step after robust ASM segmentation allows us
to refine the robust ASM result. This step is needed, because our shape model
was built from only 41 data sets, and consequently, some local shape variations
cannot be explained by the model. In our final segmentation results, major devi-
ation from the reference were observed in regions where airways and pulmonary
vessels enter/leave the lung. Even for experts, it is hard to segment this area
consistently.

So far, we have tested our robust lung segmentation method on lung cancer
cases. In the future, we plan to significantly enlarge our training and test data
set to include instances of fibrosis, pneumonia, etc. Our approach is currently
limited to scans acquired at TLC. We plan to address this issue by developing a
4D lung model.

A method for the segmentation of lungs with high-density pathology was
presented and evaluated on lung cancer cases. The robustness of our approach
was demonstrated in 20 experiments, and a low segmentation error was achieved
in cases with and without high-density pathology. A core component of our
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Fig. 4. Robust lung segmentation. Example shown in Fig. 1(a) segmented with
the proposed robust lung segmentation approach.

method is a novel robust ASM matching approach that is well suitable for large
shape models and is general applicable.

Our method for robust lung segmentation opens up new avenues for computer-
aided lung image analysis. For example, segmentation of diseased lungs and seg-
mentation of the diseased tissue itself are related problems. Thus, we expect that
our method will be of significant benefit for the quantification of lung diseases.

Conflict of interest statement: Eric Hoffman and Geoffrey McLennan are
founders and share holders of VIDA Diagnostics, a company which is commer-
cializing lung image analysis software.
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