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Preface

After the successful first edition of the International Workshop on Pulmonary Image Analysis
at MICCAI 2008 in New York City, the entire organizing team volunteered to organize the
second edition of this event, aimed at bringing together researchers in pulmonary image
analysis to discuss recent advances in this rapidly developing field. The Second International
Workshop on Pulmonary Image Analysis will be held on September 20, 2009 in London, UK,
again as a workshop of the MICCALI conference. Two researchers later joined the organizing
team. We received many high quality submissions for this workshop. All papers underwent
a thorough review process with two to four reviews per paper by members of the program
committee and additional reviewers.

The proceedings of this workshop consist of three parts. There are fifteen regular papers,
dealing with various aspects of image analysis of pulmonary image data, including segmen-
tation, registration, and quantification of abnormalities in various modalities, with the focus
in most studies on computed tomography, but also with papers on the analysis of MRI and
X-ray scans. Next to these regular papers, we invited researchers to join in two comparative
studies where algorithms were applied to a common data set, and submit a paper to the
workshop about their system. The first of these challenges is EXACT09, on the extraction
of the pulmonary airway tree from CT data. The second one, VOLCANQO’09, is on the anal-
ysis of size changes in pulmonary nodules from consecutive CT scans. The results of these
challenges are described in two overview papers that can be found in these proceedings. More-
over, fifteen papers describe systems that participated in the EXACTO09 challenge and three
papers describe algorithms that were used for the VOLCANO’09 challenge. That challenge
attracted thirteen participating teams who applied algorithms, often previously published
and not described in these proceedings, to the challenge data.

Challenges have been held at MICCALI since 2007 when the first edition of the Grand
Challenge workshop compared approaches for liver segmentation in CT and caudate seg-
mentation in MRI data. The challenge workshops have proved popular and allow a direct
comparison between different approaches to solve the same problem. They have been orga-
nized in conjunction with other conferences as well, and one of these, ANODEQ9, was tailored
particularly towards pulmonary image analysis. EXACT09 and VOLCANO’09 are the first
challenges organized at MICCAI outside of the Grand Challenge workshops. The collection
of good data set is paramount for such comparisons and for EXACTO09 this was only possible
through the help of most members of the organizing team who used their extensive networks
to collect a diverse set of scans. The VOLCANO’09 challenge was only possible through the
unique data made available by Weill Medical College of Cornell University.

We would like to take this opportunity to thank the MICCAI 2009 organizers for their
excellent organizational support, and all the reviewers for helping us with the paper selection.
We acknowledge the generous contributions of Siemens Corporate Research, Philips Medical
Systems, VIDA Diagnostics, and MeVis Medical Solutions which helped make this event
possible.
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Prediction of Respiratory Motion Using A
Statistical 4D Mean Motion Model

Jan Ehrhardt!, René Werner!, Alexander Schmidt-Richberg', and Heinz
Handels!

Department of Medical Informatics, University Medical Center Hamburg—Eppendorf,
Germany, j.ehrhardt@uke.uni-hamburg.de

Abstract. In this paper we propose an approach to generate a 4D sta-
tistical model of respiratory lung motion based on thoracic 4D CT data
of different patients. A symmetric diffeomorphic intensity—based registra-
tion technique is used to estimate subject—specific motion models and to
establish inter—subject correspondence. The statistics on the diffeomor-
phic transformations are computed using the Log—Euclidean framework.
We present methods to adapt the genererated statistical 4D motion
model to an unseen patient—specific lung geometry and to predict individ-
ual organ motion. The prediction is evaluated with respect to landmark
and tumor motion. Mean absolute differences between model-based pre-
dicted landmark motion and corresponding breathing—induced landmark
displacements as observed in the CT data sets are 3.3 £ 1.8 mm consid-
ering motion between end expiration to end inspiration, if lung dynamics
are not impaired by lung disorders.

The statistical respiratory motion model presented is capable of provid-
ing valuable prior knowledge in many fields of applications. We present
two examples of possible applications in the fields of radiation therapy
and image guided diagnosis.

1 Introduction

Respiration causes significant motion of thoracical and abdominal organs and
thus is a source of inaccuracy in image guided interventions and in image acqui-
sition itself. Therefore, modeling and prediction of breathing motion has become
an increasingly important issue within many fields of application, e.g in radiation
therapy [1].

Based on 4D images, motion estimation algorithms enable to determine
patient—specific spatiotemporal information about movements and organ defor-
mation during breathing. A variety of respiratory motion estimation approaches
have been developed in the last years, ranging from using simple analytical
functions to describe the motion over landmark—, surface— or intensity—based
registration techniques [2, 3] to biophysical models of the lung [4]. However, the
computed motion models are based on individual 4D image data and their use
is usually confined to motion analysis and prediction of an individual patient.

The key contribution of this article is the generation of a statistical 4D inter—
individual motion model of the lung. A symmetric diffeomorphic non-linear
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intensity—based registration algorithm is used to estimate lung motion from a
set of 4D CT images from different patients acquired during free breathing. The
computed vector motion fields are transformed into a common coordinate sys-
tem and a 4D mean motion model (4D-MMM) of the respiratory lung motion
is extracted using the Log—Euclidean framework [5] to compute statistics on the
diffeomorphic transformations. Furthermore, methods are presented to adapt the
computed 4D-MMM to the patient’s anatomy in order to predict individual or-
gan motion without 4D image information. We perform a quantitative in—depth
evaluation of the model-based prediction accuracy for intact and impaired lungs
and two possible applications of the 4D-MMM in the fields of radiation therapy
and image guided diagnosis are shown.

