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Abstract. Several image metrics have been proposed for pulmonary
assessment via thoracic high-resolution computed tomography (HRCT)
for various pathologies. This paper describes a systematic analysis of the
utility of such metrics for characterizing interstitial lung disease (ILD)
and chronic obstructive pulmonary disease (COPD), in comparison to
data from pulmonary function testing (PFT). HRCT inspiratory and
expiratory images for 14 patients with ILD and 11 patients with COPD
were acquired retrospectively. PFT values were also acquired retrospec-
tively for each patient. Using a statistical feature selection scheme, our
study demonstrates that the quantitative image features perform quite
well in comparison with the clinically-used PFT values. In the first 25 se-
lected features out of the total 114 mixed image metrics and PFT values,
21 are from the image metrics. The classification using mixed selected
image features and PFT values outperforms using PFT values alone.
Our study also shows that these image metrics are not redundant with
respect to the PFT values for characterization of ILD and COPD.

1 Introduction

Chronic lung disease constitutes a major worldwide public health care problem
and is the fourth leading cause of morbidity and mortality in the United States.
Based on clinical, imaging and pathological characteristics, most can be grouped
within two basic categories: interstitial lung disease (ILD) and chronic obstruc-
tive pulmonary disease (COPD). ILD is a heterogeneous group of diseases in
which the hallmark is chronic, progressive, predominantly interstitial inflamma-
tion with varying degrees of fibrosis of the lung parenchyma, eventually leading
to reduced lung volume, decreased lung compliance and restrictive physiology.
COPD is characterized by chronic airflow limitation due to small airway dis-
ease and parenchymal destruction which is not fully reversible and is usually
progressive.

The diagnosis, differentiation, and classification of the severity of ILD and
COPD rely on clinical assessment, thoracic imaging (using CT and chest radiog-
raphy), and pulmonary function testing (PFT). PFT is a noninvasive method of
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assessing the integrated mechanical function of the lung, chest wall and respira-
tory muscles. It currently comprises the gold standard for pulmonary assessment.
Using PFT, the heterogeneous group of ILD typically exhibits a restrictive phys-
iology pattern whereas COPD manifests as an obstructive physiology pattern.

PFT strictly permits a global assessment of lung functionality. In contrast,
HRCT image analysis is a powerful tool with the potential for regional as well as
global quantitation of pulmonary diseases. Although generally effective, radio-
logic interpretation of HRCT is time-consuming, largely qualitative, and prone to
diagnostic variability. As a result, various CT image metrics have been proposed
towards a more consistent and facilitated assessment. Early investigations into
CT lung analysis employed relatively simple metrics, such as the mean attenu-
ation value and other such first-order statistical measurements obtainable from
the attenuation histogram [1–3]. More sophisticated metrics relying on texture
descriptions of the parenchyma have shown promise in recent studies [4].

PFT values are used clinically to diagnose ILD and COPD. With the increas-
ing amount of proposed image metrics, research inquiry concerns the effectiveness
of these metrics compared with the gold standard PFT values. Previous research
([5–9]) investigated the correlation between various quantitative image metrics
with different PFT values.

Instead of a correlation study, this paper addresses the question more from
the view of feature selection. We put more emphasis on what image metrics and
what PFT values can characterize ILD and COPD in a quantitative framework.
Image metrics and PFT values are viewed as candidates for selecting which best
characterize the corresponding diagnosis (i.e. ILD or COPD in this paper). We
are interested in whether and what features from image metrics have additional
information for diagnosis when PFT values are provided. This also differs from
the classification work of [4] that we do not tend to train any classifiers directly.
The selected features can be used as inputs for any available classifier. We use
Support Vector Machine (SVM, [10]) as an example to test the efficiency of the
feature selection results.

A minimal-redundancy-maximal-relevance (mRMR) information framework
was introduced in [11] for such a feature selection task. The ideal selected fea-
tures satisfy two constraints: maximal relevance and minimal redundancy. The
relevance of both image and PFT features concerns the ability of such features
in matching an existing classification (in our case, from clinical diagnosis). It is
usually computed in terms of mutual information, correlation, or statistical tests.
However, in order to get a compact subset of features to classify different types
of disease, it is not enough to consider only the features with highest relevance.
The selected features need to be as independent to each other as possible. This
is known as the criterion of minimal redundancy.

