
Algorithms, Architecture, Validation of an Open
Source Toolkit for segmenting CT Lung lesions

Karthik Krishnan1, Luis Ibanez1, Wesley D. Turner1, and Ricardo S. Avila1

Kitware Inc., 28, Corporate Drive, Clifton Park, NY, USA.
karthik.krishnan@kitware.com,

Abstract. We implented a lesion segmentation toolkit with a focus on
segmenting solid and part-solid lesions from lung CT. The algorithm con-
structs four three-dimensional features to detect the lung wall, vessels,
soft and diffuse tissue and edges. These features form boundaries and
propagation zones that guide the evolution of a subsequent shape detec-
tion level set. User input is used to determine an initial seed point for
the level set and users may also set a region of interest around the lesion.
The methods are validated against 18 nodules on an anthropomorphic
thorax phantom simulating a realistic anatomy, acquired under various
scanner parameters. We also validated repeatability using 6 coffee-break
(zero volume change) clinical cases. The methods, clinical and testing
datasets have been made available to encourage reproducibility and fos-
ter scientific exchange. We integrated the methods into a user-friendly
visualization application. We will also describe how one may obtain the
toolkit and generate results for the VOLCANO workshop.

1 Introduction

Computed Tomography (CT) is the preferred modality for the detection of can-
cerous lung lesions. Quantifying tumor size and changes in size over time is
necessary to evaluate the effectiveness of a drug. Tumor size is currently quan-
tified using the uni-dimensional RECIST [1] [2] or bi-dimensional WHO [2] [3],
both of which use lesion diameter as surrogates for volume to determine an ef-
fective tumor measurement. Neither of these methods take the actual volume of
the tumor into account. With the advent of MSCT, volumetric segmentation of
lung nodules allows for more accurate quantification of the tumor burden and
better determination of changes in tumor burden over time and in response to
drug regimen.

The goal of this paper is to describe the algorithm and the architecture of
an open source lesion sizing toolkit. We will validate it on phantoms as well as
clinical data. We will also describe how one may obtain the toolkit and generate
results for the VOLCANO [4] workshop. The rest of the paper is organized as
follows. Section 2 summarizes the segmentation methods employed. Section 3
summarizes the validation of the methods on synthetic phantoms having known
volumetric ground truth from the FDA. Section 4 outlines the architecture of
the toolkit and describes the use of the toolkit from VolView, a commercially
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available data visualization application. Integration with VolView allows users
of the toolkit to load and visualize datasets as well as to perform volumetric
analysis in an intuitive and powerful graphical user interface. Finally, in Section 5
we summarize our performance on the Workshop evaluation dataset and provide
the user with those resources necessary to duplicate our results.

2 Lesion Segmentation

Lung nodules exhibit a wide range of morphologies and shapes. They may be
solid, part-solid (solid nodules with a diffuse region) or non-solid. Solid nodules
have a density that is close to soft tissue while non-solid nodules have a density
between air and soft tissue. Nodules are generally attached to vessels and often
to the lung wall or the mediastinum. Coding a single algorithm that effectively
segments a nodule under these conditions is difficult. We choose to take a mod-
ular and extensible approach that combines a region growing algorithm - in this
case a shape detection level set - with a set of feature generation filters. The re-
gion growing algorithm is allowed to evolve from a user provided seed under the
aggregate guidance of the features. Our current implementation uses 4 features;
to account for the lung wall, vessels, gradients and tissue intensities (soft and
diffuse). Together, these features allow propagation of the segmentation front
within the intensity thresholds specified by the intensity feature while detering
propagation into the lung wall, into vessels, or across sharp edges. The addition
of new features to specifically account for areas such as eg. the hilar region is
easily supported.

2.1 Feature generation

Prior to any feature generation, the CT dataset is preprocessed by resampling
to isotropic resolution matching the smallest voxel spacing. This is followed by
generation of various features:

Lung wall feature The lung wall is segmented by thresholding followed by
curvature constrained front propagation. The dataset is binarized so as to retain
voxels above -400HU. We then run hole filling on the resulting binary image.
The hole filling operation uses a quorum (voting) algorithm to decide whether
a new pixel will be filled at every iteration. Changing the voting threshold is
essentially equivalent to changing the maximum curvature allowed in the final
binary segmentation. We use a 7×7×7 manhattan kernel with a voting threshold
of 1 (lowest possible curvature). The filter is run interatively until no voxel
changes status. Fig.1 shows the evolution of the front. Admittedly, the final
contour is slightly concave rather than convex, since the quorum voting does
not distinguish between positive and negative curvature, but the wall detection
recovers most of the nodule without allowing bleeding into the lung wall.

