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Abstract. Lung nodule modeling quality defines the success of lung nodule 
detection. This paper presents a novel method for generating lung nodules using 
variational level sets to obtain the shape properties of real nodules to form an 
average model template per nodule type. The texture information used for 
filling the nodules is based on a devised approach that uses the probability 
density of the radial distance of each nodule to obtain the maximum and 
minimum Hounsfield density (HU). There are two main categories that lung 
nodule models fall within; parametric and non-parametric. The performance of 
the new nodule templates will be evaluated during the detection step and 
compared with the use of parametric templates and another non-parametric 
Active Appearance model to explain the advantages and/or disadvantages of 
using parametric vs. non-parametric models as well as which variation of non-
parametric template design, i.e., shape based or shape-texture based yields 
better results in the overall detection process. 

Keywords: Nodule modeling, Sensitivity and Specificity of CAD systems, 
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1   Introduction 

This paper focuses on modeling of the lung nodules which appear in low dose 
computer tomography (LDCT) of the human chest. In the past two decades numerous 
screening studies in Europe, Japan and the US have been conducted for studying the 
enhancements of early detection of lung cancer using CT vs. X-ray and for studying 
the correlation of early detection and possible enhancement in lung cancer related 
mortality. Suffices to say, lung cancer is a major problem worldwide [1]. The survival 
of lung cancer is strongly dependent on diagnosis [2]. Research studies to reach an 
optimal detection rate for early detection of lung cancer, is the hope for improved 
survival rate [3]-[5]. 

Machine learning and computer vision methodologies have been used for 
image analysis of low dose CT (LDCT) of the chest (e.g., [2] [5]-[8]).  A computer-
aided (CAD) system for interpretation of nodules is formed of four major steps: scan 
filtering to remove acquisition artifacts; segmentation to isolate the lung tissue from 
the rest of the chest region; nodule detection to isolate candidate nodules; and nodule 
classification which categorizes detected nodules into possible pathologies. The 
literature is rich in approaches to segment the lung from the rest of the chest tissues, 
but the majority of the nodule modeling methods are based on parametric descriptions 
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of the nodules (e.g., in 2D circular or semicircular models are used, while in 3D 
volumes spherical or hemispherical models are used [5]).  This paper will focus on the 
third component of the CAD system used for early screening of lung cancer; more 
specifically how to properly model lung nodules by using the actual data information 
to create the models/templates that will improve detection rate. The approach of 
nodule detection hinges mainly on proper modeling of nodule templates and much 
less on the computational approach to carry out the detection. Extensive surveys on 
automatic lung nodule segmentation and detection may be found in [8][9]. The long 
history of work in the communications literature (e.g., matched filtering) and 
computer vision literature (e.g., active shape and active appearance models) has 
demonstrated the value of proper modeling of the objects to be detected. This is 
especially the case in biomedical applications as the anomalies are often camouflaged 
or occluded by anatomical structures and the limitations of the scanning device or 
protocols. To the best of our knowledge none of the studies on lung screening 
conducted worldwide has resulted in identifiable databases of nodules listing their 
types and pathologies. Therefore, the need is persistent for reliable nodule models 
based on the actual scans; this is one of the goals of the authors of this paper.  

This paper will investigate two main topics: First, whether parametric 
template models are more effective than non-parametric models in terms of sensitivity 
and specificity.  We use the term data-driven for the non-parametric templates since 
the raw data information is used. Second, we study the effect of shape and texture on 
the non-parametric models. Shape only models were obtained by co-registering the 
contours of an ensemble of nodules obtained by a level set approach. The shape and 
texture models were obtained by active appearance models (AAM) (e.g., [17]).  Our 
focus in particular, is on four nodule types (e.g., Kostis et al. [6]) that possesses 
discriminatory features of shape and to some extent texture. 

