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Abstract. Molecular imaging is an important tool that has found wide-
spread use in the diagnosis and observation of various diseases and has
more recently been used in areas such as drug development in order to
facilitate the observation and analysis of newly developed drugs. The
amounts of data in drug development experiments may be very large
due to the involvement of both spatial and temporal information of med-
ical images. Imaging techniques can facilitate the analysis of this data
by automating information extraction and providing meaningful results.
We propose a fully automated approach to pulmonary diagnosis in the
context of drug development experiments using image segmentation and
registration techniques. In particular, we propose a modification of the
Chan-Vese approach for a stable segmentation of the lungs which then
serves as a starting point in a spatial alignment process. Our results
demonstrate the feasibility and potential of the proposed approach.

Keywords: image segmentation, image registration, automated diagno-
sis

1 Introduction

Medical imaging is a relatively new technology that has found widespread use
in the observation and diagnosis of various diseases and symptoms. More re-
cently, this technology has penetrated such areas as drug development in order
to facilitate the observation of the effects of newly developed drugs on various
subjects.

Drug development experiments employing medical imaging techniques (such
as CT and SPECT) may produce large amounts of data since spatial and tem-
poral information spanning over a few weeks or months (e.g. 8 months) may be
utilized to derive an informed conclusion of the effectiveness of the drug and its
short and long term effects. The scans may be taken in regular intervals over the
duration of the treatment and therefore corrections may need to be made to the
data due to
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– the position of the subject changing in consecutive scans,
– different machine artifacts over the period of treatment,
– artifacts introduced by motion such as breathing, heart-beats or other invol-

untary motions and
– physiological differences in the subject over the period of treatment.

When the amount of data in such experiments is large the automatic correction
of the aforementioned artifacts becomes indispensable in order to minimize the
time and resources needed to process the information and provide meaningful
results.

This paper focuses on the automated correction of motion artifacts intro-
duced by the placement of the subject in the scanning machine in consecutive
scans.

1.1 Problem Description

The objective of the project presented in this paper is to facilitate the observation
of the effects of a newly developed drug on the lungs of a subject over the period
of treatment.

The approach taken by the McMaster Pre-clinical Imaging Facility to observe
the effects of the treatment on the lungs is by tracking the development of the air
flow and blood circulation in the lungs using SPECT (Single Photon Emission
Computed Tomography) and CT (Computed Tomography) data acquired using
a combined SPECT–CT scanner. This approach is commonly taken when looking
for such diseases as cancer or pulmonary embolism [5,9,10].

ventilation fused data perfusion

unhealthy healthy

Fig. 1. Visualization of the diffusion of the perfusion contrast agent (right) showing
blood-flow, ventilation contrast agent (left) showing air-flow and fused data (centre)
showing potentially unhealthy regions in the lungs.

In order to track air flow in the lungs a ventilation contrast agent (Tc-99m
Technegas) is inhaled by the subject and its diffusion is tracked using a SPECT
scanner. Similarly, a perfusion contrast agent (Tc-99m labeled macro-aggregate
albumin) is injected in the bloodstream and its diffusion is tracked using the
same scanning machine [5,9]. The air and blood diffusion data, “fused” together,
provide information about healthy and unhealthy regions in the lungs [5,9,10]
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as shown in Figure 1. As an example, cancer can be identified by regions in the
lungs where the blood flow is high but air flow is poor.

The fusion of the ventilation and perfusion SPECT data and its interpreta-
tion is outside the scope of this paper. The problem treated here deals with the
automatic (or unsupervised) alignment of the ventilation and perfusion SPECT
data, since these are taken more than two hours apart, so that the data is ready
for fusion and interpretation.

SPECT data provides only information about the diffusion of a contrast
agent in the lungs and this may not at all me indicative of the shape of the
lungs. Also, the structural differences between ventilation and perfusion SPECT
may be large (see red and blue areas in Figure 1). This complicates the task of
aligning the SPECT data meaningfully.

