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Abstract. In medical imaging, segmenting accurately lung tumors remains a
quite challenging task when they are directly in contact with healthy tissues. In
this paper, we address the problem of extracting interactively these tumors with
graph cuts. The originality of this work consists in (1) reducing input graphs to
decrease drastically memory consumption when segmenting a large volume of
data and (2) introducing a novel energy formulation to inhibit the propagation
of the object seeds. We detail our strategy to achieve relevant segmentations of
lung tumors and compare our results to hand made segmentations provided by
an expert. Comprehensive experiments show how our method can give solutions
near from ground truth in a fast and memory e�cient way.
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1 Introduction

Since last years, accurate measurements of lung tumors sizes has become a challenging
task for staging and assessing tumor response to treatments or its progression. Revised
RECIST criterions, largely used by radiologists, are based on the measurement of one
diameter on a few number of lesions [24], and su�er from a lack of reproducibility [22].
Alternatively, tumor volumetry has been proposed to overcome those di�culties in
order to improve the staging of nodules [5], the evaluation of tumor aggressiveness [18],
tumor response to chemotherapy [3,26] or to radiotherapy [16] and the progression
rate of tumors [18] or metastases [15]. Moreover, it becomes a necessary tool for the
automatic screening of lung nodules on CT scans, and is currently on evaluation on
ongoing trials [23]. Several methods have been proposed to deal with the di�erent
kind of objects to segment. Nodules are homogeneous spheroid of small size. Masses
and tumors have larger sizes and irregular shapes, and may be necrotic. All may
be connected to some extent to vessels, to the pleura wall, or to the mediastinum.
To tackle this issue, methods make often use of morphological operators [9,10,17]. A
classi�cation of those methods can be found for instance in [21] and [5].

Among semi-automatic approaches of segmentation based on level-sets and (geodesic)
active contours, graph cuts have become in few years a leading method since the in-
troduction of a fast maximum-�ow/minimum-cut algorithm [2]. In contrast to other
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methods, graph cuts have the ability to solve quickly a wide range of problems in
computer graphics such as image segmentation [1], while achieving a global minimum
of the energy function.

Recently, Ye et al. have used this technique for automatically segmenting lung nod-
ules using a volumetric shape index [25]. Since nodules have presumably an elliptical
shape, they can select the appropriate range of index values for segmenting nodules.
However, segmenting lung tumors of various shapes is a much more di�cult task. Tu-
mors might indeed be connected to healthy tissues and it is not possible to distinguish
the tumor and the healthy tissues by only using simple features like the gray levels.
The correct segmentation can therefore only be achieved thanks to the interaction
of an expert. To our knowledge, this is the �rst paper to tackle this problem using
graph cuts. In this paper, we propose a semi-interactive graph cut-based method for
segmenting lung tumors. An overview of the approach is given on Figure 1. First, we

Fig. 1: Flow diagram of our approach.

compute a distance map from the object seeds for lowering the �seeds propagation�.
Then during the graph construction, we reduce the input graph by deciding locally
which nodes are really useful for the minimum-cut computation according to [12].
Typically, the nodes are located around the contours of the object to segment. Finally,
we compute the minimum-cut and get the �nal solution.

The rest of this paper is organized as follows. In section 2, we review the graph-cuts
framework. We detail our strategy for reducing graphs in section 3 while we introduce
our novel energy formulation in section 4. Finally, we validate experimentally our
algorithm on several CT images in section 5.

2 Graph cuts framework

Let us �rst review the graph cuts framework. In this setting, an image I is a function
de�ned over a �nite discrete set P ⊂ Zd (d > 0) that maps each point p ∈ P to a value
I(p). Usually, P correspond to a square when d = 2, a cube when d = 3 and a cube
during a time interval when d = 4. A binary segmentation of the image is de�ned by
a mapping u that assigns to each element of P the value 0 for the background and 1
for the object. We write u ∈ {0, 1}P .