Few works that deal with the development of statistical lung motion models
have been published. Some approaches exist for the generation of 3D lung at-
lases [6], or the geometry—based simulation of cardiac and respiratory motions
[7]. First steps towards an average lung motion model generated from different
patients were done by Sundaram et al. [8], but their work focuses on 2D+t lung
MR images and the adaptation of the breathing model to a given patient has not
been addressed. First methods for building inter—patient models of respiratory
motion and the utilization of the generated motion model for model-based pre-
diction of individual breathing motion were presented in [9] and [10]. This paper
is an extension of [10] with regard to the methodology and the quantitative eval-
uation. In [9] motion models were generated by applying a Principal Component
Analysis (PCA) to motion fields generated by a surface-based registration in a
population of inhale-exhale pairs of CT images. Our approach is different in all
aspects: the registration method, the solution of the correspondance problem,
the spatial transformation of motion fields, and the computation of statistics
of the motion fields. Furthermore, we present a detailed quantitative evaluation
of a model based prediction for intact and impaired lungs. This offers interest-
ing insights into the prediction accuracy to be expected depending on size and
position of lung tumors.

2 Method

The goal of our approach is to generate a statistical model of the respiratory
lung motion based on a set of N, thoracic 4D CT image sequences. Each 4D
image sequence is assumed to consist of N; 3D image volumes I, ; : 2 — R
(2 C R?), which are acquired at corresponding states of the breathing cycle.
This correspondance is ensured by the applied 4D image reconstruction method
[11] and therefore, a temporal alignment of the patient data sets is not necessary.

Our method consists of three main steps: First, the subjectspecific motion
is estimated for each 4D image sequence by registering the 3D image frames.
In a second step, an average shape and intensity model is generated from the
CT images. In the last step, the average shape and intensity model is used as
anatomical reference frame to match all subject-specific motion models and to
build an average intersubject model of the respiratory motion.
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Image registration is required in all three steps. We use a non-linear, intensity—
based, diffeomorphic registration method as described in the next section. The
three steps to generate the statistical model of the respiratory motion are de-
tailed in Sect. 2.2. The utilization of the 4D-MMM for motion predicition is
presented in Sect. 2.3.

2.1 Diffeomorphic image registration

Diffeomorphic mappings ¢ : 2 — 2, (¢ € Diff(£2), 2 C RY) guarantee
that the topology of the transformed objects is preserved and are therefore used
in computational anatomy to analyze and characterize the biological variabil-
ity of human anatomy [12]. A practical approach for fast diffeomorphic image
registration was recently proposed in [13] by constraining ¢ to a subgroup of
diffeomorphisms. Here, diffeomorphisms are parametrized by a stationary veloc-
ity field v, and the diffeomorphic transformation ¢ is given by the solution of
the stationary flow equation at time ¢t = 1 [5]:

0
550(@,1) = v(6(w,1)) and ¢(w,0) = . (1)

The solution of eq. (1) is given by the group exponential map ¢(x) = ¢(z,1) =
exp(v(x)) and the significant advantage of this approach is that these exponen-
tials can be computed very efficiently (see [5] for details).

The problem of image registration can now be understood as finding a para-
metrizing velocity field v, so that the diffeomorphic transformation ¢ = exp(v)
minimizes a distance D between a reference image Iy and the target image I; with
respect to a desired smoothness S of the transformation: J[¢] = D[ly, I;; @] +
aS[e]. Using S[e] = [, [|[Vv|*dx (with ¢ = exp(v)) as regularization scheme,
the following iterative registration algorithm can be derived:

Algorithm 1 Symmetric diffeomorphic registration

Set v =0, p=¢ ' =Idand k=0
repeat

Compute the update step u = % (ro,Ijozp — ij’]Oo‘Pfl)
Update the velocity field and perform a diffusive regularization:

o = (Id — TaA) ™! (’vk + Tu) (2)

k+1) 1 k+1)

Calculate ¢ = exp(v
Let k —k+1
until [[vFT — v < eor k > Knae

and ¢~ = exp(—v
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The update field u is calculated in an inverse consistent form to assure source
to target symmetry. The force term f is related to D and is chosen to be:

@)~ (U op)@) V(T 0 @) (@)
Tonee® = 90 0@+ D@ - Gop@?

with k2 being the reciprocal of the mean squared spacing. Eq. (2) performs the
update of the velocity field v, where 7 is the step width. The term (I'd — TCYA)il
is related to the diffusive smoother S and can be computed efficiently using
additive operator splitting (AOS).

We have chosen this diffeomorphic registration approach because of three rea-
sons: In the context of the motion model generation, it is important to ensure
that the calculated transformations are symmetric and diffeomorphic because of
the multiple usage of inverse transformations. The second reason is related to
runtime and memory requirements: due to the size of the 4D CT images dif-
feomorphic registration algorithms using non-stationary vector fields, e.g. [14],
are not feasible. Third, the representation of diffeomorphic transformations by
stationary vector fields provides a simple way for computing statistics on diffeo-
morphisms via vectorial statistics on the velocity fields.

For a diffeomorphism ¢ = exp(v), we call the velocity field v = log(¢) the
logarithm of . Remarkably, the logarithm v = log(y) is a simple 3D vector
field and this allows to perform vectorial statistics on diffeomorphisms, while
preserving the invertibility constraint [15]. Thus, the Log-Euclidean mean of
diffemorphisms is given by averaging the parametrizing velocity fields:

@ = exp (}V Zlog(soi)) . (4)

The mean and the distance are inversion-invariant, since log(¢) = —log(¢~1).
Even though the metric linked to this distance is not translation invariant, it
provides a powerful framework where statistics can be computed more efficiently
than in the Riemannian distance framework. For a more detailed introduction to
the mathematics of the diffeomorphism group and the associated tangent space
algebra, we refer to [5] and the references therein.