Using a combined SPECT–CT scanner, CT and SPECT data can be ac-
quired almost concurrently (two minutes apart) and output a pre-aligned pair
of ventilation (or perfusion) SPECT and CT. Therefore, to obtain the desired
alignment between the two SPECT data, the corresponding pre-aligned CT data
are used since they contain consistent information about the shape of the lungs
and exhibit more structural consistency over different scans.

Since SPECT data contains information about the lungs then the CT data
pair must be aligned using information from the chest region (i.e. lungs, heart,
ribs and other proximal tissues), which in this paper are referred to as the target
region. The intent is to remove far away objects or organs (head, limbs, muzzle
holder etc.) that might obstruct the proper alignment of the chest between the
two CT data. The target region is found using a novel segmentation technique
which is a central step in the correct alignment of the ventilation and perfusion
CT data.

1.2 A High-Level Description of the Alignment Process

At a high-level the alignment process designed in this project aims to automat-
ically align the perfusion and ventilation SPECT by finding a transformation
which aligns the corresponding perfusion and ventilation CT using the the tar-
get region. The alignment process is broken down into the following steps.

1. Find an approximate region of the lungs in the perfusion CT data using the
perfusion SPECT data. Since the location of the lungs in the perfusion CT
data is not known the perfusion SPECT can provide some “hints” due to
the fact that it only contains information about the blood-flow inside the
lungs.

2. Use a segmentation technique, which uses the region found in the previous
step as an initial guess, to extract the lungs from the perfusion CT and lead
to the target region.

3. Finally, a rigid model multi-level image registration method is used to align
the target region in the perfusion CT to the ventilation CT. The resulting
transformation is used to align the perfusion and ventilation SPECT data.

Figure 2 shows a sketch of the aforementioned steps.
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Ventilation data Perfusion data

SPECT CT CT SPECT

Pre-alignedPre-aligned

Register

Align

Apply transformation

1. Find the initial region based on the
perfusion SPECT then transfer it to
the perfusion CT.

2. Refine the initial region then en-
close it by an ellipsoid to obtain the
target region.

3. Find a rigid transformation by reg-
istering target region of perfusion CT
to ventilation CT and apply transfor-
mation to SPECT data.

Fig. 2. Diagram of the perfusion/ventilation alignment process.
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2 A Detailed View of the Methods Used in the Alignment
Process

This section describes the reasons behind each step of the alignment process as
well as some of the mathematical details of the segmentation and registration
methods.

2.1 Ellipsoid Fitting: Finding the Initial Region

In the first step of the alignment process, the aim is to find an approximate
location where the lungs are situated in the perfusion CT scan. Because the
region where the lungs may be situated is narrowed down the initial guess for
the segmentation step is stabilized. Initially, the alignment process “does not
know” where the lungs are in the perfusion CT, but because the corresponding
perfusion SPECT contains only information from inside and closely around the
lungs the SPECT can be used to indicate an initial region of the lungs in the
CT as shown in Figure 3.

(a) (b)

Fig. 3. A typical result of the initial region (a) on the perfusion SPECT and (b) on
the perfusion CT.

In this step, the initial region is described by a smooth ellipsoid since it is an
easy shape to describe mathematically. The shape of the initial region is not of
importance since it is modified in the segmentation step.

While a simple thresholding of the perfusion CT data may seem sufficient at
first this complicates the problem of finding a region of interest that does not
include structures such as the arms and neck. For instance, a simple thresholding
(e.g. at -300 HU) would include “fatty” structures in the arms of the mouse
in addition to the lungs rendering the initial guess for the target region too
large and making the result of the following segmentation step “less reliable”. In
addition, it is a challenging task to find an appropriate thresholding value and
a considerable amount of time needs to be spent analyzing each sample of data.
In order to avoid these challenges, the ellipsoidal region bases its initial guess on
the perfusion SPECT data which contains only lung information however small
this may be.
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The ellipsoid used in this project is three-dimensional and is described by
the function

W (ω, x) =

⎧⎨
⎩

1 R < 0.5

− cos(2πR)
2 + 1

2 0.5 ≤ R ≤ 1
0 R > 1

(1)
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√(
x1 − ω4
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)2

+

(
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)2

+

(
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)2
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This defines an ellipsoid parameterized by ω whose “density” increases smoothly
towards the centre with 0 ≤W (ω, x) ≤ 1.