In [1], Boykov and Jolly showed that the image segmentation problem can be
e�ciently solved by minimizing a Markov Random Field of the form:

E(u) = β ·
∑
p∈P

Ep(up) +
∑
p,q∈P
q∈N (p)

Ep,q(up, uq), (1)
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among u ∈ {0, 1}P and for β > 0. The neighborhood system N (p) is in practice either

N0(p) = {q :
∑d
i=1 |qi − pi| = 1} ∀p ∈ P, or

N1(p) = {q : |qi − pi| ≤ 1, ∀1 ≤ i ≤ d} ∀p ∈ P,

where pi denote the ith coordinate of the point p and |.| denotes the modulus. (in
this paper |.| also denotes the cardinality of a set, the notations will note not be
ambiguous once in context). The above neighborhood systems correspond to the clas-
sical 4-connectivity and 8-connectivity when d = 2. Beside on the border of the im-
age/volume, we have for any d and any p ∈ P: |N0(p)| = (2d) and |N1(p)| = 3d − 1.
In practice, larger neighborhood systems (i.e. N1) yield better results but increase
running time and memory consumption. Typically, we have |En| ∼ |P|.|N |, where |.|
denotes cardinality. In the sequel, the terms �connectivity 0� and �connectivity 1� will
denote the use of a N0 and N1 neighborhood, respectively.

As usually, the region term Ep(.) in (1) favors the belonging of each pixel/voxel to
either the background or to the object. It is deduced from the input data, an object
seed O and a background seed B. The regularity term Ep,q(.) penalizes neighboring
pixels p and q having di�erent labels. The weight of the penalization depends on the
di�erence |I(p) − I(q)| and favors boundaries located at pixels/voxels with a strong
gradient. Generally speaking, the de�nition of Ep and Ep,q depends on the considered
application.

According to [8], the minimizer of the energy (1) corresponds to a minimum-cut
in a graph that can be e�ciently computed by the algorithm proposed in [2]. In
this context, the directed weighted graph G = (V, E , c) consists of a set of nodes
V = P ∪ {s, t}, a set of edges E ⊂ V ×V and a positive weighting function c : E → R+

de�ning the edge capacity. Notice that two special nodes are distinguished from V:
the source node s (�object� terminal) and the sink node t (�background� terminal).
After the computation of the minimum cut we set up = 1, if p is connected to s and
up = 0 otherwise. Moreover, the set of edges E is split into two disjoint sets En and
Et denoting respectively n-links and t-links. The t-links are the edges connecting the
terminal nodes s or t to the pixels/voxels and the n-links are the edges connecting
pixels/voxels.

3 Reducing graphs

To obtain high-resolution output, graph cuts must build huge graphs containing sev-
eral billions of nodes and even more edges. Such graphs may sometimes do not �t
in central memory. To solve this issue, some authors have recently proposed heuris-
tics [13,14,20,7]. However, these algorithms can easily get trapped in local minima of
the energy. Also, these algorithms often fail to recover details. This is a real drawback
since thin structures like blood vessels or nodules are ubiquitous in medical imaging.
The only exact alternative is [11], but it has not been developed for the purpose of
image segmentation.

Thus, segmenting high-resolution data using graph cuts require a prohibitive amount
of memory. For instance, the maximum-�ow algorithm described in [2] allocates
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24|P|+ 14|En| bytes 1. Table 1 shows that for a �xed amount of RAM, the maximum
volume size decreases quickly as dimension d increases. Nevertheless, as showed in a

@
@@

Connectivity 0 Connectivity 1

2D 6426 4459

3D 319 219

4D 68 45

Table 1: Maximum size of a square image for which the graph �ts in 2GB of RAM.

previous paper [12], most of the nodes in the graph are useless during the maximum-
�ow computation. They are indeed not traversed by any �ow. Then, one would like to
extract the smallest possible graph G′ = (V ′, E ′, c) from G while keeping a minimum
cut u′ identical (or very close) to u. In other words, we want to minimize |V ′| under
the constraint that u ' u′. In fact, this is an ideal optimization problem which we will
not try to solve, because the method for determining G′ also needs to be (very) fast.
We will rather consider heuristics aiming at that goal.

First, let us introduce some de�nitions before describing our method for building
G′. In accordance with the graph construction given in [8], we consider (without loss
of generality) that a node is linked to at most one terminal:

(s, p) ∈ Et ⇒ (p, t) 6∈ Et, ∀p ∈ P.

We also summarize the capacities on the t-links connected to any node p ∈ P:

c(p) = c(s, p)− c(p, t).

Let us consider a square window B of size (2r + 1) (r > 0) centered at the origin. We

denote by B̃p the translation of B at a point p ∈ P: B̃p = {b+ p | b ∈ B}. For Z ⊂ P,
we also denote by Z̃B =

⋃
p∈Z B̃p the dilation of Z by B.