2.2 Generation of a 4D mean motion model

In the first step, we estimate the intra—patient respiratory motion for each 4D
image sequence by registering the 3D image frames. Let I, ; : 2 — R (2 C R?)
be the 3D volume of subject p € {1,...,N,} acquired at respiratory state j €
{0,...,N; —1}. Maximum inhale is chosen as reference breathing state and the
diffeomorphic transformations ¢, ; : {2 — {2 are computed by registering the
reference image I, o with the target images I, ;, 7 € {1,...,N; — 1}. In order
to handle discontinuities in the respiratory motion between pleura and rib cage,
lung segmentation masks are used to restrict the registration to the lung region
by computing the update field only inside the lung (see [3] for details).
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In order to build a statistical model of respiratory motion, correspondence
between different subjects has to be established, i.e. an anatomical reference
frame is necessary. Therefore, the reference images I, for p = 1,..., N, are
used to generate an average intensity and shape atlas Iy of the lung in the
reference breathing state by the method described in [10]. This 3D atlas image
Iy is now used as reference frame for the statistical lung motion model. Each
patient—specific reference image I}, o is mapped to the average intensity and shape
atlas Iy by an affine alignment and a subsequent diffeomorphic registration.

Let 1, be the transformation between the reference image I, o of subject p
and the atlas image Iy. Since the intra-subject motion models ¢, ; are defined
in the anatomical spaces of I, o, we apply a coordinate transformation

Ppj =Ypoppjo 1/’;1 (5)

to transfer the intra—subject deformations into the atlas coordinate space. Such
a coordinate transformation accounts for the differences in the coordinate sys-
tems of subject and atlas due to misalignment and size/shape variation and
eliminates subject—specific size, shape and orientation information in the de-
formation vectors. This enables the motion fields of each of the subjects to be
compared directly quantitatively and qualitatively and the 4D-MMM is gener-
ated by calculating the Log-Euclidean mean ¢; of the mapped transformations
for each breathing state j:

@; = exp (1\221‘% (‘ﬁp,j)) = exp (;})Zlog (%0 © ®p,s 01/};1)) - (6)
p p

The method proposed in [16] was used to compute the logarithms log (@, ;).

The resulting 4D-MMM consists of an average lung image Iy for a refer-
ence state of the breathing cycle, e.g. maximum inhalation, and a set of motion
fields @, describing an average motion between the respiratory state j and the
reference state (Fig. 1).

2.3 Utilization of the 4D—MMM for individual motion prediction

The 4D-MMM generated in section 2.2 can be used to predict respiratory lung
motion of a subject s even if no 4D image information is available. Presuming a
3D image I, acquired at the selected reference state of the breathing cycle is
available, the 4D-MMM is adapted to the individual lung geometry of subject
s by registering the average lung atlas Iy with the 3D image I, o. The resulting
transformation s is used to apply the coordinate transformation eq. 5 to the
mean motion fields ¢; in order to obtain the model-based prediction of the
subject-specific lung motion: @5 ; = ;! o @, o 1.

However, two problems arise. First, breathing motion of different individuals
varies significantly in amplitude [1]. Therefore, motion prediction using the mean
amplitude will produce unsatisfying results. To account for subject—specific mo-
tion amplitudes, we propose to introduce additional information by providing the
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(a)

Fig. 1. Visualization of average lung model Iy (a) and magnitude of mean deformation
@; between end inspiration and end expiration (b). The average deformation model
shows a typical respiratory motion pattern. Different windowing and leveling functions
are used to accentuate inner/outer lung structures.

required change in lung air content AV,;,.. Even without 4D-CT data, this infor-
mation can be acquired by spirometry measurements. Thus, we search a scaling
factor A so that the air content of the transformed reference image I o Ac,b;;
is close to the air content Vg (I5,0) + AVgsr. In order to ensure that the scaled
motion field is diffeomorphic, the scaling is performed in the Log-Euclidean. To
determine the correct scaling factor A, a binary search strategy is applied and
the air content is computed using the method described in [17]. AV, can be
regarded as a parameter that describes the depth of respiration. In general, other
measurements can also be used to calculate appropriate scaling factors, e.g. the
amplitude of the diaphragm motion.

Further, a second problem arises when predicting individual breathing motion
of lung cancer patients. Lung tumors will impair the atlas—patient registration
because there is no corresponding structure in the atlas. This leads to distortions
in 9 near the tumor region and consequently the predicted motion fields ¢, ; are
affected. Therefore, we decided to compute 1), by registering lung segmentation
masks from atlas and subject s and by omitting the inner lung structures.

3 Results

To capture the respiratory motion of the lung, 18 4D CT images were acquired
using a 16—slice CT scanner operating in cine-mode. The scanning protocol and
optical-flow based reconstruction method was described in [11]. The spatial res-
olution of the reconstructed 4D CT data sets is between 0.78 x 0.78 x 1.5mm3
and 0.98 x 0.98 x 1.5mm3. Each data set consists of 3D CT images at 10 to 14
preselected breathing phases. Due to computation times, in this study we use
the following 4 phases of the breathing cycle: end inspiration (EI), 42% exhale
(ME), end expiration (EE) and 42% inhale (MI). A clinical expert delineated
left and right lung and the lung tumors in the images.



SECOND INTERNATIONAL WORKSHOP ON PULMONARY IMAGE ANALYSIS -9~

)

)

P
“

TP e e

¥ | PRV

4

-

o
]
.
7o )

)
@

)

"
“

Fig. 2. Result of the motion estimatation by intra—patient registration (top row)
and the model-based motion prediction (bottom row) of patient 01. Visualization of
the magnitude of the displacement field computed by intra—patient registration (top
left) and of the displacement field predicted by the 4D mean motion model (bot-
tom left). Right: contours at end inspiration (green), end expiration (yellow) and esti-
mated/predicted contours at end expiration (red).