The aim is to find the smallest ellipsoid enclosing a thresholded version of
the perfusion SPECT data as shown in Figure 3(a). Considering that the high-
est concentration of contrast agent is exhibited in the inside of the lungs, the
threshold value is chosen so as to remove small nonzero values outside the lungs
(or “miscounts”).

Minimizing the objective function

F (ω) = ||ω2
1 + ω2

2 + ω2
3 ||2 + α

∫
Ω

u(x)(1−W (ω, x))dx (3)

the smallest ellipsoid enclosing the thresholded perfusion SPECT data

u(x) =

{
1 g(x) ≥ threshold
0 g(x) < threshold

(4)

is found where g : Ω → R is the image and Ω ⊂ R
d is the image domain with

d = 3. The parameter α > 0 is chosen empirically. In equation (3), the first term
aims to minimize the radii of the ellipsoid while the second term aims to include
as much data as possible inside the ellipsoid. The minimizer of equation (3) is
found using the Gauss-Newton method available in FAIR [4].

2.2 Lung Segmentation: Refining the Initial Region

The initial region obtained in the step described in the previous section may be
so large that it may enclose organs or objects of the perfusion CT data which
might obstruct proper alignment of the chest. Conversely, the initial region may
be so small (due to poor circulation in the lungs) that the information it contains
may be insufficient to properly align the perfusion and ventilation CT. For these
reasons, the initial region must be refined to a shape that is comparable to
the size of the lungs as they appear in the perfusion CT (see Figure 4). The
extraction of the lungs (or target region) can be performed using a segmentation
method.

While a large variety of segmentation methods exist, including region grow-
ing, histogram-based, model-based and edge detection methods [1,6], a segmen-
tation method based on the Chan-Vese model [13] was chosen. All of the afore-
mentioned methods may be used for lung segmentation, however, the choice for
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this project was based on the fact that a “stable” initial guess for the target
region is obtained from the perfusion SPECT data in the step described in the
previous section (i.e. a guess which lies either mostly inside the lungs or very
proximally to their surface) and also on the requirement of avoiding the super-
vision of the segmentation and registration steps. Region growing methods may
also have provided the desired result, however, this has not been tested.

evolve

(a) (b)

Fig. 4. The evolution from (a) the initial region to (b) the target region closely enclosing
the lungs in the perfusion CT data.

A Novel Segmentation Method The Chan-Vese method [13] seemed to bet-
ter fit the needs of this project since the image needs to be partitioned into only
two regions (the lungs and the “rest”) and therefore a simple two phase piece-
wise constant model is sufficient. However, the Chan-Vese approach [13] did not
provide the desired result (see Figure 5) and the energy functional was modified
to

E(φ) = μ

∫
Ω

|∇H(φ(x))|dx+ ν

∣∣∣∣V −
∫
Ω

H(φ(x))dx

∣∣∣∣ (5)

+ λ

∫
Ω

||g(x)− c||2H(φ(x))dx.

Here, μ, ν, λ > 0 are scalars which are chosen empirically, Ω ⊂ R
d is the image

domain with d = 3, g : Ω → R is the image, φ : R
d → R is the level-set

function [11],H is a smooth approximation to the Heaviside function as proposed
in [13,14], V is a constant representing a rough estimate of the volume of the
lungs and c is a constant representing an estimated average intensity value (in
this case in Hounsfield Units) inside the lungs in the CT data.

In equation (5), the first term aims to minimize the segmenting surface de-
fined as Γ = {x|φ(x) = 0} [7,8,13], the second term asks that the volume inside
Γ be as close as possible to the estimated volume V and the third term asks
that the region of the perfusion CT data g inside Γ be as close as possible to the
estimated average intensity value c. The functional in (5) is minimized using a
variational approach and the same discretization scheme proposed in [13].
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(a) (b)

Fig. 5. Coronal slices of 3D data showing (a) a typical initial guess and (b) a typical
result of the Chan-Vese segmentation method with segmented area shown in red.

