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Abstract. Chronic Obstructive Pulmonary Disorder (COPD) is a con-
dition with 4 classes of severity, characterised by reduced airflow and
diagnosed by means of pulmonary function testing. CT scanning offers
far more detailed information about the underlying pathology and site(s)
of the disease than is afforded by a pulmonary function test, but is not
currently used in the diagnosis and classification of COPD. In this work
a classification system is presented to classify 110 subjects in a COPD
database based on 2 thoracic CT scans taken at full inspiration and at
full expiration for each subject. Experiments with a 2-class kNN classifier
(COPD/non-COPD) as well as with a 5-class kNN classifier (COPD 1-
4/non-COPD) are presented. Features are derived from 3 sources 1)The
inspiration scan, 2)The expiration scan, 3)Comparison of the HU values
at inspiration and expiration based on a 3D, fully automatic, non-rigid
registration.
Classification in a 2-class system is particularly successful achieving an
area under the ROC curve of Az=0.92. Multi-class classification is more
challenging, with 66% of cases correctly classified and a further 28%
classified in a class neighbouring the true one. A discussion is presented
of the difficulties of precise multi-class classification due to drawbacks of
the reference standard of pulmonary function testing. It is shown that
the inclusion of registration-derived features improved the performance
of the classifiers in all cases.

1 Introduction

Chronic Obstructive Pulmonary Disorder (COPD) is the fourth highest cause of
chronic morbidity and mortality in the United States and by 2020 it is expected
to be the fifth most important illness worldwide in terms of burden of disease [10].
COPD is characterised by airflow limitation which is not fully reversible and
diagnosis is confirmed by means of spirometry (pulmonary function testing) [10].
Four levels of severity are defined according to the spirometry results (COPD
classes 1-4), and the status of subjects without COPD is here referred to as ‘class
0’. There may be several underlying causes of the airflow obstruction including
emphysema and/or narrowing of the airways. While pulmonary function tests
provide useful information about the overall extent of airflow restriction they do
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not infer the pathological causes of this restriction or the regions of the lungs
affected.

CT scans are used to examine the physical state of the lungs in COPD
patients and to investigate the causes of the disease in more detail. CT-based
measurements can be expected to provide quantitative information about airflow
and have been shown to do so in many studies including [5,9]. In [9], for example,
analysis of CT scans is used to compare the relative contributions of emphysema
and airway-narrowing. Using measurements based on CT values creates the po-
tential to simultaneously evaluate the individual components of the disease and
its location within the lungs thereby improving physician’s understanding of the
mechanisms of the disease [11].

Both inspiration and expiration scans have a role to play in airflow analysis
since emphysema is most easily visualised in inspiration scans, while regions of
air-trapping (which may be caused by airway obstruction) are more obvious at
full expiration. A direct regional comparison of CT scans taken at full inspira-
tion and expiration is expected to provide valuable additional information, but
visual comparisons are typically awkward to carry out due to the difficulty of
aligning small regions in both scans. For a thorough quantitative analysis a full
3D registration of the scans is required.

In this work we attempt to determine whether quantitative airflow analysis
by means of CT alone is sufficient firstly to diagnose COPD and secondly to
categorise the subject into the correct COPD class using a k-Nearest-Neighbour
(kNN) [3] classifier. Experiments with COPD diagnosis (COPD/non-COPD)
were carried out using a 2-class kNN classifier. A 5-class kNN classifier was
utilised in separate experiments to attempt to classify subjects into the cor-
rect COPD class (0-4). Features are extracted from both the inspiration scan
(emphysema) and the expiration scan (air-trapping). Furthermore, we perform
a fully automatic 3D registration of the inspiration and expiration scans, and
extract additional features from a voxel by voxel comparison of the inspiration
and expiration intensities. The various feature sets are compared to determine
which features are most important in achieving an accurate classification.

2 Materials

In this study 110 pairs of scans are used which form part of a COPD database be-
ing constructed at our research institute. The subjects are either clinical patients
or were recruited as part of a CT screening trial. All subjects are either at risk of
developing COPD (former/current heavy smokers) or already have COPD. The
numbers of scan pairs representing each COPD level (0-4, see section 3) are as
follows: 0:29, 1:19, 2:33, 3:16, 4:13.