The aim of the model generation is to create a representation of the mean
healthy lung motion. In a dynamic MRI study by Plathow et al. [18], tumors with
diameter > 3cm were shown to influence respiratory lung dynamics. According
to their observations, we divide the lungs into two groups: lungs with intact
dynamics and lungs with impaired motion. Lungs without or with only small
tumors (volume < 14.1cm? or diameter < 3cm) are defined as intact. Lungs with
large tumors or lungs affected by other diseases (e.g. emphysema) are defined as
impaired. According to this partitioning, we have 12 data sets with both lungs
intact and 6 data sets with at least one impaired lung. Only data sets with intact
lungs are used to generate the 4D-MMM.

3.1 Landmark—based evaluation

Due to the high effort of the manual landmark identification only 10 of the
18 data sets are used for the detailed quantitative landmark—based evaluation.
Between 70 and 90 inner lung landmarks (prominent bifurcations of the bronchial
tree and the vessel tree) were identified manually in the four breathing phases,
about 3200 landmarks in total. An intraobserver variability of 0.9 + 0.8mm was
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Table 1. Landmark motion amplitudes and target registration errors Rgp for the
patients considered (in mm). Values are averaged over all landmarks per lung. Lungs
with impaired motion are indicated by a gray text color.

Landmark Intra-patient | Model-based

motion registration prediction

Data set (Lung) [mm)] TRE [mm] TRE [mm]
Patient01  left 4,99 + 4,84 1,51 £ 1,31 2.43 + 1,64
right 7,25 + 4,47 1,41 £ 0,83 3.97 £ 2,08

Patient02  left 7,09 £ 2,92 2,28 £ 1,73 4.26 £+ 1,28
right 421 + 1,75 1,16 + 0,61 3.82 + 1,14

Patient03  left 6,15 £ 2,26 1,38 £ 0,73 3.68 + 1,31
right 6,28 + 2,01 1,78 £ 1,05 3.72 £ 1,37

Patient04  left 6,65 £ 2,56 1,63 £ 0,93 4.01 + 1,60
right 6,22 + 3,52 1,44 £ 0,82 2.28 + 1,09

Patient05  left 5,77 £ 2,03 1,50 £ 0,80 3.17 +£ 1,34
right 3,18 £+ 3,36 1,29 + 1,04 3.47 + 1,99

Patient06  left 9,67 £+ 8,32 1,64 £ 1,42 5.85 £+ 2,65
right 11,85 4+ 7,08 1,60 4+ 1,00 4.88 + 2,02

Patient07  left 8,22 + 6,52 2,45 + 2,22 3.99 +£ 1,79
right 4,99 + 6,65 1,49 £+ 1,48 3.35 £ 1,69

Patient08  left 5,78 + 4,14 1,18 £ 0,57 3.15 + 1,70
right 6,28 £+ 5,63 1,25 + 1,03 3.11 + 2,24

Patient09 left 7,43 £ 5,34 1,42 £ 1,22 3.05 + 1,39
right 8,41 £ 5,22 1,67 + 1,03 4.94 4+ 3,01

Patient10  left 7,63 £ 5,83 1,93 £ 2,10 3.16 + 2,29
right 8,85 £ 6,76 1,76 £ 1,33 5.12 £ 2,34

assessed by repeated landmark identification in all test data sets. The target
registration error (TRE) was determined for a quantitative evaluation of the
patient—specific registration method and the model-based prediction. The TRE
Rf is the difference between the motion of landmark k estimated by ¢; and the
landmark motion as observed by the medical expert.

The mean landmark motion magnitude, i.e. the mean distance of correspond-
ing landmarks, between EI and EE is 6.8 £5.4mm, (2.6 +1.6mm between EI and
ME and 5.0 £+ 2.8mm between EI and MI). The TRE of the intra—patient reg-
istration is a lower bound for the accuracy of the model-based prediction using
the 4AD-MMM. The average TRE Rpp between the reference phase (EI) and EE
for patient 01 to 10 (averaged over all landmarks and patients) is 1.6 £+ 1.3mm
(1.54+0.8mm between EI and ME and 1.6 £0.9mm between EI and MI). Details
for all test data sets are shown in table 1.

For each of the 10 test data sets the 4D-MMM is used to predict landmark
motion as described in Sect. 2.3. If both lungs of the test data set are intact,
a leave—one—out strategy is applied to ensure that the patient data is not used
for the model generation. The change in lung air content AV, needed for the
computation of the scaling factor A was calculated from the CT images Ir; and
Igg for each lung side and each test data set. The same factor \ was used to
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scale the predicted motion fields ¢pr, Ypme and @pr. Besides AV, no 4D
information is used for the model-based prediction.

In Fig. 2 the motion field predicted by the 4D-MMM is compared to the
motion field computed by patient—specific registration. A good correspondency
between the motion fields is visible, except in the right upper lobe where small
deviations occur. The prediction accuracy is illustrated by overlayed contours.

The average TREs Rgp are listed in table 1 for each of the test data sets and
for both the patient—specific and model-based motion estimation. Lungs with
impaired motion are indicated by a gray text color. Regarding table 1, lungs with
impaired motion generally show higher TREs for the model-based prediction
than intact lungs. The average TRE Rpp for intact lungs is 3.3 & 1.8mm, which
is significantly lower (p < 0.01) than for lungs with impaired motion (Rgpp =
4.2 + 2.2mm). Significance is tested by applying a multilevel hierarchical model
with the individual R¥ values nested within the patient (software: SPSS v.17);
data are logarithmized to ensure normal distribution and the model is adjusted
to landmark motion.

3.2 Model-based prediction of tumor motion

For a second evaluation of the model, we use expert generated tumor segmenta-
tions in two breathing phases (EI and EE) of 9 patient data sets with solid lung
tumors. The 4D-MMM is transformed into the coordinate space of each test
data set (see Sect. 2.3) and then used to warp the expert—generated tumor seg-
mentation at maximum exhale towards maximum inhale. The distance between
the predicted tumor mass center and the center of the manual segmentation
was used to evaluate the accuracy of the model-based prediction. Correspond-
ing results are summarized in table 2. Large tumors with a diameter > 3cm are
marked in the table as “large”.

