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Abstract. Regional ventilation is the measurement of pulmonary func-
tion on a local, or regional level. The measurement of pulmonary function
may be useful as a planning tool during radiation therapy (RT) plan-
ning, may be useful for tracking the progression of toxicity to nearby
normal tissue during RT and can be used to evaluate the effectiveness of
a treatment post-therapy. In this paper, we show that an intensity-based
regional ventilation measure can be derived from a Jacobian-based mea-
sure by relaxing the assumption that there is no tissue volume change.
We compare intensity-based and Jacobian-based measures of regional
ventilation to xenon-CT (Xe-CT) measures of specific ventilation. The
results show that the Jacobian-based measure correlates better (average
r2 = 0.80) with Xe-CT-based measures of specific ventilation than the
intensity-based measure (average r2 = 0.54). The difference between the
intensity-based measure and the Jacobian-based measure of regional ven-
tilation is linearly related to the tissue volume difference between scans
(average r2 = 0.86).

1 Introduction

Regional ventilation is the term used to characterize the volume of air per unit
time that enters or exits the lung on a local, or regional, level. Since the pri-
mary function of the lung is gas exchange, ventilation can be interpreted as an
index of lung function. Injury and disease processes can alter lung function on a
global and/or a local level. Recent advances in multi-detector-row CT (MDCT),
4DCT respiratory gating methods, and image processing techniques enable us to
study pulmonary function at the regional level with high resolution anatomical
information compared to other methods. MDCT can be used to acquire multi-
ple static breath-hold CT images of the lung taken at different lung volumes,
or 4DCT images of the lung reconstructed at different respiratory phases with
proper respiratory control. Image registration can be applied to this data to
� J. M. Reinhardt is shareholder in VIDA Diagnostics, Inc.
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estimate a deformation field that transforms the lung from one volume config-
uration to the other. This deformation field can be analyzed to estimate local
lung tissue expansion, calculate voxel-by-voxel intensity change, ventilation, and
make biomechanical measurements [1–5].

An important emerging application of these methods is the detection of pul-
monary function change in subjects undergoing radiation therapy (RT) for lung
cancer. During RT, treatment is commonly limited to sub-therapeutic doses due
to unintended toxicity to normal lung tissue. Reducing the frequency of occur-
rence and magnitude of normal lung function loss may benefit from treatment
plans that incorporate relationships between regional and functional based lung
information and the radiation dose. Measurement of pulmonary function may
be useful as a planning tool during RT planning, may be useful for tracking the
progression of toxicity to nearby normal tissue during RT, and can be used to
evaluate the effectiveness of a treatment post-therapy [6, 7].

The physiologic significance of the registration-based measures of respiratory
function can be established by comparing to more conventional measurements,
such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR.
Xenon-enhanced CT (Xe-CT) measures regional ventilation by observing the
gas wash-in and wash-out rate on serial CT images [8]. Xe-CT imaging has the
advantage of high temporal resolution and anatomical information. Although
it comes along with limited axial coverage, it can be used to compare with
registration-based measures of regional lung function in animal studies for vali-
dation purpose.

This paper describes two measures to estimate regional ventilation from im-
age registration of CT images: the intensity based and the Jacobian based mea-
sures. We show that the intensity based regional ventilation measure can be
derived from Jacobian based measure by making the assumption that there is
no tissue volume change. They are evaluated by comparison with Xe-CT esti-
mated ventilation. These results may provide insight into which measures may
best estimate regional ventilation using image registration of respiratory-gated
CT images.

2 Material and methods

2.1 Data Acquisition

Three sheep were anesthetized and mechanically ventilated during experiments.
The 4DCT images were acquired with the animals in the supine position using
the dynamic imaging protocol and images were reconstructed retrospectively.
The 0% (EE) and 100% (EI) inspiration phases were used for ventilation mea-
surements. Twelve contiguous axial locations and approximately 45 breaths for
the Xe-CT studies were selected from the whole lung volumetric scan performed
near end-expiration (EE0 to EE44). The animal was not moved between scans.
The respiratory rate (RR) for three animals ranges from 15 to 18 breaths per
minute. Both the 4DCT and the Xe-CT images were reconstructed using a ma-
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trix of 512 by 512 pixels. The in-plane pixel spacing is approximately 0.5 mm ×
0.5 mm.

