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Abstract. This paper presents a method for airway tree segmentation
that uses a combination of a trained airway appearance model, vessel
and airway orientation information, and region growing. The method
uses a voxel classification based appearance model, which involves the
use of a classifier that is trained to differentiate between airway and
non-airway voxels. Vessel and airway orientation information are used in
the form of a vessel orientation similarity measure, which indicates how
similar the orientation of the an airway candidate is to the orientation
of the neighboring vessel. The method is evaluated within EXACT’09
on a diverse set of CT scans. Results show a favorable combination of a
relatively large portion of the tree detected correctly with very few false
positives.

1 Introduction

Most existing airway segmentation methods are based on region growing, with
the assumption that the airway lumen has low intensity and is surrounded by
higher intensity airway walls. The main problem with such an intensity based
region growing algorithm is that the contrast between the airways and their sur-
roundings is sometimes very low, due to noise or pathologies such as emphysema.
Such low contrast regions often cause the region growing algorithm to leak into
the surrounding lung tissue. Currently there are two approaches to address this
problem: explosion control and the use of more advance image descriptors than
intensity alone.

The idea of explosion control is to stop the segmentation in the low contrast
regions where otherwise leakage would occur, while the segmentation continues
in other regions. Strategies for explosion control generally involve heuristic rules
based on geometrical properties of the regions labeled. Some examples of these
geometrical properties are: volume of the regions segmented [1], radius of prop-
agation front [2, 3], cross section area [4] and topology of thinned structure [5].

The second approach makes use of local image information to better dif-
ferentiate between airways and their surroundings, for instance using pattern
recognition techniques [6–8] or local tube fitting [9]. The method presented in
this paper belongs to this second approach.

EXACT'09 -323- 



This paper presents an extension of our previous work [8], where we proposed
to incorporate both a trained appearance model and the similarity between the
orientation of an airway and its accompanying vessels. In this paper we use
multi-scale Hessian eigen analysis instead of the fixed scale analysis as described
in [8]. The method is evaluated within the EXACT’09 [10] airway extraction
challenge on a database of 20 scans taken at different sites under a variety of
different conditions. The results were manually evaluated by trained observers
and compared to results submitted by other participants.

This paper is organized as follows: Section 2 explains how the airway appear-
ance model is constructed using the training set. Section 3 presents the various
steps involved in computing the vessel orientation similarity measure. The seg-
mentation framework that combines both the airway appearance model and the
vessel orientation similarity is presented in Section 4. Section 5 presents the re-
sults of the 20 cases in the EXACT’09 testing set. Finally, a discussion of the
results and comparison with results submitted by other teams are presented in
Section 6.

2 Classification based airway appearance model

2.1 Incomplete segmentation as a basis for training

One of the drawbacks of a classification-based appearance model is the need for
training data. We have shown in [7] and [8] that incomplete but leakage free
airway tree segmentations, which can be obtained relatively easily, can be used
as a substitute for real ground truth segmentations as training data.

We obtain the needed manual segmentations using intensity based region
growing, where both a seed point within the trachea and an intensity threshold
are provided manually. The highest threshold possible without causing any leak-
age is selected for each training image individually. This typically results in an
over-conservative segmentation that is incomplete, with many missing branches
but has no leakage. As the ‘background’ regions directly surrounding such a
conservative segmentation will always contain some airway voxels, an additional
‘leaked segmentation’, obtained using a slightly higher threshold, is used to take
this into account. We use these leaked segmentations to prevent uncertain regions
that may be either airway or background from being used in the training process.
An example of a manual and a leaked segmentation is shown is Figure 1(a) and
(b).

Before the extraction of training samples, we extract the lung fields, trachea
and main bronchi using a thresholding and morphological smoothing based al-
gorithm, as presented in [7, 8]. Training samples from two classes are extracted
from the training data: the airway class and the non-airway class. The airway
class consists of all voxels that are labeled in the manual segmentation, excluding
the trachea and main bronchi. The non-airway class is limited to the area that
is within the lung fields and close to the airways, which are obtained by first
dilating the manual airway segmentation with a sphere of radius Rdilate. The
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non-airway class then consists of the area within this dilated region that are not
marked by the leaked segmentation.