Regarding table 2 accuracy of the model-based predicted motion of the tu-
mor mass center from EI to EE ranges from 0.66mm to 7.38mm. There is no
significant correlation between the tumor motion amplitude and the accuracy
of the model-based predicted mass center (r = 0.19, p > 0.15). Furthermore, it
cannot be shown that the prediction accuracy for small tumors is significantly
better than for large tumors (p > 0.4). In contrast, the model-based prediction
accuracy of non-adherent tumors is significantly better than for tumors adher-
ing to chest wall or hilum (p < 0.05). In these cases the model presumes the
tumour moves like surrounding lung tissue, whereas it rather moves like the ad-
jacent non-lung structure (e.g. chest wall or hilum). In the last column in table 2
those tumors are tagged. Significance is tested by applying a linear mixed model
(software: SPSS v.17) and the model is adjusted to tumor motion.

4 Discussion

In this paper, we proposed a method to generate an inter—subject statistical
model of the breathing motion of the lung, based on individual motion fields
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Table 2. Tumor size and motion amplitude, and the center distances between manually
segmented tumor and predicted tumor position (see text for details).

Tumor | Tumor | Intra—patient | Model-based |, g
size motion | registration prediction 80 2
Data set (Lung)| [cm?] [mm)] TRE [mm] TRE [mm] |& E
Patient 01 right 6.5 12.20 0.45 3.54
Patient 02 right 7.6 2.15 1.44 3.90 X
Patient 03  left 12.7 6.74 0.41 3.91 X
Patient 05 right 8.2 2.34 1.95 5.39 X
right 17.3 1.68 1.05 4.44 XX
Patient 06  left 34 19.78 2.12 6.87
right 128.2 13.78 0.97 2.99 X
Patient 07 right 2.8 1.31 0.42 0.66
Patient 08 right 18.4 6.24 0.90 1.59 X
Patient 09 right 88.9 8.35 0.29 5.33 X | X
Patient 10 right 96.1 1.77 1.01 7.46 XX

extracted from 4D CT images. Methods to apply this model in order to predict
patient—specific breathing motion without knowledge of 4D image information
were presented. Ten 4D CT data sets were used to evaluate the accuracy of the
image—based motion field estimation and the model-based motion field predic-
tion. The intra—patient registration shows an average TRE in the order of the
voxel size, e.g. 1.6 = 1.3mm when considering motion between EI and EE. The
4D-MMM achieved an average prediction error (TRE) for the motion between
EI and EE of 3.3 + 1.8mm. Regarding that besides the calculated scaling factor
A no patient—specific motion information is used for the model-based prediction
and that the intra—patient registration as well as the atlas—patient registration
is error prone, we think this is a promising result. Thus we believe that a sta-
tistical respiratory motion model has the capability of providing valuable prior
knowledge in many fields of applications.

Since the statistical model represents intact respiratory dynamics, it was
shown that the prediction precision is significantly lower for lungs affected by
large tumours or lung disorders (4.242.2mm). These results indicate (at least for
the 10 lung tumor patients considered) that large tumors considerably influence
respiratory lung dynamics. This finding is in agreement with Plathow et al. [18].
In addition, we applied the 4D-MMM to predict patient—specific tumor motion.
No correlation between prediction accuracy and tumor size or tumor motion
amplitude could be detected (at least for our test data sets). We observed that
tumors adhering to non—-lung structures degrade local lung dynamics significantly
and model-based prediction accuracy is decreased for these cases.

To conclude this paper, we present two examples of possible applications of
the statistical respiratory motion model.

Application examples: The capability of the 4D-MMM to predict tumor motion
for radiotherapy planning is exemplarily illustrated for patient 01. This patient
has a small tumor not adherent to another structure, and a therapeutically
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(a)

Fig. 3. (a) Visualization of the internal target volume (ITV) of patient 01 in a coronal
CT slice. The ITV was calculated from expert-defined tumor segmentations (yellow
contour) and from tumor positions predicted by the average motion model (red con-
tour). (b) Visualization of the difference between lung motion estimated by patient—
specific registration and lung motion predicted by the 4D-MMM for patient 09. The
left lung shows intact lung motion; dynamics of the right lung are impaired by the
large tumor. The contour of the tumor is shown in black.

relevant tumor motion of 12.2mm. An important measure for planning in 3D
conformal radiotherapy is the internal target volume (ITV), which contains the
complete range of motion of the tumour. For this patient, the ITV is calculated
first from expert-defined tumor segmentations in the images acquired at EI, EE,
ME and MI. In a second step, the expert segmentation in EI is warped to EE,
ME and MI using the 4D-MMM and the ITV is calculated based on the warped
results. The outlines of both ITVs are shown in Fig. 3(a).

A second example demonstrates that the 4D-MMM could be helpful from
the perspective of image-guided diagnosis. Here, the motion pattern of individual
patients are compared to a “normal” motion, represented by the 4AD-MMM. To
visualize the influence of a large tumor to the respiratory motion, the difference
between the individual motion field computed by intra—patient registration and
the motion field predicted by the 4dD-MMM is shown in Fig. 3(b). The left
lung shows differences of only about 3mm, whereas the large differences to the
intact lung motion indicate that the respiratory dynamics of the right lung are
influenced by the large tumor.