In this manuscript, we provide a systematic relevancy/redundancy analysis
comparing 31 various statistical image metrics and 21 PFT values obtained in
patients with diagnosed ILD and COPD. The analysis framework is described in
Section 2. In Section 3, we provide the results of our analysis in comparing the
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characterization performance of both image and PFT features. This is followed
by discussion of the results.

2 Materials and Methods

14 patients with ILD and 11 patients with COPD were retrospectively identified.
Every patient underwent both thoracic HRCT image acquisition and PFT within
3 days of each other. HRCT was performed for both inspiration and expiration
on a 64 multidetector row CT scanner (Siemens Medical Solutions) with recon-
struction of contiguous 1 mm axial images with a B41f kernel. Inspiratory and
expiratory image datasets were then analyzed through a computational software
developed in our laboratory which is capable of generating several hundred dis-
tinct metrics encompassing various aspects of lung physiology (e.g. pulmonary
volumetric and gross tissue indices, attenuation histogram statistics, deforma-
tion indices, co-occurrence [12] and run-length [13] matrix texture indices, and
attenuation mask indices), gleaned from the relevant literature. For this study,
we only focused on a portion of these metrics .

Our whole pipeline (Fig. 1) is fully automatic. First, a segmentation algo-
rithm [14] is applied to extract lung regions and segment the trachea from CT
images. Next. we compute 31 different types of image metrics (Table.2, gleaned
from the relevant literature) on the expiratory and inspiratory image datasets
separately. We also subtract expiratory metrics from their inspiratory counter-
parts to obtain additional 31 metrics. This translates into a total of 93 image
metrics for each patient. We then compute the relevance of each PFT value and
each image metric to the corresponding disease type. The criteria of mRMR [11]
is applied to select a mixed subset of PFT values and image metrics to show the
degree of redundancy between them. Finally, we train SVM classifiers using the
selected feature set to test the accuracy of ILD/COPD classification.

2.1 PFT Parameters and Image Metrics

Table 1 lists all the 21 PFT values used in the study. These parameters were
either directly obtained or calculated for each patient, using standard protocols
following guidelines of the American Thoracic Society. As mentioned previously,
93 image metrics (shown in Table 2) were generated for each patient. We use

Fig. 1. Pipeline of the proposed feature selection analysis.
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PFT FVC FEV1 FEV1
/FVC

FEF
max

FEF 25-
75%

FEF50 FIF50 MVV SVC IC ERV

Rel 0.088 0.026 0.47 0.357 0.218 0.307 0.021 0.251 0.197 0.083 0.146

PFT TGV RV
(Pleth)

TLC
(Pleth)

RV
/TLC

DLCO
unc

DLCO
cor

DL/VA VA Raw sGaw

Rel 0.268 0.268 0.35 0.218 0.041 0.15 0.066 0.269 0.101 0.074

Table 1. All 21 PFT values (1st and 3rd rows) and corresponding relevance values
(2nd and 4th rows) to the disease types.

G1 to denote the 31 features from each of the expiratory image, G2 for the
inspiratory images and G3 for the difference of the expiratory/inspiratory metric
pairs. This subset of image metrics includes those first-order statistical measures
generated from the attenuation histogram. It also includes more sophisticated
second-order statistical quantities related to the texture of lung parenchyma, i.e.
the co-occurrence [12] and run-length [13] matrix texture indices.

2.2 Feature Selection

The primary motivation for this study is to determine how image metrics perform
relative to PFT values in matching clinical diagnosis of ILD and COPD. We
also select an optimal subset of mixed image metrics and PFT values under the
principle of minimal redundancy and maximal relevance.