Each subject underwent a breath-hold CT scan at full inspiration and another
at full expiration. All scans were acquired in less than 12 seconds. CT scanning
protocol varied slightly depending on the subject but was usually set with a beam
current of 30mAs for inspiration scans (low dose) and 20mAs for expiration scans
(ultra-low dose).
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All scans were obtained without contrast injection on a 16 detector-row scan-
ner (Mx8000 IDT or Brilliance 16P, Philips Medical Systems). They have a
per-slice resolution of 512×512, with the number of slices per scan varying per
subject. Slice thickness is 1mm with overlapping slices and a slice-spacing of
0.7mm

3 Reference Standard

COPD is diagnosed by means of spirometry (pulmonary function testing). Dur-
ing pulmonary function tests subjects are instructed to exhale fully into a mouth-
piece and various measurements are made, including ‘Forced Expiratory Volume
in 1 Second’ (FEV1) and ‘Forced Vital Capacity’ (FVC). FEV1 measures how
much air volume is released in the first second of expiration, and FVC determines
the entire volume exhaled. A value known as ‘FEV1-Predicted’ is determined us-
ing look up tables based on details such as the subject’s gender, height, weight,
age and race. Table 1 illustrates how COPD is diagnosed based on these mea-
surements. FEV1 as a percentage of FVC determines the presence or absence of
COPD, while FEV1 as a percentage of FEV1-Predicted is used to establish the
severity of the condition.

COPD Class: 0 1 2 3 4
(No COPD) (Mild) (Moderate) (Severe) (V. Severe)

Measurement:

FEV1 as % of FVC ≥70 <70 <70 <70 <70

FEV1 as % of FEV1
Predicted

≥ 80 ≥ 50, <80 ≥ 30, <50 <30

Table 1. The criteria for determination of COPD class by pulmonary function testing

4 Methods

4.1 Pre-Processing

As an initial pre-processing step all inspiration and expiration scans were sub-
sampled in order to make certain subsequent procedures more efficient. The
images were reduced by block averaging to 256×256 voxels in the X-Y plane
with the number of slices reduced such that the data was isotropically sampled.
Linear interpolation was used to determine grey-values between voxel locations.

Segmentation masks for the lungs and lobes were computed for all scans. The
lung segmentation algorithm was by Sluimer et al. [15] based on the method of
Hu et al. [6]. Lobe segmentation was performed using an algorithm by van Rikx-
oort et al. [17]. All segmentations included in this study were visually checked.
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Distance transforms from the lung boundaries were computed as follows: The
lung mask was eroded with a spherical kernel of radius 5 voxels and a distance
transform was calculated on the eroded segmentation. The erosion served to en-
sure that voxels inside the true lung boundary also obtained a distance value in
the transform. Values above 10 in the distance transform image were clamped.
These distance transform images were subsequently used in the registration pro-
cedure.

4.2 Registration

Registration was carried out on the down-sampled images in order to reduce
memory consumption. The registration was implemented using elastix version
4.0 (http://elastix.isi.uu.nl) which is a registration toolkit based on the National
Library of Medicine Insight Segmentation and Registration Toolkit (ITK). The
expiration scan was transformed to match the inspiration scan and the calcu-
lated transform was subsequently applied to the original full resolution expiration
data. The registration procedure consisted of an initial affine registration step
followed by a non-rigid registration to handle the deformations of the lung tissue.
Both steps involved a multi-resolution strategy with 5 resolution levels for the
affine procedure and 7 for the non-rigid. The cost function used was a combina-
tion of the mutual information (MI) [16] of the down-sampled scans and the sum
of squared differences (SSD) of the lung boundary distance images described in
section 4.1. The lung boundary distance images were included as an additional
guide to the registration to ensure that the lung boundaries were well aligned.
The MI cost was weighted more heavily (0.75) than the SSD cost (0.25). Optimi-
sation was by means of a stochastic gradient descent optimizer [7]. The non-rigid
registration deformations were modelled by a B-Spline grid [12]. The grid-size
varied per resolution-level with the finest grid at the last level having a spacing
of 10mm in each dimension. The lung segmentation described in section 4.1 was
used as a mask for the inspiration scan to ensure that during registration the cost
function was calculated on samples from the volume of the segmented lungs only.
The registration settings were chosen bearing in mind that there may be very
large deformations between the inspiration and expiration scans. Registration
using these settings took approximately 45 minutes per scan pair.

4.3 Vessel Segmentation

In order to exclude vessels from subsequent feature calculations (in which only
lung parenchyma is of interest) a vessel segmentation is performed. Although
the registration was reasonably accurate for most vessel structures, on some
occassions vessel aligment was imperfect. For this reason vessel segmentation
was carried out on the inspiration and transformed expiration images separately.
Vessel segmentation was also carried out on the original expiration image.