To ensure approximately independent training samples, only a small percent-
age Ssample of the voxels belonging to the airway class are used for training. The
same number of training samples is also extracted from the non-airway class. In
order to prevent the large number of voxels in the larger airways from dominat-
ing the appearance model, we sample evenly along the distance from the main
bronchi, measured through the segmented tree. This is done by grouping the
voxels based on their distance from the main bronchi in bins with the width of
each bin fixed to W , and randomly sample a total of N = SsampleV W/Dmax

training samples from each bin, where V is the total number of airway class
voxels in the manual segmentation and Dmax is the maximum distance between
a voxel in the manual segmentation to the main bronchi. To ensure that we do
not sample a bin too densely, at most 50% of all voxels belonging to a bin will be
included. The sampling starts at the bin furthest away from the main bronchi.
If the required number of samples from a bin is larger than the number of voxels
available in the bin, the remaining samples are extracted from the next available
bin of shorter distance.

2.2 Airway probability

The training samples extracted are used to train a k nearest neighbor (KNN)
classifier [11] to differentiate between voxels belonging to the airway and non-
airway classes. An initial set of local image descriptors or features is computed
from the training samples, which consists of spatial derivatives up to and in-
cluding the second order, eigenvalues of the Hessian matrix (λ1, λ2 and λ3,
where |λ1| ≥ |λ2| ≥ |λ3|), determinant and trace of the Hessian matrix, Frobe-
nius norm of the Hessian matrix, and combinations of Hessian eigenvalues that
measure tube, plate and blobness (|λ2/λ1|, |λ3/λ1|, (|λ1| − |λ2|)/(|λ1| + |λ2|),
|λ3|/

√|λ1λ2|). The partial derivatives of the image are computed at multiple
scales by convolving the image with the partial derivatives of a Gaussian ker-
nel [12], and each of the features is standardized to zero mean and unit variance.

Sequential forward feature selection [13] is used to find an optimal set of image
descriptors that maximizes the area under the receiver operating characteristic
(ROC) curve of the classifier. To this end, the training samples are randomly
partitioned into two parts to compute the ROC curve: one third for training of
the classifier and two thirds for validation. The final KNN classifier is trained
using the optimal combination of features and all the training samples.

We can now estimate for each voxel in previously unseen images the posterior
probability of the voxel belonging to the airway class, given a set of optimal
features x, using the following:

p(A|x) =
KA(x)

K
(1)

where A is the airway class, KA(x) is the number of neighbors around x that
belong to the airway class, obtained among the K nearest neighbors.
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3 Obtaining vessel orientation similarity

The vessels are segmented from the lung fields, using a multi-scale Hessian eigen
analysis approach. The scale for calculating the Hessian matrix is selected for
each voxel independently using the scale normalized [14] Frobenius norm of the
Hessian matrix:

ω(σi) = σ2
i

√
λ1(σi)2 + λ2(σi)2 + λ3(σi)2

The local vessel scale, σv, is then obtained by selecting the smallest scale that
corresponds to a local maximum of ω(σi) across scales. Using the Hessian eigen-
values at scale σv, the following criteria are used to evaluate whether a voxel
belongs to a vessel or not:

Brightness: λ1, λ2 < 0
Contrast: ω ≥ Tω

Tubeness 1: (|λ1| − |λ2|)/(|λ1| + |λ2|) < T1

Tubeness 2: (|λ1| − |λ3|)/(|λ1| + |λ3|) > T2

A voxel is labeled as vessel when it fulfills all four criteria. The brightness cri-
terion ensures that only voxels that are brighter than their surroundings will
be selected, the contrast criterion reduces the effects of noise by ensuring a cer-
tain minimum contrast between the voxel and its surroundings, and finally the
two tubeness criteria require vessels to locally resemble bright, solid cylinders.
Segmentation using the vessel criteria often results in additional small, isolated
regions due to noise. A connected component analysis using a 6-connected neigh-
borhood scheme is employed to remove regions that are smaller than Vmin voxels.
Finally, the vessel centerlines are obtained using the 3D thinning algorithm pre-
sented in [15].