The closest related work to this paper are: 1)  Kostis et al. [6] provides a 
description of four major types of lung nodules based on identifiable landmarks which 
will enable automatic annotation in our methods. 2) Lee et al. [5] established an 
empirical relationship, or behavior,  for the intensity (or Hounsfield Units) of the 
nodules as a function of the radial distance from the centroid of the nodule; this is 
beneficial for texture/intensity/gray level estimation of the inside of a nodule shape. 3) 
Farag et al. [7][10][11] established a parametric form for the relationship between the 
radial distance and the Hounsfield units in Lee’s work; this is very useful for 
estimating the intensity of a nodule model given the statistics of an ensemble and the 
size (radius of the bounding box containing the nodule). Other works include: the use 
of 3D Markov random models [13] to compute the optimal states over the cells from 
the relationship of the neighboring cells and Bayesian voxel labeling [14] which 
labels the image according to three categories; anatomy, pathology and 
miscellaneous. The probability that the voxel belongs to each class is computed and a 
decision is made. The approaches described here assume parametric shape 
representations of the nodules, whither circles, spheres, etc. or fused ellipsoids to 
represent the nodule and its outer surroundings.  Parametric modeling of the nodules 
(e.g. circles and/or semicircles) will not capture the shape variations in the lung 
nodules. Likewise, assuming a uniform (or binary) HU for the nodule doesn’t 
resemble reality. Shape and texture models have shown great promise in a number of 
computer vision and biomedical imaging analysis applications (e.g. [15][16]). To the 
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best of our knowledge Farag et al. in 2009 [17] is the first reported attempt at 
employing shape and appearance modeling into the problem of automatic detection 
and segmentation of lung nodules in LDCT scanning. This paper is organized as 
follows: section 2 describes the level sets shape based approach for obtaining a mean 
template representation for each nodule type and how these templates are filled with 
texture. The parametric and AAM methods are not described in great details in this 
paper. Section 3 discusses performance evaluation; and section 4 concludes the paper. 

2   Nodule Modeling 

This section will examine the process of nodule modeling and simulation using an 
ensemble of nodules identified by radiologists. The level sets method for generating 
nodule models is the main focus of this section, while the parametric [7][11] nodule 
modeling method and data-driven using AAM [17] to model the nodules in terms of 
both shape and intensity method will briefly be described. 

2.1   Pulmonary Nodule Definitions  

In radiology, a pulmonary nodule is a mass in the lung usually spherical in shape; 
however it can be distorted by surrounding anatomical structures such as the pleural 
surface. This paper uses the classification of Kostis et al. [6], which groups nodules 
into four categories (Fig. 1): well-circumscribed where the nodule is located centrally 
in the lung without being connected to vasculature; vascularized where the nodule has 
significant connection(s) to the neighboring vessels while located centrally in the 
lung; juxta-pleural where a significant portion of the nodule is connected to the 
pleural surface; and  pleural tail where the nodule is near the pleural surface, 
connected by a thin structure; in all of these types there is no limitations on size or 
distribution in the lung tissue. These definitions are used in our approach. These 
nodule types are characterized mainly by shape, and location with respect to the 
anatomy of the chest; the appearance of an individual nodule may not hold too much 
discrimination. The ELCAP [12] database provides the LDCT scans where the center 
location of the nodule was specified by radiologists. We constructed a database of 
nodules using a semi-automatic method of cropping and categorizing each nodule into 
one of the four types.  

2.2   Lung Nodule Model Simulation: Level Sets Approach  

The goal of the modeling process is twofold: generate a template for each nodule 
type to be used in the detection process, and establish a procedure for simulation of 
nodules to be used for nodule classification.  Our focus in this paper is on generating 
an overall mean template per type that best represents the characteristics of the real 
nodules.  A database of nodules was constructed using the Early Lung Cancer Action 
Program (ELCAP) lung scans datasets [12]. As described in Farag, et al.  2009 
[7][11], the probability density function of the Hounsfield (HU) vs. radial distance 
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distribution of the ELCAP dataset had an exponentially decaying form concentrated 
in distances of about 10 pixels from the centroid of the nodules (i.e., about 5mm); 
thus cropping boxes of size 21x21 pixels were used to obtain the nodule ensemble, 
given their location in the LDCT scans. These nodules where then classified into one 
of the four corresponding categories described in sec. 2.1, constructing a nodule 
database that contains variations in intensity distribution, shape/structural information 
and directional variability which the cropped regions, within the determined 
bounding-box, maintain. A sub-database of 96 nodules (24 nodules per type) is used 
in both the level sets approach and the AAM method to generate a mean nodule 
template for each type that depicts shape or shape and texture information of the 
nodules (Fig.1). 