2.2 Image Registration

The tissue volume and vesselness measure preserving nonrigid registration (TVP)
algorithm is used to estimate transforms EI to EE and EE0 to EE. The algo-
rithm minimizes the sum of squared tissue volume difference (SSTVD) [9] and
vesselness measure difference (SSVMD), utilizing the rich image intensity infor-
mation and natural anatomic landmarks provided by the vessels. This method
has been shown to be effective at registering across lung CT images with high
accuracy [10, 11].

Let I1 and I2 represent two 3D image volumes to be registered. The vector
x defines the voxel coordinate within an image. The algorithm find the optimal
transformation h that maps the template image I1 to the target image I2 by
minimizing the cost function

CTOTAL = ρ

∫
Ω

[V2(x) − V1(h(x))]2 dx + χ

∫
Ω

[F2(x) − F1(h(x))]2 dx. (1)

where Ω is the union domain of the images I1 and I2. The first integral of the
cost function defines the SSTVD cost and the second integral of the cost function
defines the SSVMD cost.

The SSTVD cost assumes that the measured Hounsfield units (HU) in the
lung CT images is a function of tissue and air content. Following the findings by
Hoffman et. al [12], from the CT value of a given voxel, the tissue volume can
be estimated as

V (x) = ν(x)
I(x) − HUair

HUtissue − HUair
= ν(x)β(I(x)), (2)

and the air volume can be estimated as

V ′(x) = ν(x)
HUtissue − I(x)

HUtissue − HUair
= ν(x)α(I(x)), (3)

where ν(x) denotes the volume of voxel x and I(x) is the intensity of a voxel at
position x. HUair and HUtissue refer to the intensity of air and tissue, respec-
tively. In this work, we assume that air is -1000 HU and tissue is 0 HU. α(I(x))
and β(I(x)) are introduced for notational simplicity, and α(I(x))+β(I(x)) = 1.

Given (2), we can then define the SSTVD cost:

CSSTVD =
∫
Ω

[ν2(x)β(I2(x)) − ν1(h(x))β(I1(h(x)))]2 dx (4)

With the warping function h(x), I1(h(x)) can be interpolated from the tem-
plate image. ν1(h(x)) can be calculated from the Jacobian J(x) of the deforma-
tion as ν1(h(x)) = J(x)ν2(x).
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Fig. 1. Example of a given voxel under deformation h(x) from template image
to target image. V1 and V2 are tissue volumes. V ′

1
and V ′

2
are air volumes.

Figure 1 shows an example of a given cube under deformation h from tem-
plate image to target image. The total cube volumes are ν1 and ν2. The total
cube volume can be decomposed into the tissue volume and air volume based on
their individual intensity. The small white volume inside the cube represents the
tissue volume V1 and V2. The air volume is represented by V ′

1
and V ′

2
in blue.

As the ratio of air to tissue decreases, the CT intensity of a voxel increases. The
intensities of the cubes in the template image and the target image are I1 and
I2 and are a function of the ratio of air to tissue content of the cube.

As the blood vessels branch to small diameters, the raw grayscale information
from vessel voxels provide almost no contribution to guide the intensity-based
registration. To better utilize the information of blood vessel locations, we use
the vesselness measure (VM) based on the eigenvalues of the Hessian matrix of
image intensity. Frangi’s vesselness function [13] is defined as

F (λ) =

{
(1 − e−

R2
A

2α2 ) · e
−R2

B
2β2 · (1 − e

− S2

2γ2 ) if λ2 < 0 and λ3 < 0
0 otherwise

(5)

with

RA =
|λ2|
|λ3| , RB =

|λ1|√|λ2λ3|
, S =

√
λ2

1
+ λ2

2
+ λ2

3
, (6)

where RA distinguishes between plate-like and tubular structures, RB accounts
for the deviation from a blob-like structure, and S differentiates between tubular
structure and noise. α, β, γ control the sensitivity of the vesselness measure. The
vesselness measure is rescaled to [0, 1] and can be considered as a probability-like
estimate of vesselness features. For this study, α = 0.5, β = 0.5, and γ = 5. The
transformation h(x) is a cubic B-splines transform. Note that the Jacobian value
must be positive here, which can be achieved by using displacement constraints
on the control nodes [14]. The total cost in equation 1 is optimized using a
limited-memory, quasi-Newton minimization method with bounds (L-BFGS-B)
algorithm.
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2.3 Regional Ventilation Measures from Image Registration