The vessel orientation at the centerline voxels is obtained as the eigenvector
corresponding to λ3 computed at the vessel scale σv. This measure is less sensitive
to noise and inaccuracies in the vessel segmentation than the orientation obtained
directly from the centerline itself. The orientation of an airway is extracted
the same way as the orientation of a vessel, through multi-scale Hessian eigen
analysis. The Hessian matrix is constructed using the airway probability image,
generated using (1) where the airways resemble solid bright tube structures.
Given θ as the angle between the local tube orientation at an airway candidate
voxel and the orientation measured at the centerline of a vessel nearest to it, the
vessel orientation similarity is defined as s = |cos(θ)|. When the two orientations
are similar then s � 1, and when the orientations are perpendicular then s � 0.

4 Segmentation framework

The airway tree segmentation is obtained using a 3D region growing algorithm,
with a decision function that combines both the airway appearance model of
Section 2 and the vessel orientation similarity of Section 3. An initial airway
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segmentation described in Section 4.1 is used as seeds for the region growing
algorithm. Figure 1(f) shows a block diagram of the proposed segmentation
framework.

4.1 Initialization

The segmentation process is initialized with a coarse segmentation of the first
four airway generations obtained using intensity based region growing. First,
starting from the trachea and main bronchi as obtained in Section 2.1, all con-
necting voxels with intensity lower than a threshold Tairway are added. This is
followed by a closing operation with a sphere mask of 3 voxels in radius. Finally,
an algorithm [2] that is capable of tracking generations via bifurcation detection
is applied to the smoothed segmentation, and only branches up to the fourth
generation are retained. The threshold Tairway is dynamically determined by
searching from -1000HU, with an increment of 5 HU, until the resulting initial
segmentation, excluding trachea and main bronchi, is larger than 1000 voxels.

4.2 Airway segmentation

The initial segmentation obtained previously is used as seed points in a region
growing process to extract the remainder of the airway tree, using the airway
probability and vessel orientation similarity measures. The vessel similarity is
used as a means to relax the requirements on airway probability in regions with
a local tube orientation that is similar to the orientation of nearby vessels. We
achieve this by using the following decision function to decide on whether to
accept an airway candidate voxel x or not

D(p(A|x), s) =

⎧⎪⎨
⎪⎩

1, p(A|x) ≥ Tu

1, Tu > p(A|x) ≥ Tl and s ≥ Ts

0, otherwise,
(2)

where p(A|x) is the airway probability computed from (1), s is the vessel orien-
tation similarity of the candidate voxel, Tu, Tl and Ts are the upper probability
threshold, lower probability threshold, and vessel similarity threshold respec-
tively. The voxel x is labeled as an airway when D(p(A|x), s) = 1.

4.3 Parameter settings

KNN classification was performed using the ANN library for approximate nearest
neighbor searching [16]. A K = 21 was used, and the approximation error eps
was set to zero to turn off the approximation part of the algorithm. For the
extraction of training samples, as described in Section 2.1, the dilation radius
Rdilate was set to 5 mm, sampling percentage Ssample was set to 0.05, and the
bin width W was set to 3 voxels. A total of 7 scales, distributed exponentially
between 0.5 mm and 3.5 mm, were used to compute the features, as well as for
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the multi-scale Hessian eigen analsysis in Section 3. A contrast threshold Tω of
100, and tubeness measure thresholds T1 and T2 of 0.5 were used for the vessel
criteria. Detected vessel regions smaller than Vmin = 20 voxels were discarded.
All these parameter values are the same as those reported in [8].

The thresholds for the decision function (2) was hand tuned based on the
training set, where the airway probability images were generated with KNN
classifiers that were constructed in a leave-one-out manner. Our experiments
with the training set showed that Tu = 0.86, Tl = 0.62 and Ts = 0.8 gives good
results, where a significant amount of new branches not in the training data were
found without any significant leakages.