 

  

  
Fig.  1. An ensemble of 24 nodules from the well-circumscribed (upper left), vascular (upper 
right), juxta-pleural (lower left) and pleural-tail (lower right) nodule types. 

The Procrustes registration-based AAM approach [15] for lung nodule 
modeling [17], required manual annotation by trained experts of the 96 nodules to 
employ Procrustes registration to obtain co-registered nodules. A combinational shape 
and texture AAM algorithm was used in [17] to generate a mean template that 
contained both shape and texture information of the lung nodules shown in Fig. 2. 
 

 
 

 

 

 

 

 

 

 

Fig.  2. Nodule models generated using the Procrustes based AAM method. From left to right: 
Well-circumscribed, vascular, juxta-pleural, and pleural-tail nodule types. 

A second sub-database of 96 nodules, different from that in Fig.  1, was used 
to generate another set of four mean nodules using the AAM approach, the sub-
database and mean nodules generated are depicted in figures 3 and 4, respectively. 
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Fig. 3. Second ensemble of 24 nodules from the well-circumscribed (upper left), vascular 
(upper right), juxta-pleural (lower left) and pleural-tail (lower right) nodule types. 

 

 

 

 

 

 

 

 

Fig. 4. Nodule models generated using the Procrustes based AAM method. From left to right: 
Well-circumscribed, vascular, juxta-pleural, and pleural-tail nodule types. 

The usage of variational Level sets (e.g., [18]) in this paper replaces the step 
of manual annotation performed in the AAM method by a semi-automatic approach 
that generates the contours of the lung nodules depicting the shape information. These 
contours are then co-registered using the Procrustes method; the contour boundary 
points are obtained and used for registration. The Level sets approach eliminates 
sources of errors that can arise with manual annotation since only placing the seed 
point or points in the region of the nodule centorid is manually performed. Also, the 
elasticity of this variational approach addresses the issue of shape variations that can 
arise and handles these changes accordingly. In this paper, we used the approach of 
Abdelmunim and Farag, 2007 ([18]) for rigid and elastic shape representation via 
Level sets. The mean shape templates generated from the contours is shown in Fig. 5. 
Given two shapes represented by the vector functions Ф1 and Ф2, a transformation A 
with scales, rotation and translation is to be calculated to transform the first object to 
the second. The following dissimilarity measures the difference between the vector 
and the other scaled one:  

)()( 21 AXSRr ����                                        (1) 
The following energy is formulated as a sum of squared differences 

      �� � �� rdrE T�
                               (2) 

where the delta is an indicator function with value 1 inside the shape and zero 
otherwise. The two shapes are aligned by minimizing the energy function using 
various approaches including the gradient dissent method.  The training shapes in our 
case the contours of the lung nodules are jointly registered with an evolving mean 
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shape to find the corresponding global transformations A1,…,An.  The dissimilarity 
measure is used as follows: 

                                (3) 
The energy function will be: 
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The shape model is a function of the registered training shapes: 
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The shape parameters w, need also to minimize the energy function to process the 
registration.  

Once the mean shapes were generated estimation of texture information was 
required, thus using a synthetic approach described in [5][7] and [10] for parametric 
templates was performed. The probability density of the intensity for the nodules is 
the same as that in [7] since the ELCAP database is used in both.  
The intensity of a nodule model was found to be estimated by the following equations 
[7][10]: 

                     (6) 
                                                          (7) 
where R is the radius of the circle interior to the bounding box containing the nodule 
model (mean shape). The parameters  and   are the lower and upper bounds 
of the intensity (Hounsfield Units) in the probability density function of each nodule 
type; which is estimated from the ensemble of nodules (e.g., [7][11]). Fig. 6 shows the 
templates generated based on the mean shape and the empirical forms of the intensity 
(Eq. 6 and 7). 
 
 

 

 

 

   
 
Fig. 5. Average shape of the nodules in Fig. 1. From left to right: Well-circumscribed, 
vascular, juxta-pleural and pleural-tail. 
 