In accordance with the specifications of the algorithm in [11], each of the
N = 25 patients is given a label c based on the clinical diagnosis, either ILD
or COPD. Such a disease type c is a random variable. Also each patient has a
set of J = 93 computed image metrics X = {x1, . . . , xJ} and a set of K = 21
measured PFT values Y = {y1, . . . , yK}. Let the mixed feature set Z = X ∪ Y .
Each element zi ∈ Z is also viewed as a random variable. [11] proposed to
use mutual information to measure the relevance between zi and c: I(zi, c) =∫∫

p(zi, c) log
p(zi, c)

p(zi)p(c)
dzidc. The mRMR framework in [11] selects a subset of

S from Z such that:

S = arg max
S⊆Z

∑
zi∈S

I(zi, c) −
1

‖S‖
∑

zi,zj∈S

I(zi, zj)

 (1)

The first term in Equ. 1 maximizes the total relevance of the selected fea-
tures with the corresponding disease types; the second term minimizes the total
redundancy of all pairs of the selected features. The framework in [11] gives a
heuristic way to optimize Equ.1. We use the online toolbox [18] to compute the
relevance weights and select features.

Given the diagnosis c, we analyze the relevance of each feature, which indi-
cates its individual characterization power. Then we use mRMR to select the
subset of the first 25 features. If the subset includes only PFT values, this in-
dicates that image metrics are redundant for differentiating ILD and COPD;
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No. Metrics Type G1 G2 G3

A
tt

en
u
a
ti

o
n

H
is

to
g
ra

m
In

d
ic

es 1 lung region volume [15][5] 0.325 0.276 0.073
2 relative volume<−910 [5] 0.439 0.454 0.071
3 attenuation mean [2, 3] 0.416 0.407 0.181
4 attenuation variance [16] 0.171 0.197 0.181
5 sum [2] 0.295 0.353 0.005
6 attenuation skewness [4] 0.276 0.159 0.026
7 attenuation kurtosis [4] 0.392 0.201 0.079
8 attenuation grey level entropy [4] 0.021 0.121 0.005
9 5% attenuation value [1] 0.47 0.527 0.353
10 95% attenuation value [1] 0.463 0.22 0.006
11 5% attenuation mean [1] 0.488 0.416 0.036
12 95% attenuation mean [1] 0.055 0.065 0.071

C
o
-o

cc
u
rr

en
ce

M
a
tr

ix
In

d
ic

es

13 energy [4, 12] 0.019 0.05 0.05
14 entropy [4, 12] 0.159 0.215 0.159
15 correlation [4, 12] 0.003 0.001 0.002
16 inverse difference moment [4, 12] 0.021 0.121 0.025
17 inertia [12] 0.003 0.022 0.005
18 cluster shade [12] 0.083 0.021 0.074
19 cluster prominence [12] 0.113 0.074 0.104
20 Haralick’s correlation [12] 0.034 0.034 0.001

R
u
n
-l
en

g
th

M
a
tr

ix
In

d
ic

es

21 short run emphasis [4] 0.049 0.002 0.002
22 long run emphasis [4] 0.074 0.002 0.002
23 grey level non-uniformity [4] 0.243 0.316 0.007
24 run-length non-uniformity [4] 0.325 0.353 0.006
25 run percentage [4] 0.157 0.101 0.101
26 low grey level run emphasis [17] 0.285 0.157 0.113
27 high grey level run emphasis [17] 0.005 0.114 0.005
28 short run low grey level emphasis [13] 0.285 0.157 0.058
29 short run high grey level emphasis [13] 0.005 0.114 0.005
30 long run low grey level emphasis [13] 0.285 0.157 0.113
31 long run high grey level emphasis [13] 0.005 0.114 0.005

Table 2. Computed image metrics and their relevance to the disease types. G1 denotes
the metrics computed from the expiratory images; G2 from the inspiratory images.
Metrics of G3 are generated by subtracting G1 from G2 . Within each of G1/G2/G3,
the metrics are indexed from 1 to 31. The numbers in last three columns are the
relevance values to the disease types of ILD and COPD.

otherwise, it indicates that image metrics have extra information that PFT val-
ues do not have for differentiating ILD and COPD.