The intuitive idea for building G′ is the following: removing the nodes in any Z ⊂ P
such that pixels/voxels in Z are not directly connected to the sink t and the �ow that

might come into the region Z̃B\Z su�ces to saturate the edges located around Z̃B (see
Figure 2). Building such sets Z is done by testing each pixel p of Z. Thus, the nodes
in G′ are typically located around the contours of the object to segment. Assuming

Fig. 2: Principle of the reduction. The nodes from Z are removed because every node
p ∈ Z satisfy (2). Remaining nodes are typically located in the narrow band Z̃B \ Z.

1 This corresponds to the max-�ow algorithm v2.2 freely available at http://www.cs.

cornell.edu/People/vnk/software.html
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that all capacities on n-links are smaller than one (which remains true for all the
energy models in segmentation), we use a more conservative condition for testing each
individual pixel p ∈ Z [12]: 

(
∀q ∈ B̃p, c(q) ≥ δ

)
or(

∀q ∈ B̃p, c(q) ≤ −δ
)
,

(2)

where δ = P (B)
(2r+1)2−1 , with

P (B) = max(|{(p, q) : p ∈ B, q 6∈ B and p ∈ N (q)}|,
|{(p, q) : p ∈ B, q 6∈ B and q ∈ N (p)}|).

For any p satisfying (2), p is only connected to s (respectively t) and the �ow that

might come in (respectively come out) through t-links in B̃p \ {p} su�ces to saturate

the n-links going out (respectively going in) of B̃p. The pixel/voxel p is not needed
and can be removed from G. The subgraph G′ is now fully determined by the set of
nodes

V ′ = {p ∈ P not satisfying (2)} ∪ {s, t}.

Experiments presented in [12] con�rm the intuitive dependence between the reduction
rates and the parameters of the model. For instance, the capacities c(q) are obtained by
multiplying a quantity by the parameter β of (1). Looking at (2), it is straightforward
to see that the test is satis�ed on a smaller set of pixels/voxels if β decreases. In fact,
β small corresponds to a strong regularization. In such a situation, we need a larger
window radius to obtain a smaller δ. The latter results in wide bands around the object
contours. Conversely, this results in narrow bands around the object contours when β
is large. The result of such a reduction is illustrated in Figure 3. In our experiments, we
always take β = 3 and r = 1. Additionally, the condition (2) can be tested through an
easy to implement �non-optimized� algorithm with a worst-case complexity of O(|B|).
However for large window radii, such an algorithm cannot handle images of large size
and large dimension d. Decomposing (2) along the dimensions d speed up signi�cantly
the previous algorithm. This yields a test whose computation is of complexity O(1)

(a) Image and seeds (b) Graph G′ (c) Segmentation

Fig. 3: Illustration of the reduction for segmenting a CT image (r = 1). Light gray
pixels correspond to the nodes belonging to G′ (middle). Object and background seeds
are superimposed on the original image (left). On the right image, the segmentation
is superimposed in blue.
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(except for image borders). In particular, its complexity is independent of the window
radius. Finally, we have both theoretical and empirical evidence suggesting that this
reduction scheme provides an exact solution (see [12] for details).

4 Energy function

The most famous graph cut-based energy model for image segmentation was proposed
by Boykov and Jolly in [1] (see below). Total Variation-based models have also been
proposed (see [19]). To obtain good results, those models require the colors in the
object to be di�erent from the colors of the background. This requirement is not
e�cient when segmenting lung tumors in CT images, because tumors and healthy
tissues appear in the same range of intensities. Moreover, in many cases (and in our
experiments), the tumor is attached to the healthy tissues and the corresponding area
of the image has a uniform color.