    
Fig.  6. The nodule templates resulting from the intensity equations Eq. 6 and 7 and the mean 
shapes in Fig.4. From left to right: Well-circumscribed, vascular, juxta-pleural, and pleural-
tail nodule types shape modeling process. 

A set of parametric templates (e.g. circular and semi-circular) were generated 
using equations for circular and semi-circular shapes for various radii of empirical 
nodules and filled with texture information using equations 6 and 7. Template size 
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was the same 21x21 pixels bounding box area, similar to the AAM and level sets 
approaches. The same probability density of the nodule intensity observed for the 
nodule database for qmin and qmax were used once more and the templates were filled 
using the same technique implemented for the level sets approach. Circular or 
isotropic templates are defined in terms of radius and gray level distribution as a 
circular symmetric Gaussian function while the semi-circular template have an 
additional orientation parameter. Fig. 7 shows as set of isotropic and non-isotropic 
templates generated by this approach.   

 

 
Fig.7. An ensemble of generated circular and semi-circular templates with various orientations 
(adopted from [7]).  

2.3   Lung Nodule Modeling Summary 

In this paper we examined three approaches for generating lung nodule models or 
templates. Of these methods two are non-parametric and data-driven, while the other 
approach was parametric as shown in Fig. 7.  Parametric nodule models and the non-
parametric nodule models, based on shape only, may be used in template matching in 
a binary form (after we segment the original lung images to generate a binary image) 
or in gray scale form applied straight to the original lung images (after we remove the 
non-lung tissues in the segmentation step preceding the detection). In this paper, as 
indicated above, the intensity information in the shape models (using level sets) as 
well as the parametric models were obtained using Eq. 6 and 7.  

We should point out that the Procrustes approach was used in obtaining the mean 
shape (generated from level sets) and the mean shape and texture (generated from the 
AAM approach). Other methods may be used to carry out these co-registrations and 
may lend enhanced efficiencies with respect to orientations, shapes, etc. in the 
ensemble. The overall mean shapes of each nodule type from the two approaches 
showed extraordinary resemblance as seen in Fig 2 and Fig. 5.  

In the next section we evaluate the performance using the nodule templates from 
the methods described above for the detection of candidate nodules.  

3   Results  

The Early Lung Cancer Action Program (ELCAP) public database [12] was used in 
this paper for nodule modeling, classification and detection. The database contains 50 
sets of low-dose CT lung scans taken at a single breath-hold with slice thickness 1.25 
mm. The locations of the 397 nodules are provided by the radiologists, where 39.12% 
are juxta-pleural nodules, 13.95% are vascularized nodules, 31.29% are well-
circumscribed nodules and 15.65% are pleural-tail nodules. In the detection stage all 
slices containing nodules are used unlike the modeling stage where only 96 nodules of 
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the total 397 were used for generating the templates. Due to the mean template per 
nodule type is found, in the cases of the data-driven models, we use the slices from 
the modeling stage in the detection process as well since the templates are not biased 
towards any particular one nodule in Fig. 1. There are numerous methods for 
performing lung nodule detection in the literature; our goal for this paper is to depict 
the effectiveness of our nodule modeling, thus a generic implementation of template 
matching with the normalized cross-correlation (NCC) as the similarity measure is 
executed. The nodule model (template) is swept across the scan (2D slices or the 3D 
volume) in a raster fashion and a similarity measure is calculated between the 
intensity (or HU) of the template and the region of the CT data underneath, each 
template produces a binary image that represents candidate nodule locations, the four 
images are xored together to obtain one image that depict overall candidate nodule 
location.  We use the widely known form of the NCC in the literature for the 
normalized cross-correlation of a template, t(x,y) with a sub-image f(x,y): 

       ,)),()(),((
1

1=
, tfyx

tyxtfyxf
n

NCC
��

��
� 	                        (8) 

where n is the number of pixels in template t(x,y) and sub-image f(x,y) which are 
normalized by subtracting their means and dividing by their standard deviations.  The 
probability density functions (pdf) of nodule and non-nodule pixels are computed 
using the normalized cross correlation coefficients resulting from templates with 
varying orientations.  