2.3 Classification with SVMs

The last step in our analysis pipeline is to use the selected features to train
classifiers to classify ILD and COPD . An efficient feature selection scheme should
achieve low classification error rate with minimal number of features. We are
going to study the relationship between classification error and the number of
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the selected features. Also we are going to compare adding image metrics to
PFT values as additional features to classification using PFT values only.

We use Support Vector Machines (SVM)[10] as classifiers in this paper. SVMs
have been used widely for feature classification tasks. SVM classifies data by
maximizing the margins between hyperplanes that separates data points of two
classes. By choosing different kernels ([19]), data points are implicitly mapped to
different higher dimensional spaces and thus better classification can be achieved.
More discussion about SVMs can be found in [19].

The experiments here use SVM with Gaussian kernels to compare the selected
features. We also test the linear kernel to understand whether the performance
improvement is from the choice of nonlinear kernel or from the more efficient
features.

3 Results

We first compare the relevance of each feature to the diagnosis of diseases. Fig. 2
graphically depicts the relevance weights of all the image metrics. The relevance
weights of PFT values are plotted in Fig. 3 as a comparison. For example, the
ratio of the forced expiratory volume in 1 second to the forced vital capacity
(FEV1/FVC ) has a high relevance value (0.47), as it is a meaningful clinical
indication.

The relevance values from image metrics and PFT values are in a similar
range. The top PFT parameter, FEV1/FVC, is 0.47; the top image metric, 5%
attenuation value from the inspiratory images, is 0.52. This shows that some
image metrics are as good indicators as PFT values for characterization of ILD
and COPD. It also shows in Fig. 2 that the metrics computed from expiratory
images (G1 :the red bars) are similar to the metrics from inspiratory images (G2 :
the blue bars). Their relevance values have a high correlation of 0.84.

We use mRMR to select a subset of 250 features. As discussed before, a high
relevance does not suffice for a feature to be selected. It also requires a selected
feature to have low redundancy with respect to other features in the subset. In

0 5 10 15 20 25 30
0

0.2

0.4

Image Metrics Index

R
el

ev
an

ce

 

 

G1: exp

G2: insp

G3: insp−exp

Fig. 2. Relevance (mutual information) of image metrics to different disease types. The
x axis has the image metrics index listed in Table 2. Red bars are for metrics from G1,
the expiratory images; blue bars for G2, the inspiratory images; and green bars for G3,
difference of G1 to G2.

-98- Second International Workshop on 
Pulmonary Image Processing



0

0.2

0.4

R
el

ev
an

ce

FVC
FEV1

FEV1/F
VC

FEF m
ax

FEF25
−7

5%

FEF50
FIF

50
MVV

SVC IC
ERV

TGV

RV (P
let

h)

TLC
 (P

let
h)

RV/T
LC

DLC
Oun

c

DLC
Oco

r

DL/V
A VA

Raw
sG

aw
 

 

PFT relevance

Fig. 3. Relevance (mutual information) of PFT values to different disease types. The x
axis lists all the 21 PFT values in Table 1. Note that the range of the y axis is similar
to the range from those image metrics in Fig. 2.

other words, a selected feature will provide additional information supporting
the diagnosis that is missing from other features.

Rank Feature

1 G2 :5% attenuation value
2 G1 :kurtosis
3 VA
4 G1 :low grey level run emphasis
5 G2 :run length nonuniformity
6 G1 :5% attenuation mean
7 FEF max
8 G1 :95% attenuation value
9 G1 :cluster prominence
10 G1 :emphysema relative ratio
11 G1 :volume
12 G2 :grey level nonuniformity
13 FEV1/FVC

Rank Feature

14 G3 :entropy
15 G1 :short run low grey level emphasis
16 G3 :sigma
17 G2 :mean
18 TLC (pleth)
19 G2 :short run low grey level emphasis
20 G2 :sum
21 G2 :5% attenuation mean
22 G3 :relative volume<−910

23 G2 :relative volume<−910

24 G3 :cluster prominence
25 G1 :long run low grey level emphasis

Table 3. The first 25 selected features from mRMR [11]. Note these features
include both PFT values and image metrics. The image metrics includes both the
first order statistical measurements obtainable from the attenuation histogram
and other more sophisticated metrics of texture descriptions.