The main difference between our functional and that proposed by Chan and
Vese in [13] is that our functional is only affected by intensity values of the data
inside the segmenting surface while the functional proposed in [13] is affected by
values both inside and outside the segmenting surface.

As a concluding step in the refinement of the initial region, an ellipsoid is
fit on the segmented region using the same approach described in Section 2.1.
The motivation behind this additional step is to stabilize the registration. The
less information is used from the perfusion CT the more sensitive to noise the
registration becomes and also other regions in the ventilation CT (e.g. fatty
tissues in the arms) may match the intensity values in the lungs. The ellipsoid
enclosing the segmented region is a simple way to include closely surrounding
tissues, specifically the ribs, which may help in providing more information for
the rigid registration due to their relatively rigid structure. This final ellipsoid
will be referred to as the target region.

2.3 Registration: Aligning the Ventilation and Perfusion Data

In the last step of the alignment process, the aim is to use a registration method
to find a rigid transformation that aligns the perfusion and ventilation CT by
using the target region. For the purposes of this project (in small animal imaging)
a rigid registration model is sufficient and was also recommended by the staff
at the McMaster Pre-clinical Imaging Facility, however, for larger animals and
humans an affine or elastic registration model may have to be used.

In particular, the objective functional

J [y](ν) =
1

2

∫
Ω

(T (y(ν, x))−R(x))2dx (6)

was minimized in order to find a rigid transformation y parameterized by ν
(allowing only for rotation and translation) that increases the similarity between
the target region weighted perfusion CT data, T , and the ventilation CT data,
R. The reason for the spatial filtering is to remove unwanted organs or objects
(head, legs, muzzle holder etc.) in the perfusion CT data that might obstruct
registration of the chest area between perfusion and ventilation CT.
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The registration of the CT data is multi-level [2,3], where the two images have
been registered at multiple gradually increasing resolutions. Multi-level image
registration is an effective strategy to avoid local minima [2]. Functional (6) was
minimized using the Gauss-Newton method available in FAIR [4].

Finally, after obtaining the optimal parameters ν, the rigid transformation
is applied to the perfusion SPECT for alignment to the ventilation SPECT.

3 Testing the Alignment Process

Materials The materials provided by our clinical partners for this project con-
sist of SPECT and CT samples of a mouse taken over a period of six weeks for a
total of 24 samples. For each week two pairs of pre-aligned data were provided,
namely ventilation SPECT and CT and perfusion SPECT and CT at a resolution
of 256×256×256 voxels. The size of each sample is (58.88×58.88×58.88)mm3.

Experiment Setting To test the alignment process the ground truth was
simulated on real-life data using a set of 60 randomly generated transforma-
tions with mean zero for both rotation and translation and standard deviation
σrotation = 0.3rad and σtranslation = 7mm. The simulated transformations are
roughly 20 times larger than those found in real-life data. The results of the
segmentation and alignment process for the real-life data were also visually in-
spected for correctness.

The perfusion SPECT data, after some observation, was thresholded at in-
tensity value above 300 counts. The parameter α in the ellipsoid fitting objective
function (3) was set to α = 1.

The parameters for the minimization of the novel segmentation functional (5)
were found empirically and set to μ = 0.5 · 2552, ν = 105, λ = 1 with a fixed
time-step τ = 0.046. The segmentation was performed at 16× 16× 16 voxels.

The resolutions used for the multi-level registration are 2i × 2i × 2i voxels
with i = {3, 4, 5, 6}.

Alignment Process Results The results obtained for the simulated set of
transformations are summarized in Table 1 in terms of the absolute error between
the simulated transformation and the result of the alignment process showing
both the mean and standard deviation for translation and rotation.

In order to get a better idea of the “reliability” of the alignment process it
is also important to look at the target regions obtained for each week. Table 2
summarizes these results.