After we obtain the optimal warping function, we can calculate the regional
ventilation, which is equal to the difference in local air volume change per unit
time. Therefore, the specific ventilation (SV) is equal to specific air volume
change per unit time.

Specific air volume change by corrected Jacobian (SACJ): Applying the same
assumptions (2) and (3) used in the SSTVD cost function, we have

SACJ =
V ′

1
(h(x)) − V ′

2
(x)

V ′
2
(x)

(7)

=
ν1(h(x))α(I1(h(x)))

ν2(x)α(I2(x))
− 1 (8)

Given a warping function h(x), I1(h(x)) can be interpolated from the tem-
plate image. ν1(h(x)) can be calculated from the Jacobian J(x) of the defor-
mation as ν1(h(x)) = J(x)ν2(x). Therefore, the specific air volume change is
then

SACJ = J(x)
α(I1(h(x)))

α(I2(x))
− 1 (9)

= J(x)
HUtissue − I1(h(x))

HUtissue − I2(x)
− 1 (10)

= J(x)
I1(h(x))

I2(x)
− 1. (11)

The correction factor I1(h(x))

I2(x)
above depends on the voxel intensity.

Specific air volume change by intensity (SAI): The intensity based measure of
regional air volume change SAI can be derived from the SACJ. Now we intro-
duce another assumption that the tissue volume is preserved, or equivalently,
that the tissue volume difference ΔV (x) = V1(h(x)) − V2(x) = 0. Under this
assumption,V1(h(x)) = V2(x) and we have

ν1(h(x))β(I1(h(x))) = ν2(x)β(I2(x)), (12)

and

ν1(h(x)) = ν2(x)
β(I2(x))

β(I1(h(x)))
, (13)

Since ν1(h(x)) = J(x)ν2(x), with above equation, we have

J(x) =
β(I2(x))

β(I1(h(x)))
(14)

=
I2(x) − HUair

I1(h(x)) − HUair
. (15)
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Substituting the above equation into equation 10 with assumption that air is
-1000 HU and tissue is 0 HU, then

SAI = 1000
I1(h(x)) − I2(x)

I2(x)(I1(h(x)) + 1000)
(16)

which is exactly the equation as described in Simon [15], Guerrero et al. [1] and
Fuld et al. [16].

Difference of specific air volume change (DSA) and difference of tissue volume
(DT): To investigate the relationship between the measurements of specific air
volume changes and the tissue volume change, we also measure the difference
between equation (11) and equation (16) by comparing the difference of specific
air volume change (DSA) between SACJ and SAI, and the difference of tissue
volume (DT) as:

DSA = SACJ − SAI (17)

DT = V1(h(x)) − V2(x) (18)
= J(x)ν2(x)β(I1(h(x))) − ν2(x)β(I2(x)) (19)

= ν2(x)
J(x)(I1(h(x)) − HUair) − (I2(x) − HUair)

HUtissue − HUair
(20)

= ν2(x)
J(x)(I1(h(x)) + 1000) − (I2(x) + 1000)

1000
. (21)

In this study, the absolute values of DT and DSA are used in analysis.