5 Experiments and results

Among the 20 cases (CASE01-CASE20) in the training set from EXACT’09,
manual segmentations for training were successfully obtained from all cases ex-
cept one (CASE06), where leakage was observed even when using the lowest
possible threshold. Therefore only 19 cases from the training set were used to
train the KNN based appearance model.

The training process of our method took approximately 13 hours on a single
CPU of an Intel Xeon X5355 processor (2.66 GHz), with the feature selection
process occupying around 11 hours. The average computation time to segment
an image in the test case was approximately 1 hour and 30 minutes. Most of
the computation time was spent generating the airway probability image, which
took an average of 50 minutes. The remaining computation time was mainly
spent on generating the Gaussian blurred images and performing the multi-scale
Hessian eigen analysis.

Table 1 shows the evaluation results of our method on the 20 EXACT’09
test images. Surface renderings of the best case and worst case according to the
detected tree length are shown in Figure 1(c) and (d).

6 Discussions and conclusion

At the expense of a relatively long computation time and laborious training
procedure, we obtain a favorable combination of a relatively large portion of
the tree detected correctly with very few false positives. Table 1 shows that the
proposed method is able to extract at least 50% of the total tree length for 70%
of the cases, with a false positive rate of less than 1% for all cases. Although
many branches were either extracted only partly or missed completely, it should
be noted that no method was able to extract more than, on average, 77% of
tree length or branches in the ground truth. Among the 15 methods that were
compared in EXACT’09, 7 methods resulted in both a lower tree length and
a higher false positive rate. Compared to the remaining 7 methods, our results
stand out mainly by the small amount of leakage; in 11 cases there were no
false positives at all, and in the remaining cases both leakage volume and false
positive rate were small. Figure 1(c) shows few clear leakages even in the case
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Table 1. Evaluation measures for the twenty cases in the test set.

Branch Branch Tree Tree length Leakage Leakage False
count detected length detected count volume positive

(%) (cm) (%) (mm3) rate (%)

CASE21 114 57.3 64.2 58.1 0 0.0 0.00
CASE22 276 71.3 227.1 68.7 1 0.2 <0.01
CASE23 186 65.5 137.9 53.0 1 15.4 0.12
CASE24 128 68.8 106.0 65.1 0 0.0 0.00
CASE25 152 65.0 116.9 46.4 0 0.0 0.00
CASE26 48 60.0 32.9 50.0 0 0.0 0.00
CASE27 49 48.5 36.9 45.6 0 0.0 0.00
CASE28 77 62.6 57.3 52.2 0 0.0 0.00
CASE29 117 63.6 81.3 58.9 1 10.0 0.12
CASE30 140 71.8 109.5 71.7 3 26.2 0.32
CASE31 159 74.3 117.8 67.1 3 39.1 0.31
CASE32 151 64.8 120.9 55.5 2 7.3 0.05
CASE33 108 64.3 81.3 55.2 0 0.0 0.00
CASE34 301 65.7 213.1 59.6 3 14.0 0.07
CASE35 136 39.5 95.2 30.8 0 0.0 0.00
CASE36 187 51.4 185.2 44.9 0 0.0 0.00
CASE37 57 30.8 46.4 26.1 0 0.0 0.00
CASE38 36 36.7 27.8 41.8 0 0.0 0.00
CASE39 253 48.7 195.1 47.7 6 37.0 0.30
CASE40 333 85.6 315.5 81.5 17 214.8 0.90

Mean 150.4 59.8 118.4 54.0 1.9 18.2 0.11
Std. dev. 85.2 13.6 75.4 13.4 3.9 48.0 0.22

Min 36 30.8 27.8 26.1 0 0.0 0.00
1st quartile 77 48.7 57.3 45.6 0 0.0 0.00
Median 138 63.9 107.7 54.1 0 0.0 0.00
3rd quartile 253 71.3 195.1 67.1 3 26.2 0.30
Max 333 85.6 315.5 81.5 17 214.8 0.90

with the largest number of detected leaks (CASE40). Our method is also the only
method with an average false positive rate below 1% (0.11%) that is still able
to achieve an average detected tree length of higher than 50% (54%), as shown
in Figure 1(g). Among all methods with an average false positive rate below
5%, the method achieving the highest tree length, which is a semi-automated
method, detected only 5% more of the total tree length at a false positive rate
of 1.19%.