Currently, the statistical motion model represents the average motion in the
training population. A main focus of our future work is to include the variability
of the motion into the model. Here, the Log—Euclidean framework provides a
suitable technique for more detailed inter—patient statistics.
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Abstract. Feature-based registration methods offer a robust alternative
to intensity-based methods when intensities change because of pathology,
image artifacts or differences in acquisition. For registration of lung CT
images, we propose to use distinctive anatomical structures, such as the
pulmonary vessel tree centerlines and lung surfaces, to establish corre-
spondences between pairs of scans. In this respect, we develop and eval-
uate a curve- and surface-based registration method using currents. This
method does not require point correspondence between structures. We
conducted experiments on five pairs of images, where each pair consists
of image volumes extracted at the end inhale and end exhale phases of a
4D-CT scan. To evaluate the registration, we used a set of 300 anatomi-
cal landmarks marked on each image pair. Using both vessel centerlines
curves and lung surfaces yields better alignment (median error of 1.85
mm) than using only curves (2.37 mm) or surfaces (3.53 mm). The com-
bined method achieves overall registration accuracy comparable to that
of intensity-based registration, whereas the errors are made in different
locations. This suggests that low dimensional geometrical features cap-
ture sufficient information to drive a reliable registration, while results
can still be improved by combining intensity and feature based registra-
tion approaches into one framework.

1 Introduction

Registration of chest CT scans is an important subject within pulmonary image
analysis. The general task of registration is to establish a point-to-point cor-
respondence between two images. Registration of lung CT images can be used
in various clinical applications, such as lung cancer radiotherapy planning and
quantitative analysis of disease progression.

Image registration methods can be separated into two general groups: intensity-
based and feature-based methods. Intensity-based methods integrate spatial in-
formation over the entire image domain, whereas feature-based methods require
a representation of the image data in terms of distinctive geometrical structures.
Feature-based methods offer more robust registration when image intensity is



-16- SECOND INTERNATIONAL WORKSHOP ON PULMONARY IMAGE ANALYSIS

changed, owning to for instance pathology, image artifacts or differences in scan
protocol. Generally, segmentation of geometrical structures in lungs is less sen-
sitive to intensity changes, since the method incorporates geometrical regularity
constraints or prior anatomical knowledge. Moreover, segmentation of distinctive
lung structures may be either corrected manually or delineated by a professional.

The most distinctive anatomical structures in lung CT images are vessels,
airways, lobe fissures and lung surfaces. Lungs surface and lobe fissures define
large-scale deformations of the lungs and provide an insight into the global mo-
tion of the lungs, while small-scale deformations are influenced by vessels and
airway tree motion.

Feature-based registration relies on various geometrical structures, e.g., points,
curves or surfaces. Thin-plate spline image registration [1-3] is the standard
method for matching points under the assumption that deformations are small.
For large deformations, a diffeomorphic point matching approach was developed
by Joshi and Miller [4] and was later adapted for surface matching [5]. Current-
based diffeomorphic method for surface matching under the large deformations,
pioneered by Glaunes et. al. [5], was further developed and adapted for curve
matching problem [6,7]. Within a framework of currents, no point correspon-
dence between structures is required.

Several surface-based registration methods were previously developed for
lung CT images [8-10]. The outer surface of the lungs together with the outer
surface of vessels were used in an algorithm similar to iterative closest point
methods in [8]. Lung surface was used to register CT lung images [10] and to con-
strain intensity-based registration with a deformation field obtained from surface
matching procedure [9]. The two main advantages of the feature-based registra-
tion of lung CT images via currents are: no point correspondence is required
and unified representation of curves and surfaces. The low dimensional geomet-
rical features, such as curves and surfaces contain much fewer points compared
to dense intensity images, thus feature-based registration can be more efficient.
Moreover, in the framework of currents, dimensionality of image features may
be reduced even more without decreasing registration accuracy [11].

In this paper we apply the current-based registration method, pioneered by
Glaunes et. al. [5] and further propagated by Durrleman [7,12], to three feature
sets: vessel centerlines, lung surface and combined set of centerlines and surface.
We evaluated the registration methods on a set of 5 pairs of end exhalation and
end inhalation phases of 4D-CT images with ground truth landmarks.

2 Registration via Currents

2.1 Representation of curves and surfaces

In the framework of currents [5,6,12], geometrical shapes such as curves and
surfaces are represented with a set of vectors. A current is encoded with a finite
set of vectors attached to the specified positions. A curve C(z) can be defined
with its tangent vector 7(x) at each position z. In a discrete setting, curve is
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considered as a set of piece-wise linear segments where each segment is repre-
sented by its center point, tangential direction, and segment length. Similarly, a
surface S(x), with a given mesh, is represented with the normal direction n(z),
face center x and area. Both surfaces and curves are thus encoded into currents
as a set of vectors. Geometrical shape in the framework of currents is defined in
a weak form, as the action of the shape on a test vector field w from a space
of possible vector fields W. The current of a curve C'(w) is defined by the path
integral along the curve through the test vector field w,

C(w):/cw(x)r(x)dac. (1)

And the current of a surface S(w) is defined by the flux of the vector field w
trough the surface,

S(w):/sw(:c)n(x)d:v. (2)

The space W of test vector fields is a space of square integrable vector fields
convolved with a Gaussian kernel with standard deviation oy, [12,6]. The norm
of the current, u(C), is defined in the dual space W*, as the maximum action of
the current among all possible test vector fields ||u(C)|lw = sup), |, <1 C(w).

2.2 Lung structures as currents

In this paper we used distinctive anatomical lung structures such as vessels and
lung surface as features for registration. Fig. 1(a) shows an example of segmented
lung structures. The lung fields and vessels are segmented with the algorithm
described in [14]. A sparse triangulation of the lung surface was computed via
the marching cube algorithm [15]. For each face, the corresponding normals
were computed and oriented to point outwards of the surface. Fig. 1(b) shows
an example of the constructed current for a lung surface.

Vessel tree was segmented as follows: lung image was thresholded with a
fixed intensity value t, = —600HU, then a local analysis of Hessian matrix was
performed in order to remove non-tube like structures. Large vessels segmented
near the hilum area were omitted from the vessel tree segmentation. For more
details on vessels segmentation algorithm we refer the reader to [14]. Centerlines
were extracted from the segmented vessel tree using a 3D thinning algorithm
[16].