The NCC behavior with the data-driven nodule models takes the same general 
shape as with the parametric nodules except the distribution function decays faster as 
we approach a value of 0.5. Setting a suitable threshold for the NCC is important as 
lower thresholds will increase detection rate but increases the false positives, and vice 
versa. Various methods can be used for an optimal threshold including modeling the 
normalized histogram as two classes, nodules and non-nodules and a Bayesian 
approach may be devised to select an optimal threshold. In this paper we set the 
threshold to a NCC of 0.5 for the sake of comparison between the three methods.  

For nodule recognition (i.e., deciding the pathology of the nodule), features from 
the detected nodules need to be compared with pathological counterparts. This issue 
will not be considered in this paper as its significance really depends on the 
availability of pathological nodule database which is under construction by this 
research group. Also, the validation of pathology requires three human experts at least 
(two independent reader and a third to decide on opposing decisions).  

The overall sensitivity and specificity was computed using equations 9 and 10: 

 

 

True positive rate refers to the number of actual nodules that are detected as 
nodules while false negatives are the number of nodules that were not detected as 
nodules. Thus sensitivity depicts how well the detection was able to recognize 
nodules from other lung features using the desired designed templates (parametric and 
data-driven).   True negatives are the number of nodules that are truly not nodules 
while false positives are the number of non-nodules that were detected as nodules. 

-158- Third International Workshop on Pulmonary Image Analysis



Specificity rate is more subjective in its computation since it depends on how the true 
negatives and false positive rates are computed during detection. The specificity 
represents the negative rate that is correctly identified.   

Table 1 depicts the overall sensitivity and specificity results of using the templates 
generated by the parametric method, the Level-sets algorithm and AAM method using 
the sub-database in Fig. 1 and Fig. 3, centered with respect to the x-axis (i.e., zero 
orientation). While Table 2 depicts the overall sensitivity and specificity results when 
the templates are rotated from 0o to 360o with step-size 90o.  From Tables 1 and 2 
several conclusions can be drawn, first the data-driven method using the Level-sets to 
generate template that depict overall shape only which are then filled, as described in 
section 2.2, yields comparable results to that of the parametric templates in terms of 
sensitivity and slightly higher specificity results.  Second, rotation of the templates 
improved sensitivity in only the parametric and level-set based template approaches 
and overall specificity slightly decreased for all approaches. Third, template generated 
by the AAM approach provides better results than the parametric, level sets method 
and the AAM mean templates depicted in Fig 4. Overall, the AAM algorithm using 
either set of mean templates generated from sub-database 1 or 3 yield better results in 
terms of both sensitivity and specificity. Thus, data-driven models are more robust 
and an enhanced method of lung nodule modeling over the use of parametric 
templates, since the actual data is used in modeling and generating mean templates to 
represent each nodule type. Also, shape and texture based approaches give a more 
accurate and precise representation to the true nodule that provides improved 
detection results. So, shape information alone does not suffice, both shape and texture 
information is required.  
 
Table 1: Overall sensitivity and specificity of level sets, parametric, AAM using dataset 1 and 
AAM using dataset 2 without accounting for template orientation. 

 

Algorithm Sensitivity Specificity 
Parametric Approach with template radius 10 and single 

orientation for semi-circular template 
72.16% 97.12% 

Level Sets Approach using nodule contours from dataset 
1and no orientation 

72.16% 98.11% 

AAM Approach using dataset 1 and no orientation 85.22% 97.81% 
AAM Approach using dataset 2 and no orientation 83.51% 98.36% 

 
 

Table 2: Overall sensitivity and specificity of level sets, parametric, AAM using dataset 1 and 
AAM using dataset 2 templates averaging a number of orientations for the templates. 