To solve this issue, we propose to add in our energy a prior on the location of
the tumor. The prior is obtained from the location of the object seeds. This leads
to a modi�cation of the original Boykov/Jolly's energy model [1]. We take the same
regularity criterion:

Ep,q(up, uq) = g(p, q) · |up−uq| and g(p, q) =
1

de(p, q)
· exp

(
− |I(p)− I(q)|

2

2σ2

)
,

where de is the Euclidean distance between p and q, I is the original image and σ > 0.
The region term is de�ned in Table 2. The sets O and B correspond respectively to

p ∈ AσA p 6∈ AσA

Ep(up = ”bkg”) −log
[
Pr(I(p) | p ∈ O)× exp

(
− ( d(p,O)

σa
)2

)]
+∞

Ep(up = ”obj”) −log
[
Pr(I(p) | p ∈ B)

]
0

Table 2: De�nition of the region term.

object and background seeds provided by the user, the probability distributions are
estimated according to [1], d(p,O) is a distance function between the point p ∈ P
and the set O ⊂ P and σa > 0 is a parameter. The parameter σa controls how far
the object seeds propagate from their location and then de�nes an area of in�uence
Aσa

. Beyond this area, the nodes are only linked to the background terminal with a
large weight. This ensures both that the algorithm categorizes them as background
pixels or voxels and that the capacity of the corresponding t-link is su�ciently high
for removing the node from the graph. Although the parameter σA is an important
parameter that impact the way of positioning the seeds in the image, we always take
σa = 10 in our experiments.

The main di�erence between the proposed energy and [1] lies in the distance term.
The function d is de�ned as d(p,O) = min{dist(p, q) | q ∈ O}, where dist denotes the
distance between two points. We have made two attempts for dist:
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(a) Image and seeds (b) Euclidean dis-
tance

(c) Geodesic distance

Fig. 4: Area of in�uence for an Euclidean and a geodesic distance. Here, we set σa = 40.

� The Euclidean distance. In this case, the distance between a set and a point is
e�ciently computed with the algorithm described in [4]. We mostly use it for the
purpose of illustration.

� The geodesic distance is according to the graph metric where the distance between
a node p ∈ P and a node q ∈ P is de�ned as:

dist(p, q) =
{√

(I(p)− I(q))2 + |p− q|2 if q ∈ N (p),
0 otherwise.

In this latter case, the distance transform is computed with [6].

The area of in�uence for the above two metrics is displayed through an example on
Figure 4. The green color corresponds to the region where the exponential in the region
term is greater than some ε ' 0. Observe how the geodesic distance better sticks to
the tumor boundaries than the Euclidean distance. In particular, it only has a limited
over�ow on the healthy tissues.

5 Experimental results

In this section, we present experiments for segmenting a set of ten 3D CT images
consisting both of nodules, masses and tumors (see Table 3 for more information).
Each volume has a size of 512×512×50 except T8 which has a size of 512×512×316.
All experiments are performed in connectivity 1. Objects to segment may present a
very di�erent contrast with their surrounding structures among the images. Since the
parameter σ is contrast-sensitive, we are constrained to use di�erent values for this
parameter. For example, when the average gradient around the object become lower,
we need a smaller σ. Then, the edges around the object are more likely to belong to
the minimum-cut because they become cheaper to cut. The automatic tuning of σ is
left for future work. In this setting, we use σ = 0.2 for all images except for T8 where
σ = 2 and T7 where σ = 0.05. Note that a sub-volume is automatically extracted
for all images (except for T8 where the border is su�ciently high to encompass the
whole volume) by considering an extra border of 60 pixels around the object seeds for
speeding up the segmentation.

First, we evaluate our algorithm with hand made segmentations provided by an
expert, for all CT images. Table 4 contains statistics on the di�erences between the
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segmentation and the ground truth. We use several evaluation measures 2. Table 4
shows promosing results. For all images, we always get a Dice Coe�cient greater than
70% while having a mean maximum distance less than 20mm between the ground
truth and the segmentation.

We also evaluate our method in a qualitative manner. Figure 7 shows the segmenta-
tions obtained at equally spaced z-values for images T1, T8 and T9 (see Figure 5). For
illustrating the propagation of seeds, the seeds in the Figure were chosen on equally
spaced on z but for di�erent values. Thus, one can observe how the seeds propagate
around object seeds, avoiding us to mark every slice. Compared to the ground truth,
the segmentation of T1 is very close, while the segmentations obtained for T8 and T9
di�er sligthly. This also illustrate the di�culty to extract tumors/masses with a large
connection to healthy tissues and the ability of our method to segment such objects.