The tangential direction of a centerline was computed via local principal com-
ponent analysis. For each centerline point we extracted neighboring centerline
points, applied PCA to the point cloud, and assigned the first principal compo-
nent to the tangential direction at the centerline. For centerlines sufficiently far
from vessel bifurcation and neighboring vessel, the principal direction points to
a tangential direction of the centerline. For centerlines close to the bifurcation
the principal direction points between the two splitting vessel centerlines. This
is consistent with the framework of currents, were the action of each vessel di-
rection results in a joint action at the bifurcation point. The orientation for the
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(c) Current corresponding to a vessel tree centerlines.

Fig. 1. Example of segmented lungs surface and vessel tree 1(a); triangulation
of the lungs surface (black mesh) with the corresponding current (red vectors)
1(b); current corresponding to the vessel tree centerlines (red vectors) with a
zoom-in 1(c).

positive direction was set to point outwards from the center of the image. Fig.
1(c) shows an example of the constructed current for a segmented vessel tree
and a zoom-in into a bottom part of the image.

2.3 Current-based Image Registration

In this paper, we combine the previous work on matching curves [6] and sur-
faces [5] via currents. The similarity measure between two curves C'f, C,, or
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two surfaces Sy, S, is defined as the squared norm of the difference in p for
corresponding currents with respect to the test vector field w € W:

E(Cy; C) = |[1(Cy) = (& (Cra)) iy (3)
for fixed and moving curves C'y and C,, respectively. And
E(S5;8m) = |n(Sy) — m(¢(Sm))lliv- (4)

for fixed and moving surfaces Sy and S,, respectively, where ¢ is a diffeomorphic
transform function. Combining two similarity terms for curves (3), surfaces (4)
and a regularisation term with trade-off coefficients vy¢,vs,74 in a final cost
function gives:

E(Cf,8;Cm, Sm) = vcl|(Cr) = w(d(Co)) iy + vsll1(Sy) — p((Sm)) 13y
+ Yo Reg(®). (5)

Diffeomorphic transformation ¢ of curves and surfaces was modeled in the frame-
work of large deformation diffeomorphic matching [4, 6], where deformation of
each feature is defined by a velocity vector field v; = ¢}. The smooth velocity
field v; is described via Gaussian kernel with standard deviation oy, where oy
determines the typical scale of the deformations [12, 6]. To guarantee smoothness
of the final diffeomorphism, we defined the regularisation term as in [12],

Reg(¢) = / o2 dt. (6)

3 Experiments

In order to quantify the accuracy of the proposed registration method with a
ground truth, we used images from a publicly available dataset [13]. For each
image pair, 300 manually placed corresponding landmarks were provided [13].
Five pairs of images, where each pair consists of images extracted at end exhale
and end inhale phases of 4D CT image, were used in our experiments. In-plane
resolution of the images varied from 0.97 x 0.97 mm to 1.16 x 1.16 mm and slice
thickness was 2.5 mm.

3.1 Parameter Settings

Vessel tree were segmented using the algorithm as in [14] with the intensity
threshold —600 HU, ratio of Hessian eigenvalues was set to m; = 0.75, mo = 0.5.
For every centerline point we extracted a neighboring centerline points from the
cube neighborhood of 7 x 7 x 7 voxels size and computed the principal direction
of the centerlines. All the direction vectors were normalized to 1. Fig. 1(c) shows
an example of the extracted currents for vessel centerlines with a zoom-in to a
lower part of the lungs. A regular surface triangulation was constructed with a
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marching cube algorithm with further simplification of the mesh [15]. Normal
directions to each of the face were normalized to 1.

In our experiments, end inhale phase of 4D-CT image was registered to end
exhale phase. The following internal parameters of image registration were se-
lected manually. The accuracy of feature alignment oy was set to 5 mm for
curves and 10 mm for surface features. The spatial variability of deformation
velocity field oy was set to 25 mm for both types of features. The weight coef-
ficients in the cost function (5) were set to yo = 1 for the curve matching term,
vs = 0.01 for the surface matching term and v, = 10~ for the regularizer. The
cost function was minimized with a standard gradient descent approach.

3.2 Results

We evaluated four registration methods, as follows: combined curve- and surface-
based registration with cost function (5); curve-based registration with cost func-
tion (3); surface-based registration with cost function (4); and a free-form B-
Spline intensity-based method as in [17]. We compared registration accuracy of
the four methods based on the alignment of 300 landmarks distributed uniformly
in lung area, Fig. 2(b) shows an example of the spatial distribution of landmarks
within the lungs.

The overall accuracy of the image registration methods was defined as the
mean Euclidean distance between landmarks, target registration error (TRE), in
millimeters. The mean and the standard deviation of TRE for the four methods is
reported in Table 1. We performed Wilcoxon rank-sum test on TRE distribution
to compare the combined curve- and surface-based registration with the curve-
based and surface-based methods individually. Results are reported in the Table
1. Box-plots in Fig. 2(a) show the overall accuracy of the four image registration
methods on a complete set of landmarks over all five cases.

Correlation between TRE for the intensity-based and combined curve- and
surface-based registration was p = 0.5, varying from 0.17 — 0.59 for the five
cases. Overall, for 35.5% cases of landmarks the combined curve- and surface-
based registration method performed better than intensity-based method.