 

Algorithm Sensitivity Specificity 
Parametric Approach with template radius 10 and 

orientation 0o-360o  with step-size 90o 

for semi-circular template 

78.01% 96.41% 

Level Sets Approach using nodule contours from 
dataset 1and orientation 0o-360o  with step-size 90o 

76.98% 97.63% 

AAM Approach using dataset 1and orientation 0o-360o  
with step-size 90o 

86.94% 96.51% 

AAM Approach using dataset 2and orientation 0o-360o  
with step-size 90o 

83.51% 97.40% 
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Further studies were conducted using the AAM based approach on both sub-
datasets used for template modeling. The number of annotation points necessary for 
proper registration was found to be a function of how many was necessary to depict 
the main discriminatory shape information and withholds substantial texture 
information commonly found in each nodule for that particular type (i.e. the 24 
nodules used per type).  Also, 24 nodules per type were used in the modeling of each 
nodule type but if fewer nodules were used what will be the effect on the generated 
mean nodule templates formulated and used in the detection process was examined. 

Table 3 depicts the results obtained when the first 16 and 8 nodules from 
each of the sub-databases are used. From the table it is seen that overall sensitivity 
and specificity using half or one-third of the nodules in figure 1  results in overall 
similar sensitivity and specificity results while in the case of using the sub-database in 
figure 3 results in reduced sensitivity as the number of nodules used for modeling 
decrease. Overall we found that depending on how well the lung nodules are 
annotated and which nodules are represented in the sub-database effected the 
generation of the mean templates per type; i.e. if nodules used in the modeling 
depicted a majority of the nodules in the larger database and annotated well then the 
overall mean templates generated yielded improved sensitivity and specificity results, 
if the nodules were not adequately  annotated the mean templates generated not 
always gave improvements in sensitivity and/or specificity likewise if the nodules in 
the modeling database did not depict a vast majority of those in the original database 
then detection rates reflected that. 

The results are expected to be further enhanced using larger ensemble sizes 
than the 24 per nodule types which we used in our experiments. Likewise, 
involvement of several radiologists to create the ensemble may also lead to further 
improvements.   
Table 3:  Overall sensitivity and specificity of AAM approach using 8 and 16 nodules from 
datasets 1 and 2 for mean template modeling, respectively. 

Algorithm Sensitivity Specificity 
AAM Approach using 16 nodules from dataset 

1 for modeling and no orientation  
85.57% 97.84% 

AAM Approach using 8 nodules from dataset 1 
for modeling and no orientation 

84.88% 97.99% 

AAM Approach using 16 nodules from dataset 
2 for modeling and no orientation 

83.16% 98.42% 

AAM Approach using 8 nodules from dataset 2 
for modeling and no orientation 

77.32% 98.57% 

4   Conclusions and Extensions 

In this paper, a data-driven approach using level sets was devised to model and 
simulate typical lung nodules. The modeling procedure of parametric and non-
parametric template models was examined and used for nodule detection. The effect 
of template shape and texture on detection of different nodules types was studied. 
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From our extensive experimentation we can concluded that the data-driven AAM 
algorithm for lung nodule modeling yielded an overall higher sensitivity and 
specificity rate, yet, the Level sets approach showed instances of improvement for 
specificity and/or sensitivity over the usage of parametric templates. In the parametric 
case where we tested on all radii sizes between 1 and 20 pixels the sensitivity was 
higher but the specificity in comparison to the data driven nodule templates was still 
lower.  

This paper has shown that approaches were both shape and texture information is 
simultaneously computed for modeling is more robust and an accurate approach than 
relying only on shape information for precise nodule descriptions. Current efforts are 
directed towards constructing and testing the data-driven modeling approach on a 
large clinical database and extending this work into the 3D space. The nodule 
databases will be made available to the research community in order to measure the 
enhancements made in the detection as well as recognition/classifications based on a 
common standard. Also, evaluating these templates to classify the nodules into 
designated pathologies (e.g. benign and malignant) is a key and important step that 
will be examined. Other algorithms of constructing shape and texture based models 
will be explored.  

Therefore, we have established a systematic approach to model and simulate the 
lung nodules in LDCT scans which is applicable to any data protocol, and any nodule 
definition. This contribution is very crucial and may be the building block for all work 
on CAD systems applied to lung nodules; indeed, it may be also used for all similar 
approaches that generate templates to be detected in data of various types and 
formats. The main power of this approach is the fact that it is data-driven; hence, 
various attributes of the data may be incorporated in the template design. 
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