The resulting image is transformed using a sigmoid with inversion, resulting
in a grayscale representation of the inner lung, with a gradual rolloff towards
the lung wall.
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Fig. 1. Segmentation of the lung wall by voting based front propagation on a lesion
attached to the lung wall. The front starts with the red contour (obtained by thresh-
olding the dataset at -400HU. In cyan are contours of the front at iterations of 10, 20,
30, 40, 50, 60, 80. The algorithm converges in 151 iterations at the green front.

Vesselness feature Vesselness features are computed using Sato [5] tubular-
ness. (α = 0.1, β = 2.0). The resulting image is transformed using a sigmoid
filter with inversion resulting in a grayscale image with a rolloff towards tubular
structures.

Gradient feature The gradient feature attempts to localize the edges of the
lesion. This is modeled using a Canny edge detector [6], which achives optimal
edge localization (with voxel accuracy). The result is a voxelized edge map.
The resulting image is transformed using a sigmoid with inversion resulting in a
grayscale image with a rolloff towards the edges.

Intensity feature The intensity feature is based on a simple thresholding of
the dataset, followed by transformation with a sigmoid filter to generate gradual
rolloffs. The user specifies the type of the lesion (solid / part-solid), which de-
termines the threshold level: -200HU for solid lesions and -500HU for part-solid
lesions.

Aggregation of features Conceptually, each feature image represents the like-
lihood of a particular voxel being part of the lesion from a single perspective.
Fig 2 and 4 show the features on a solid and a part-solid lesion. An aggregation
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Algorithm 1 Voting based front propagation
1: Let Kernel Radius r = 3
2: Let BirthThreshold, T = r3 + 1. For a 7 × 7 × 7 city-block kernel, T = 171
3: Let Ai be indices of voxels on the front at iteration i
4: Threshold CT image at -400HU. Voxels above are set to 1, below to 0.
5: Iterate over the image and add all indices within r voxels of the boundary to A0

6: repeat
7: PixelsChangingStatus ⇐ 0
8: for each voxel in Ai do
9: Check for quorum, Q. (Quorum is achieved if number of ON voxels within a

neighborhood (7 × 7 × 7) centered at the current voxel > T .
10: if Q is true then
11: Scehedule this pixel for inclusion in foreground.
12: ++PixelsChangingStatus
13: Add background voxels in neighborhood to front for next iteration, Ai+1.
14: else
15: Schedule this pixel for inclusion in background.
16: Add this location to the front for the next iteration, Ai+1

17: end if
18: end for
19: Update the status of scheduled voxels.
20: ++i
21: until PixelsChangingStatus = 0

of the features is obtained by normalizing each individual feature to lie within
the range 0 to 1 and then choosing the minimum feature value at each voxel.
The resulting image is passed onto the segmentation module.

2.2 Segmentation Module

The segmentation module runs a segmentation algorithm guided by a feature
probablity image. The toolkit is equipped with a variety of segmentation mod-
ules, wrapped in a way that allows them to be plugged in as components to
the lesion segmenter. In our user interface, the user identifies the lesion with a
single seed point. We use fast marching [7], followed by refinement with a shape
detection level set [8]. The fast marching front starts at the seed and proceeds
outwards, solving the eikonal equation, its propagation guided solely by the ag-
gregate feature image and an optional, user-defined, region of interest (ROI).
The output is a time crossing map, with each voxel representing the time taken
for the front to reach that voxel. We use a stopping time of 5s implying that
the front stops propagating when all voxels on the front have an arrival time
greater than 5. The fast marching front is conservative enough to ensure that
the segmentation results lie within the lesion. This resulting time crossing image
is renormalized to the range [−4, 4], so as to be symmetric about 0 and passed
onto the shape detection module.
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Fig. 2. Features (a) Lung wall features in cyan, Canny Edges features in red; a contour
around the single voxel thick edges is shown (b) Intensity features in blue, vesselness
features in yellow.

The shape detection level set is guided by the propagation and curvature
components.

φt + F (1 − wK) |∇φ| = 0

The propagation F is the aggregate feature image. w is the curvature weight for
the curvature, K. We use a propagation to curvature weight ratio of 500:1, to
account for the wide variety of shapes that lesions can assume. The final lesion
boundary is then taken as the -0.5 isosurface of the shape detection level set.
Note that this isosurface value is driven by the characteristics of our aggregate
feature map. In the nominal case of the lesion having a boundary within the
parenchyma, we find that the canny edge is the dominant feature for lesion
segmentation. Our canny edge feature only localizes the true edge boundary to
a one voxel precision (Fig.4(b)). By taking the level set at -0.5 we force the
segmentation to the interior of the canny detected boundary voxel and reduce
our error bound from 1 to 0.5 voxels.