The presented method was originally developed for segmenting the airway
tree in more standardized, low-dose cancer screening scans obtained at a single
site [17, 8]. While the main approach and parameter settings used for the current
work are the same as in [8], the implementation differs from this previous work
in three ways. Firstly, the Hessian eigen analysis to determine vessel and airway
orientations, performed at a single resolution level in [8], was replaced by a
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(a) (b) (c) (d) (e)

(f) (g)

Fig. 1. Surface renderings of (a) a manual (left) and leaked (right) segmentation used
for training, (b) initial segmentation, test results with (c) largest (CASE40) and (d)
smallest (CASE37) percentage of tree detected. (e) Surface renderings of segmentation
from CASE40 obtained using screening study scans from [8] as training. (f) Block
diagram of the segmentation framework. (g) A scatter plot of average tree length
detected versus average false positive rate of all participating teams in EXACT’09,
with the proposed method at the intersection of the dashed lines.

multi-resolution analysis. This modification had already been developed for the
screening study and improved results considerably for that data.

To cope with the much more diverse data of EXACT’09, the method was
further modified in two ways from our experiments on the training images. The
first modification is that a more complete segmentation is used to initialize the
classification-based region growing, instead of using only the trachea and main
bronchi as reported in [8]. The reason for this is because we found that otherwise
the segmentation was sometimes already terminated within the first four gener-
ations in noisy images. The second modification is that the thresholds for the
decision function in this work were manually tuned based on the training data,
while those in our earlier work were tuned automatically using an automatic
leakage detection algorithm similar to [2] and [3]. In the diverse and sometimes
very noisy CT scans from EXACT’09, this rule-based, automatic leakage detec-
tion algorithm turned out to be unreliable. The criterion used in selecting the
thresholds was that no obvious leakage should be present in the results on the
training set, which is probably one of the reasons why our results are on the
conservative side compared to other methods. A different set of thresholds may
lead to longer tree lengths at the expense of an increase in false positives.
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In the EXACT’09 study, a training set was provided with carefully selected
images that were of similar quality as the images in the test set. If the training
data does not match the test data, results may deteriorate. To illustrate this,
segmentation of CASE40, obtained using a Siemens Sensation 16 scanner and
very sharp convolution kernel B70s, was repeated with the same setup and same
parameter settings but using the training data of [8], which consisted only of
scans obtained using a Philips Mx8000 IDT 16 scanner with softer kernel D,
resulting in less noisy images. The result is shown in Figure 1(e). The method
trained with different data has still little or no leakage, but finds fewer branches.
In this case, this was mainly because the appearance model is not capable of
handling the noise and often misclassifies bright noise voxels in the airway lu-
men as non-airway. Although the method should be trained on similar data for
optimal results, the good results on the diverse set of EXACT’09 data indicate
that application of this method is not limited to studies in which acquisition
conditions can be standardized.

Note that, although the proposed method requires training data, in this work
only very low quality segmentations were available for this purpose. The seg-
mentations used for training consisted of on average 93 branches and had a total
length of 99 cm. Application of the trained models on the test set of similar im-
ages resulted already in much more complete segmentations, with 150 branches
and a total length of 118 cm. Clearly, our method can achieve better results
than the training segmentations, but the lack of training examples from small
branches does limit the ability of the system to extract higher generation air-
ways. With the availability of a set of high quality segmentations for training,
such as the ground truth resulting from EXACT’09, we expect to obtain even
better results in the future.

In conclusion, an airway segmentation method that uses a voxel classification
based appearance model and the similarity between the orientation of an airway
and its neighboring vessel is presented. Compared to the results from other al-
gorithms submitted to EXACT’09, our method is especially effective in avoiding
leakage, while still being able to extract a fair amount of airway branches.
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