2.4 Compare Registration Regional Ventilation Measures to Xe-CT
Estimated Ventilation

The Xe-CT estimate of SV is computed in the coordinates of the EE0 using
Pulmonary Analysis Software Suite 11.0 (PASS) [17] at the original image size
of 0.5 mm × 0.5 mm × 2.4 mm voxels. Overlapping 1 × 8 regions of interest
(ROI) are defined in the lung region on each 2D slice. All the images including
the EE, EI, EE0 and SV map are then resampled to a voxel size of 1 mm ×
1 mm × 1 mm. After preprocessing, EI is registered to EE using the TVP for
measuring the regional ventilation from these two phases in a 4DCT scan. The
resulting transformation is used to estimate the SACJ and SAI. Then EE0 is
registered to EE using TVP as well to map the SV to the same coordinate
system as that of the SACJ and SAI. A semi-automatic landmark system is
used for landmark detection and annotation [18]. For each animal, after 200
anatomic landmarks are identified in the EE, the observer marks the locations
of the voxels corresponding to the anatomic locations of the landmarks in the EI.
For each landmark, the actual landmark position is compared to the registration-
derived estimate of landmark position and the error is calculated. To compare
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the regional ventilation measures, the corresponding region of Xe-CT image EE0

in the EE is divided into about 100 cubes with size of 20 mm × 20 mm × 20
mm. We compare the average regional ventilation measures (SACJ and SAI)
to the corresponding average SV measurement from Xe-CT images within each
cube. The correlation coefficients between any two estimates (SACJ-SV or SAI-
SV) are calculated by linear regression. To compare two correlation coefficients,
the Fisher Z-transform of the r values is used and the level of significance is
determined [19]. The relationship between the specific air volume change and
difference of tissue volume is also studied in three animals by linear regression
analysis.

3 Results

3.1 Registration Accuracy

Approximately 200 automatic identified landmarks within the lungs are used to
compute the registration accuracy. The landmarks are uniformly distributed in
the lung regions. Figure 2 shows an example of the distribution of the landmarks
in on animal for both the EE and EI images. The coordinate of each landmark
location is recorded for each image data set before and after registration. For
all three animals, before registration, the average landmark distance is 6.6 mm
with minimun 1.0 mm, maximum 14.6 mm and stand deviation 2.42 mm. After
registration, the average landmark distance is 0.4 mm with minimum 0.1 mm,
maximum 1.6 mm and stand deviation 0.29 mm.

(a) (b)

Fig. 2. 3D view of the landmarks in: (a) EE with EE0 and (b) EI. The dark
region below the carina in (a) is the EE0 and the spheres are the automatically
defined landmarks.
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3.2 Registration Estimated Ventilation Compared to Xe-CT
Estimated Ventilation

Figure 3(a) shows an example of the color-coded cubes of the regions where we
average the registration estimated ventilation measures and the Xe-CT estimated
SV and compare them. For each animal, the corresponding Xe-CT regions in the
EE are divided into about 100 cubes. Figure 3(b) is the Xe-CT estimate of SV.
Figure 3(c), (d) are the corresponding registration ventilation measures SACJ
amd SAI. The regions with edema are excluded from the comparison. Figure 3(b)
to (d) all show noticeable similar gradient in the ventral-dorsal direction. Notice
that the color scales are different in each map and are set according to their
ranges in Fig. 4.

Figure 4 shows the scatter plots between the registration ventilation mea-
sures and the Xe-CT ventilation SV with linear regression in all three animals.
The SACJ column shows the stronger correlation (average r2 = 0.80) than The
intensity based measure SAI (average r2 = 0.54) with the SV.

Table 1 shows the results of comparing the r values from SACJ vs. SV and
SAI vs. SV. All three animals show that the correlation coefficient from SACJ
vs. SV is significantly stronger than it from SAI vs. SV.

Figure 5 shows the scatter plots between DSA (the absolute difference of the
value between the SACJ and SAI) and the DT (the absolute difference of the
tissue volume) with linear regression in all three animals (average r2 = 0.86).
From the equation (11) and (16), we know that the SAI takes the assumption
about no tissue volume change for a given voxel between the two volumes which
may not be valid. Figure 5 shows that as the tissue volume change increases,
the difference between the measures of regional ventilation from SACJ and SAI
increases linearly in all animals.