A surface of the resulting level set is generated using Marching Cubes [9] at
an isovalue of -0.5. The volume is computed using a discretized version of the
divergence theorem [10], to compute the volume in a closed triangle mesh.

3 Validation of the segmentation algorithm

3.1 Phantoms and Ground truths

We validated the results on an anthropomorphic thorax phantom [11][12] (cour-
tesy US FDA), containing nodules of various densities, sizes, shapes and at
various locations in the chest. This phantom provides ground truth for nodules
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in a realistic anatomy (fig. 3) that includes attachments to vasculature, airways
and the lung wall. Exposure varies from 20mAs to 200mAs. At the time of this
writing, ground truth volumes are available only for the spherical nodules. We
are awaiting ground truths via microCT on the spiculated, lobulated and ellip-
tical nodules. The database consists of 6 CT scans, each containing a 5, 8 and
10mm diameter spherical nodule with a density of 100HU. Three of the scans
have a slice thickness of 0.8mm and a z spacing of 0.4mm, the other three have
a slice thickness of 3mm and a z spacing of 1.5mm.

Fig. 3. Left : A photograph of the anthropomorphic phantom and an inlaid nodule
(courtesy US FDA). Right : Its segmentation.

3.2 Statistics

Defining the error, ξ = 100 ×
∣∣∣ComputedV olume−TrueV olume

TrueV olume

∣∣∣, we find that for
the 18 lesions in the FDA phantom, our average ξ was 30.24% (S.D 31.39%).
The errors largely stemmed from a poor estimate of the features due to the
resolution across slices. This was confirmed by noting that on the 9 lesions, with
0.8mm slice thickness, our average volumetric error, ξ was 11.75% (S.D 11.38%).
Furthermore, the half voxel error (as mentioned above) causes an amplification
of the errors for the small 5mm lesions. This is confirmed by noting that on the
6 lesions with a diameter ≥ 8mm and a slice thickness of 0.8mm, our average
volumetric error ξ is 4.28% (S.D. 2.4%).

It is instructive to relate the error in volumetric estimate to the error in the
uni-dimensional RECIST measurement. A 30% overestimate in a lesion with a
diameter of 8mm is equivalent to a change in diameter of 0.73mm, Hence a ξ

of 30% for a 8mm lesion would roughly which roughly translates to an error
of a voxel. This is smaller than the intra as well as interobserver variability to
perform a unidimensional tumor measurement [2].
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Fig. 4. Features (a) Lung wall feature in cyan, Intensity features in blue. (b)Vesselness
features in yellow, Voxelized canny edge features in red, final segmentation in green.
Note that the the final segmentation runs through the center of the voxelized canny
edges as a result of cutting the level set at -0.5.

3.3 Zero change CT scans

Validation on clinical data was done on 6 coffee-break CT scans. (Table 1) These
are CT scans of a patient obtained hours apart. (hence the name coffee-break).
Ideally, segmentation would yield no change between the timepoints. However
breathing artifacts, subtle differences in patient positioning, and noise result
in slightly different segmentations. In addition, the two timepoints often had
different acquisition parameters or resolution. The average ξ for the coffe break
data was 10.9%.

Table 1. Zero Change Volumes V1, V2 for the 6 coffee break cases at two time points.

Case V1mm3 V2mm3 Resolution (t1) Resolution (t2) ξ = 200 × V1−V2
V1+V2

ST0108 1992.76 1990.41 .703 × .703 × 1.25 .703 × .703 × 1.25 0.11%
ST0109 2390.58 2698.9 .703 × .703 × 1.25 .703 × .703 × 1.25 12.11%
ST0111 3496.34 2484.37 .703 × .703 × 1.25 .703 × .703 × 1.25 33.84%
ST0112 290.07 297.62 .703 × .703 × 1.25 .703 × .703 × 1.25 2.56%
ST0113 670.27 654.42 .703 × .703 × 1.25 .78 × .78 × 1.25 2.39%
ST0114 3317.62 2864.81 .56 × .56 × 1.25 .56 × .56 × 5 14.64%
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4 Toolkit and User Interface

The toolkit [13] is provided under a BSD license. It is cross platform and based
on the Insight [14] and Visualization Tookits [15]. Fig. 5 shows the general archi-
tecture of the toolkit. Several feature generators and segmentation modules are
provided, with an applicability towards a broader class of segmentation appli-
cations. A dashboard tests the algorithms against the aforementioned database
providing a testbed to evaluate segmentation algorithms.