The vessels were segmented using the algorithm of Lo et. al. [8]. Since the
majority of the scans used a low-dose or an ultra-low dose protocol, the best
results were obtained by using the full resolution scan data and applying a noise
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filter [13] prior to the segmentation. The vessel segmentation was dilated with a
spherical kernel of radius 1 voxel to ensure that undersegmentation was not an
issue. In addition a conservative thresholding was applied to the original image
to segment the brightest voxels. The final segmentation comprised the union of
the dilated vessel segmentation and the thresholded bright voxels. The threshold
t was set at t = CTmin + ((CTmax − CTmin) × 0.5) where CTmin and CTmax

represent the minimum and maximum intensity values within the lung volume.
In practise, to avoid CTmin and CTmax being influenced by noise or minor
segmentation errors, CTmin is given the value of the 1st centile and CTmax

the value of the 99th centile. Examples of vessel segmentations in inspiration
and expiration are shown in figure 1. Note that there are occasionally voxels
on the pleural surface which are included in the vessel segmentation due to
the thresholding step and inaccuracies in the lung segmentation. These are not
problematic in our application as our vessel segmentation serves only to exclude
these voxels during feature calculation.

(a) (b) (c)

Fig. 1. Vessel Segmentations in (a) inspiration, (b) expiration and (c) transformed
expiration

4.4 Feature Calculation

With the aim of classifying the subjects based on their COPD severity a number
of features were calculated for each image pair. The features can be divided
into 3 subsets as follows: Feature set A - Features of the inspiration image only,
Feature set B - Features of the expiration image only, Feature set C - Features
based on a voxel-by-voxel comparison of the inspiration image with the registered
(transformed) expiration image. The features consist of percentages and averages
which are calculated over both lungs, over each lung individually and over each
lobe individually. Per-lung and per-lobe features are included since they may
prove more useful than global features in the classification of COPD. The full
list of 48 calculated features is given in table 2.
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Feature calculation was carried out on the down-sampled versions of the im-
ages to conserve memory usage. Prior to calculating the features the inspiration,
expiration and transformed expiration scan were noise-filtered [13]. Blood mass
correction (BMC) [4] was applied to the transformed expiration image before the
calculation of feature set C where the inspiration and transformed expiration im-
ages are compared directly. The theory of BMC is based on the assumption that
the total mass of the lungs is not changed by the actions of inhaling and exhaling
air. Calculating the masses according to the CT intensity values however, it can
be demonstrated that a minor change in mass occurs. This change in mass is
due to alterations in blood-flow in the lungs during the breathing process [2].
The BMC calculates the difference in mass for each lung between inspiration and
expiration and thereby derives a correction factor for voxels in that lung. The
grey-value of each voxel in the lung is adjusted in the transformed expiration
image such that the corrected mass of the lung is equal to that of the same lung
in inspiration.

Comparison of subjects based on the relationship between their inspiration
and expiration scans can cause difficulties. For example, subject A may show a
smaller change in intensity values between inspiration and expiration then sub-
ject B, which might suggest that subject A has a comparatively reduced airflow.
However such a difference may also be due to the fact that subject A did not
inhale or exhale as completely or deeply as subject B for the purposes of the
CT scans. For this reason, all features in feature set C were normalised by mul-
tiplication with the value C calculated by C = (V olINSP − V olEXP )/V olINSP

where V olINSP is the total lung volume at inspiration and V olEXP the total
lung volume at expiration. Vessel exclusion during calculation of feature set C
was achieved by excluding any voxel which was segmented as vessel in either the
inspiration image or the transformed expiration image.

ID Description Feature set

1 Emphysema(-950). Percentage of voxels below -950HU in insp. A

2 Emphysema(-910). Percentage of voxels below -910HU in insp. A

3 Air-trapping(-850). Percentage of voxels below -850HU in exp. B

4 Ventilation. Average of ventilation values v where v =
(1000(CTINSP − CTEXP ))/(CTEXP (CTINSP + 1000)) [14]

C

5 Subtraction. Average of subtraction values s where s = CTEXP −
CTINSP

C

6 Ratio. Average of ratio values r where r = CTEXP /CTINSP C
Table 2. Calculated features. Each of the 6 listed features is calculated over 8 regions
(The total lung volume (1), each lung independently (2) and each lobe independently
(5)), making 48 features in total.
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4.5 Classification

All classification experiments used k-Nearest-Neighbour (kNN) classifiers [3].
Briefly, each subject in the training set is plotted in feature-space based on its
calculated feature values. New subjects are plotted similarly and classified based
on the classes of the k nearest training subjects in feature-space.

Two types of classification were performed. Firstly 2-class classification was
carried out, where subjects were classified as either having COPD (Class 1) or not
(Class 0). Secondly, multi-class classification was attempted, giving each subject
one of five COPD classes (0-4) as per table 1. In each case experiments were
carried out using (1) a combination of all feature sets (feature sets A+B+C), (2)
Only features which do not require registration (feature sets A+B) and (3) Only
features which are derived from registration (feature set C). For all experiments
values of k between 4 and 15 were tested and the k giving the best results was
selected in each case. A leave-one-out training and testing procedure was applied
in all cases.