The alignment process takes on average 5 iterations (0.5 seconds) for the
ellipsoid fitting steps, 15 iterations (20 seconds) for segmentation and 3–6 it-
erations (3 minutes and 20 seconds) for the multilevel registration step. The
machine used is a standard PC with 2 GB of RAM and a 2 GHz AMD Turion
X2 processor running in Matlab.
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Mean
Rotation (rad) −2.0447 · 10−5 −3.5597 · 10−5 −2.2869 · 10−5

Translation (mm) −7.9440 · 10−5 −2.4414 · 10−4 −1.2205 · 10−3

Standard Deviation
Rotation (rad) 2.7496 · 10−5 3.3461 · 10−5 3.4985 · 10−5

Translation (mm) 1.2506 · 10−3 1.3136 · 10−3 1.4992 · 10−3

Table 1. Absolute error between the simulated transformations and alignment process
results summarized in terms of mean and standard deviation.

Radii (mm)
Week

1 2 3 4 5 6
ω1 6.4212 4.8325 4.1047 4.2579 2.4686 2.0770
ω2 7.1103 5.5471 6.1601 4.4618 3.5114 2.0770
ω3 5.8149 3.5433 3.4566 3.0731 2.1633 0.7248

Table 2. The target region radii may vary for each week depending on the perfusion
SPECT thresholding value (here ≥ 300 counts).

4 Discussion and Conclusions

The novel segmentation method proposed in this paper has shown to be effective
for the purposes of lung segmentation and has provided the desired results.
The objective functional (5) is not convex since the result of the segmentation
depends on the starting guess, however, by stabilizing the starting guess using the
ellipsoid fitting method described in Section 2.1 the result of the segmentation
has shown to be very consistent (see Figure 6).

Furthermore, the overall alignment process has shown to be reliable since
the absolute error in the resulting transformation was in the order of 10−3 for
both rotation (rad) and translation (mm) given that the target region changes
considerably in each week (see Table 2) and the smallest cell size used for reg-
istration is ≈ 0.92mm at the edge. The down-sampling of the data for both
segmentation and registration is done to decrease computation time but also to
test the sensitivity of the overall alignment process against varying resolutions.
This has shown to work quite well for very “rough” samples of data as presented
here as well as for finer data without changing parameters.

The novel segmentation method proposed in this paper achieves the desired
result using only two additional pieces of information, namely an estimated lung
volume and average intensity value in the lungs. While it is hard to estimate these
two parameters accurately, from the tests carried out so far it seems the segmen-
tation method will provide the desired result even for very rough estimates. For
instance, in this project the lung volume was estimated as one-sixteenth of the
total volume of the data which is a very rough estimate. In reality, the lung vol-
ume may be estimated using statistical data based on species, age, weight and
other factors. In addition, the average Hounsfield unit values used for the lungs
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Typical initial guesses 6(a)–6(c) and their respective results 6(d)–6(f) shown
in coronal slices of 3D real-life data. The area in red represents the region inside the
segmenting surface.

were set between −100 HU and −400 HU but the segmentation method still pro-
vides the desired result even though the actual average value is −150 HU. The
segmentation parameters μ, ν and λ in equation (5) remain unchanged for the
samples of data presented here. In fact the parameter μ has not been changed
for other (synthetic) data sets as well, however, the parameters β and λ may
need to be tweaked very slightly from the values presented above to obtain the
desired result.

One limitation of the alignment process is the thresholding of the perfusion
SPECT data for ellipsoid fitting. In the future this step will be substituted by the
Chan-Vese segmentation model which, after some preliminary tests, has shown
to provide much better results without the need of estimating a threshold value.
Furthermore, the resulting level-set function from the Chan-Vese segmentation
method can be used as the initial guess for the novel segmentation functional (5).

Other considerations for the improvement of the alignment process include
improving the numerical optimization scheme of the segmentation step, per-
forming multi-scale segmentation of the perfusion CT data and using non-rigid
registration models.
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