Table 3 lists all the 25 selected features using mRMR. Both PFT values
and image metrics are selected. This indicates that image metrics provide extra
information for differentiation of ILD and COPD, comparing with using only
PFT values. Also image features computed both from the first-order statistical
measurements (like the attenuation value) and from the texture descriptions
(like the grey level run emphasis and the cluster prominence) are selected in the
same subset. This also suggests that both types of image features are valuable
for diagnosis. Out of these 25 features, 20 features statistically differ in ILD from
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COPD groups using an unpaired t-test (null hypothesis rejected at 2% level),
which means that statistical significance exists on our relatively small datasets.

In comparison to feature selection using mRMR, the baseline used in the
paper is to rank features by their relevance values (i.e. I(zi, c) in Equ.1) and
such a criterion is denoted as MaxRel as in [11]. In this paper, we use SVMs
as classifiers to compare the efficiency of the first n = 1 to 25 features ranked
by mRMR and MaxRel by increasing the size (n) of the selected feature set. In
each test, one subject is excluded when training SVMs and that subject is used
as the test set. The error rates are computed as the average ratio of wrongly
classified subject by repeating using each of the patients as the test subject.
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(a) SVM with Gaussian kernel
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(b) SVM with linear kernel

Fig. 4. Classifying ILD and COPD using the first n = 1 to 25 selected features with
(a) SVM with Guassian kernel and (b) SVM with linear kernel, using MaxRel, mRMR
and mRMR with only PFT values. For each curve, the x axis is the number of features;
the y axis is the error rate. One subject is excluded when learning SVM parameters
and that subject is used to test the accuracy of the learned SVM.

We test two SVM models with different kernels. The first is SVM with Gaus-
sian kernel, which is a popular choice for general classification tasks [19]. Features
are normalized by dividing them by the maximum the absolute values. To fur-
ther investigate the efficiency of the selected features and isolate the influence
of choice of kernels, we also test SVM with the most simple linear kernel. As
shown in both Fig. 4 (a) and (b), mRMR (red curves with crosses) reaches low
error rate using 9 features in comparison to MaxRel using 15 (SVM with Gaus-
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sian kernel) or 16 (SVM with linear kernel). This shows the efficiency of mRMR
framework.

To further demonstrate that image features are not redundant to the PFT
values, we apply mRMR only on the subset of 21 PFT values and have a similar
experiment by computing error rates with increasing selected feature set size.
The performance is shown as “mRMR - PFT only” (the blue curves with stars) in
Fig. 4. Although PFT values have similar error curves using SVM with Gaussian
kernels (Fig. 4 (a), it is inferior using linear kernels (Fig. 4). This can be explained
as the selected image features are able to compensate the inefficiency of PFT
features.

4 Conclusions

Various image metrics have been proposed and used in the literature to dif-
ferentiate ILD and COPD. In this paper we studied their relevance values to
the corresponding diagnoses in comparison with PFT values. Using a minimal-
redundancy-maximal-relevance (mRMR) framework, we further looked into the
redundancy between image metrics and PFT values. The result shows that not
only some image metrics have similar relevance values compared with PFT, but
also image metrics are not redundant when PFT values are provided. Image
metrics of the first order statistics from the attenuation histogram and of more
sophisticated texture descriptions are both selected, which again suggests that
these two types of image metrics are both valuable for a further investigation.
We finally gave a selected optimal subset of 25 features for characterization of
ILD and COPD, including both image metrics and PFT values.

It should be noted that we did not go far enough in achieving an automoated
diagnosis of ILD and COPD system in this paper. Although certainly plausible
in the future, such an automated diagnosis system, however, is premature at
this point and not what we intended to develop in this paper. Rather, the focus
of this paper is the demonstration that various image metrics are capable of
providing significant information in characterizing clinical diagnosis compared
to the gold standard of PFT values for ILD and COPD pathologies.
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