4 Discussion

Fig. 2(a) shows that the curve-based method alone provides good registration
accuracy for the majority of landmarks. However, there are many outliers present
with errors of up to 2.5 cm. Within the framework of currents, points located fur-
ther than the typical scale of deformations oy are not affected by deformations
of the features, which might cause landmarks distant to the vessel centerlines to
be misaligned. Surface-based registration result in a slight overall improvement
in TRE compare to the initial configuration. In contrast, incorporating both
surfaces and curves into feature-based registration results in more accurate reg-
istration (1.85 mm) compared to both curve-based (2.37 mm) and surface-based
(3.53 mm) methods.
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Table 1. Registration error at the landmark positions in [mm] for the four reg-
istration methods. The mean (m) and the standard deviation (sd) are reported.
Statistical comparison of combined curve- and surface-based registration method
was performed against the surface-based and curve-based methods. The nota-
tions of statistical significance level are as follows: * corresponds to p < 0.05 and
"5 to p > 0.05. The most right column indicates percentage of landmarks where
the combined curve- and surface-based registration outperforms the intensity-
based registration.

Image Registration Accuracy in mm [m + sd]
N Before Combined Surface Curve Intensity %
1 3.89+278 1.474+0.72 2454+1.56" 2.24+1.41* 1.23+0.61 37.7
2 434+£390 2194198 3.63+£2.94* 2.324+2.06"° 1.26 + 0.67 39.0
3 6.944+4.05 3.30£3.05 5.31+3.26" 3.03+2.79" 1.86 £ 1.11 25.0
4 983+486 3.34+£2.67 5.98£3.74" 528 £4.52" 2.15+1.48 36.0
5 748 4+5.51 3.83+£3.54 5.80+4.37 4.40 4+ 4.42* 2.32 £+ 1.82 40.0
All 5 cases
6.50 £4.83 2.834+2.72 4.63 £ 3.58* 3.45+£3.48" 1.76 £1.31 35.5
median  5.13 1.85 3.53 2.37 1.44

The median of TRE for the combined curve- and surface-based registration
was 1.85 mm compared to 1.44 mm for the intensity-based method. Several rea-
sons may lead to larger TRE for the combined curve- and surface-based method,
such as inconsistency in segmentations of vessels in the two images. Ambiguous
segmentation of lung surface near the hilum may leads to large missregistration
errors in this area. Fig. 3(b) shows a difficult case in the data with irregular
centerlines in the back of the lungs. Registration of lung images based on such
geometrical structures as vessels centerlines and lung surfaces can be naturally
improved by including airways and lung fissures into the presented framework.

In order to understand where are the main differences between the feature-
based and intensity-based method, we visualized discrepancy between the two
deformation fields in Fig. 3(a). For illustration purpose, we sparsely selected
points where the orientation between deformation vectors were above 60° and
with the magnitude of discrepancy vectors more than 3 mm and plotted inside
the lung area. Interestingly, the discrepancy between the feature- and intensity-
based methods were localized.

We further investigate image slices located at the areas where the discrepancy
between the two methods was largest (blue cut planes in Fig. 3(a)). Fig. 4 shows
the difference image with the moving image subtracted from the fixed image for
both registration methods. Overall, lung surfaces and small vessels were aligned
more accurately with the feature-based registration method.
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(a) Box-plot of target registration errors. (b) Distribution of landmarks.

Fig. 2. Target registration errors (TRE) is shown in 2(a), as follows, before
registration was applied (Initial), after surface-based (Suface), after curve-
based (Curve), after combined curve- and surface-based (Combined) and after
intensity-based registration (Intensity). Example 2(b) shows the spatial distribu-
tion of landmarks in the lungs. The landmarks, better aligned with the combined
feature-based method are shown in red and with the intensity-based method in
blue.

Another important component of currents is the length or the weight of the
direction vector. For the task of registration of repeated lung CT images, the
current for a small vessel could be given more weight than for a large vessel,
leading to more accurate registration of small vessels. This is an important ad-
vantage of current-based registration over intensity-based method where small
vessels with low contrast to surrounding lung tissue have negligible impact on
the overall cost function. In this paper we used equal weights for all currents
and normalized the length to 1.

On average, 35.5% of landmarks were aligned better with the curve- and
surface-based registration. The low correlation coefficient (0.5) suggests that the
two registration methods align landmarks differently and may be combined into
a more robust registration method.

5 Conclusion

In this paper, a curve- and surface-based registration method is presented, where
lung surface and vessel tree centerlines are built-in into the framework of current-
based registration. Incorporating both centerlines and surfaces results in more
accurate registration than curve- or surface-based registration method alone.
The proposed combined curve- and surface-based registration method achieves
slightly lower accuracy than intensity-based registration but for 35.5% of land-
marks outperformed the intensity-based method. A natural extension of the
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Fig. 3. (a) An example of discrepancy in deformation fields between the feature-
based and intensity-based registration methods. (b) An example of an ambigious
current for the back of the lung.

presented work will be incorporating more anatomical lung structures, such as
airways and fissures, to improve the feature-based method.

Results show that the proposed feature-based registration method is robust
to inconsistent segmentation and outliers in segmented features and capable of
handling imperfect segmentations. In applications where importance of different
features varies, the prior weight of a feature may be encoded into the presented
registration framework. Results suggest that a natural improvement of registra-
tion would be obtained by combining the feature- and intensity-based methods.
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Abstract. Automated lung segmentation in multidetector computed to-
mography data is a first processing step in computer-aided quantitative
assessment of lung disease. Robust segmentation of diseased lungs is a
non-trivial problem which is unsolved up to now. Consequently, lung seg-
mentation results need to be manually verified, which is time-consuming
and costly. We propose a novel algorithm for detecting gross abnor-
mal lung segmentations based on a fast 3D shape retrieval approach.
First, the segmentation result to verify is used to query a 3D lung shape
database containing normal lung shapes. Second, the 3D shape dissimi-
larity between query and retrieved shape is utilized to assess the abnor-
mality of the segmentation. Our method represents a first step toward
the development of a quality assessment system for lung segmentations.

Key words: Segmentation abnormality detection, shape retrieval, shape
context, lung segmentation

1 Introduction

Lung diseases like cancer, chronic obstructive pulmonary disease (COPD) or
pneumonia are a major health proble