5 Results

5.1 2-class Classification

The best results for 2-class classifications with various datasets are shown in
figure 2. An ROC curve is shown in each case, with the area under the curve
(Az) and the value of k used listed in the legend. The best results were obtained
using all possible features (feature sets A+B+C) where an Az value of 0.92 was
achieved. Using only registration-related features (feature set C) gave a reduced
Az of 0.89, while using only features of the individual inspiration and expiration
images (feature set C) gave the worst result with Az=0.88.

5.2 Multi-Class Classification

Multi-class classification results are illustrated in figure 3. The bar-chart illus-
trates for all items in each class (and overall) what percentage of the items were
classified correctly and incorrectly. Incorrect classifications are further divided
into 1-Class errors (meaning that the chosen COPD class was a neighbour of
the true COPD class) and larger errors (mainly 2-class errors, see figure 4 for
more detail). The leftmost bar in each group represents classification using the
full feature set (A+B+C), the central bar using feature sets A+B and the right-
most bar using feature set C alone. Overall the best performance is achieved
with feature set A+B+C, while feature set C alone achieves almost the same
result. Excluding the registration-based features (using feature set A+B) gives
a distinct reduction in the performance.
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Fig. 2. ROC curves illustrating the performance of the 2-class leave-one-out classifica-
tion systems with various feature sets.
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Fig. 3. Bar charts illustrating the performance of the multi-class leave-one-out clas-
sification systems with various feature sets. The number of subjects in each group is
indicated by the figures above the bars.

6 Discussion

It has been shown that using automatic analysis of inspiration and expiration CT
scans, subjects can be classified in a 2-class (COPD/non-COPD) system with
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a high degree of accuracy (Az=0.92). Furthermore, multi-class classification is
fully successful in 66% of cases, and chooses a COPD class neighbouring the
correct one in a further 28%.

Precise multi-class classification of this data is difficult, partly due to the
nature of the reference standard. Although pulmonary function tests are used as
a gold standard to classify COPD cases they have a number of associated draw-
backs and issues with reproducibility. Firstly, the test results may vary depending
on how well the subject understands and adheres to the given instructions, the
condition of the subject on the day of testing, the instrument used and various
other factors [1]. Secondly, there is always variation in the population around the
FEV1-predicted values which are based on subject height, age, weight, gender
etc. [1]. Finally, since the measures used to classify COPD are on a continuous
scale, even the most accurate measurements may show a subject to be very close
to the border of 2 COPD classes.

In an attempt to understand the relationship between pulmonary function
test scores and our system mis-classifications, all 37 cases that were misclassified
in the multi-class experiment (using all features) were analysed. Figure 4 illus-
trates the results of this analysis with FEV1/FVC scores shown in the upper
part of the figure, and FEV1/FEV1-Predicted scores in the lower part. It can be
seen that the pulmonary function test scores of a number of the mis-classified
cases place them very close to the boundary between two COPD classes. Cases
34, 35 and 36 (on the X-axis) for example, have FEV1/FEV1-Predicted scores
placing them at the boundary between COPD classes 3 and 4. The reference
standard narrowly places them in class 4, while our classifier placed them in
class 3. Case number 30 has an FEV1/FEV1-Predicted score which places him
in class 2, however his FEV1/FVC score is very close to the 70% boundary
line, above which he would have been classified into class 0. Our classifier places
this subject in class 0 indicating that his CT scans do not reveal classic signs
of COPD. Further investigation would be required to determine whether the
pulmonary function test scores or the CT scans of this patient truly reflect his
condition. Ultimately there may be a case for using quantitative analysis of CT
data in combination with results of pulmonary function tests when diagnosing
COPD subjects.

All experiments illustrated that both 2-class and multi-class classification
are improved by the inclusion of feature set C, based on the automatic 3D
registration of the inspiration and expiration images. Direct comparison of the
percentage of air present in a voxel at inspiration and at expiration is impossi-
ble without an accurate registration, and provides a qualitative measure of the
pulmonary function at that precise location.

The relationship between CT-derived features and COPD classification which
has been demonstrated is an extremely important one. Further research oppor-
tunities now exist to determine whether CT should be routinely used in the
diagnosis and severity classification of COPD. In addition, more precise rela-
tionships between CT features and COPD can be investigated to determine, for
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example, whether impairment in specific lobes affects the spirometry measure-
ments more seriously than in others.
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Fig. 4. Analysis of pulmonary function scores for 37 mis-classified subjects - Above:
FEV1/FVC scores, Below:FEV1/FEV1-Predicted scores. Subjects are ordered by their
reference standard COPD class from left to right (see background colours). The colour
of each point indicates the class into which the subject was incorrectly classified.
(Colours are as per the background, thus: 0=blue, 1=pink, 2=green, 3=orange, 4=pur-
ple). Horizontal lines depict the boundaries of the COPD class as defined in table 1.
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