Fig. 5. Toolkit architecutre.

4.1 Front end user interface

VolView [16] is visualization tool from Kitware. It provides a front end to
the tookit and features a guided wizard to perform one click segmentations of
solid/part-solid lesions. The user identifies the region containing the lesion with
a box, places a seed within the lesion and selects the lesion type (solid/part-
solid). The application then segments the lesion and reports volumetrics. (Fig.
6.) A typical segmentation takes 5 to 25 seconds on a Intel 2.66GHz Core2Duo,
2GB RAM.

5 Results on the VOLCANO Grand Challenge data

For the VOLCANO Grand Challenge, all parameters remain as described above.
No additional training was used to tailor the algorithm beyond the phantom data
described in Section 3. User interaction consisted of the seed points and an ROI
synthesized as a box 50mm on each side centered at the seed pixel.
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Fig. 6. A screenshot of the lesion sizing user-interface in VolView, on a part-solid lesion.
The solid core (pink) and part-solid fringes (green) are segmented.

5.1 Generating the results

We provide the ability to automatically build and run the application against the
Grand Challenge data. The user is expected to download the datasets from the
VOLCANO [4] website. Instructions on obtaining the toolkit and building it may
be found at [13]. Configure with the TEST VOLCANO DATA COLLECTION
option turned on. Build and run the tests. This will produce the volumetric
estimates and segmentations for each of the datasets in the evaluation database.

5.2 Results

The results on the evaluation dataset are summarized in Table 2. Change is
evaluated as (V 2 − V 2)/V 1.

6 Conclusions

We have presented an algorithm to segment lung lesions from CT. We validated
the results on clinical data and phantoms that provide a realistic anatomy. An
important component of this work is reproducability through open source, shar-
ing of data and dashboards. Future directions may incorporate the use of scanner
parameters. We will also validate against the spiculated and lobulated lesions in
the anthropomorphic phantom, once ground truths are available.
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Table 2. Results on the VOLCANO evaluation dataset

case Change V1 (mm3) V2 (mm3)
SC0001 -0.93 4352.2 286.4
SC0002 -0.14 1942.94 1673.08
SC0003 -0.41 3805.55 2248.26
SC0004 0.55 3145.82 4873.41
SC0005 -0.12 2457.89 2161.53
SC0006 0.54 141.01 217.1
SC0007 0.01 393.48 398.88
SC0008 0.02 116.91 118.74
SC0009 -0.28 8029.24 5765.85
SC0010 -0.13 1187.27 1035.82
SC0011 0.06 1856.14 1964.2
SC0012 0.59 3016.81 4804.87
SC0013 0.04 16440.7 17177.9
SC0014 -0.11 8583.22 7635.9
SC0015 -0.17 400.99 331.64
SC0016 0.13 330.54 374.03
SC0017 1.05 1096.42 2252.93
SC0018 0.04 2289.68 2371.25
SC0019 0.54 2505.32 3861.29
SC0020 -0.02 1151.27 1125.71
SC0021 -0.01 1564.57 1551.21
SC0022 0.17 593.7 694.95
SC0023 -0.04 2172.98 2077.6
SC0024 0.14 820.46 938.44
SC0025 0.13 970.89 1094.68
SC0026 0.05 1493.97 1562.17
SC0027 0.13 12571.3 14195.3
SC0028 -0.06 1322.43 1244.15
SC0029 0.04 198.47 206.11
SC0030 -0.09 7628.96 6962.92
SC0031 -0.13 21902.6 19033.2
SC0032 -0.04 200.84 192.44
SC0033 0.1 481.6 528.31
SC0034 1.08 400.36 831.86
SC0035 -0.01 3021.52 2985.93
SC0036 0.08 892.11 966.66
SC0037 0.26 979.42 1236.19
SC0038 -0.02 1530.35 1506.32
SC0039 -0.33 1466.36 978.5
SC0040 -0.15 783.49 666.37
SC0041 -0.09 934.45 851.96
SC0042 0.12 584.12 652.95
SC0043 0.14 2338.12 2659.17
SC0044 1.46 438.45 1076.65
SC0045 0.03 678.82 697.13
SC0046 0.03 795.27 818.08
SC0047 0.13 1166.88 1317.97
SC0048 -0.25 511.91 384.87
SC0049 -0.35 4638.86 3004.46
SC0050 0.22 634.62 773.72
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