Secondly, we compare the performance of standard graph cuts against our method
in terms of speed and memory consumption (see Table 5) for segmenting the CT
images using the same set of seeds and parameters as previously. Experiments were
performed on an Athlon Dual Core 6000+ 3GHz with 2GB RAM. Times are averaged
over 10 runs. Table 5 also indicates the proportion of object seeds with respect to
the tumor volume in the ground truth. This provides an objective measure of the
interaction for assessing the e�ort required by the user for positioning the seeds. The
results obtained show that our method performs a little bit faster using 7 to 500x less
memory while getting exactly the same solution. Note that a relatively small amount
of seeds is necessary for segmenting all images.

Generally, the segmentation time depends both on the image size and the skill of
the user for positioning the seeds not too far from the contours of the object to segment.
The segmentation accuracy also depend directly on the seeds location but additionnal
corrections can be done quickly if some parts of the object are uncorrectly labeled.
The computation of the distance map, the building of the graph and the computation
of the minimum-cut take only few seconds. Thus, our method demonstrates its ability
to segment lung tumors quickly without requiring much e�ort if it is supported by a
good graphical user interface.

Fig. 5: Overall context of lung tumors T1 (left), T8 (middle) and T9 (right).

2 A detailed view of these measures is available at http://lts08.bigr.nl/about.php
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Tumor Type Resolutions (x,y,z) Description

T1 Mass 0.68× 0.68× 3 Mass of the upper right lobe (CT)

T2 Nodule 0.70× 0.70× 1 Nodule of the right apex (CT)

T3 Nodule 0.68× 0.68× 3 Nodule of the lower right lobe (CT)

T4 Tumor 1.17× 1.17× 1.5 Marge left hilar tumor inducing a peripheral
atelectasia (CT)

T5 Tumor 1.17× 1.17× 1.5 Same as T4 (dosimetric CT scanner)

T6 Mass 0.77× 0.77× 1.25 Mass of the lower left lobe appended to the
pleura (CT)

T7 Mass 0.69× 0.69× 1.25 Same as T6, after four months of treatment
(CT)

T8 Tumor 0.63× 0.63× 1 Large left hilar tumor and peripheral atelecta-
sia, before treatment (contrast enhanced CT)

T9 Tumor 0.70× 0.70× 1 Same as T8, after chemo-radiotherapy (CE-
CT)

T10 Mass 1.17× 1.17× 1.5 Right hilar lymph node mass

Table 3: Characteristics of images containing lung tumors. Resolutions are given in
millimeters.

Tumor Dice
Coe�cient

(%)

Volume
Overlap
(%)

Volume
Di�erence

(%)

Average
Surface
Distance
(mm)

RMS
Surface
Distance
(mm)

Maximum
Surface
Distance
(mm)

T1 90.97 83.45 7.39 0.86 0.92 4.42

T2 80.95 67.99 4.98 1.25 1.54 6.63

T3 72.95 57.42 15.76 1.26 1.50 6.87

T4 71.33 55.44 42.31 3.30 4.01 14.34

T5 80.53 67.41 29.22 3.63 4.55 16.56

T6 86.63 76.42 18.02 1.30 1.49 5.90

T7 82.49 70.21 22.28 1.34 1.56 5.16

T8 89.25 80.59 9.59 1.20 1.47 9.32

T9 72.66 57.07 34.17 1.75 2.09 7.36

T10 74.04 58.79 41.09 4.97 5.55 15.99

Average 80.18 67.47 22.48 2.08 2.46 9.25

Table 4: Comparison between our method and the segmentations provided by the
expert.
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Tumor
Standard graph cuts Our method

Amount of object seeds (%)
Time Memory Time Memory

T1 4.08 472.34 2.00 24.71 2.52

T2 4.89 573.05 2.71 83.42 2.71

T3 4.90 580.78 2.87 83.42 2.47

T4 5.34 729.72 2.14 37.07 12.99

T5 5.36 737.41 2.10 36.37 10.22

T6 10.18 1476.30 3.80 37.07 3.15

T7 5.16 544.74 3.21 83.42 8.86

T8 MP 43091.25 68.93 83.42 2.45

T9 4.24 496.79 2.39 37.07 8.01

T10 10.36 1151.74 5.42 125.13 9.19

Table 5: Speed (secs) an memory usage (Mb) for our method and the graph cuts
without reduction. The label MP means there is not enough memory for allocating the
graph.

Fig. 6: Seeds location for segmenting lung tumors T1 (top row), T8 (middle row) and
T9 (bottom row). Object seeds (light blue) and background seeds (red) are superim-
posed on successive slices of the original image.
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