Table 1. Comparison of ventilation measures between SACJ and SAI in small
cube ROIs with size 20 mm × 20 mm × 20 mm

Animal Correlation pair Correlation with SV Number of p value
(with SV) (r value) samples

A SACJ 0.88 83 p<= 0.0001
SAI 0.65

B SACJ 0.93 119 p<= 1.18e−6

SAI 0.77
C SACJ 0.89 86 p<= 0.015

SAI 0.78

4 Discussion

We have described two measures to estimate regional ventilation from tissue
volume and vesselness preserving image registration of CT images. The validity
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(a) (b)

(c) (d)

Fig. 3. (a): EE with color coded cubes showing the sample region. (b), (c), and
(d): color map of the SV, SACJ and SAI.

and comparison of different measures for estimates of regional ventilation are
evaluated by Xe-CT estimated ventilation. Individual regional ventilation mea-
sures are compared to Xe-CT estimates of ventilation by transforming them to
the same coordinate system. The difference between two registration measures
and their relationship with the tissue volume difference is analyzed using linear
regression.

The tissue volume and vesselness preserving algorithm is used to register the
EI to the EE for estimating ventilation measures. It is also used to register the
EE0 to the EE for comparing two ventilation measures to the Xe-CT based SV.
About 200 anatomical landmarks are identified and annotated to evaluate the
registration accuracy. The average landmark error is on the order of 1 mm after
registration.

The ventilation measures SACJ and SAI are derived and the relationship
between them is described. The SACJ is is based on the voxel air-tissue fraction
theory of HU. With further assumption about no change in the tissue volume
between the corresponding voxels in the template and target images, SAI can be
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Fig. 4. Small cube ROIs with size 20 mm × 20 mm × 20 mm results for regis-
tration estimated ventilation measures compared to the Xe-CT estimated ven-
tilation SV in scatter plot with linear regression in animals A, B, and C.
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Fig. 5. (a) to (c): DSA (the absolute difference of the value between the SACJ
and SAI) compared to DT (the absolute difference of the tissue volume) in
animals A, B, and C.

calculated. Compared to SACJ which explicitly combines information both from
the Jacobian and the intensity, SAI only uses the intensity information. SACJ
has the most basic form for regional ventilation measure directly from the HU
based voxel air-tissue fraction.

The two registration-based ventilation measures as well as the SV from Xe-
CT are averaged and compared in predefined cubes. Averaging and comparing by
20 mm × 20 mm × 20 mm ROIs, the SACJ shows significantly higher correlation
with Xe-CT based SV than the SAI in all three animals. By examining the
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relationship between the DSA and DT, we see that the difference between SACJ
and SAI may be due to the assumption of no tissue volume change (14) implicit
in SAI. As the derivation in equations (11) and (16), to use SAI, the tissue
volume change should be approximately zero. From Fig. 5, it is shown that while
the tissue volume difference is usually small (less than 5%), regional ventilation
measure SAI with the zero tissue volume change may introduce difference of
more than 10% unit volume per inspiration comparing with the SACJ measure.
For the ventilation measured over a minute, the DSA is about more than 1.7 unit
volume per voxel (average RR = 17.59 breaths/min). Table 1 shows that the
both the SACJ have significantly better correlation with SV than the SAI. This
is consistent with the findings by Kabus et al. [4] who show that the Jacobian
based ventilation has less error than the intensity based ventilation analysis using
the segmented total lung volume as a global comparison.

The image registration algorithm used to find the transformation from EI
to EE for measurement of regional ventilation produces accurate registrations
by minimizing the tissue volume and vesselness measure difference between the
template image and the target image. It would be interesting to compare dif-
ferent image registration algorithms and their effects on the registration-based
ventilation measures. For example, if two registration algorithms achieve the
similar landmark accuracy, the one does not preserve tissue volume change may
show even larger difference in the SACJ and SAI measures than the results using
TVP as described above.

In conclusion, with the same deformation field by the same image registra-
tion algorithm, a significant difference between the Jacobian based ventilation
measures and the intensity based ventilation measure is found in a regional level
using Xe-CT based ventilation measure SV. The ventilation measure by corrected
Jacobian SACJ gives best correlation with Xe-CT based SV and the correlation
is significantly higher than from the ventilation by intensity SAI indicating the
ventilation measure by corrected Jacobian SACJ may be a better measure of
regional lung ventilation from image registration of 4DCT images.
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