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Abstract. Automated lung segmentation in multidetector computed to-
mography data is a first processing step in computer-aided quantitative
assessment of lung disease. Robust segmentation of diseased lungs is a
non-trivial problem which is unsolved up to now. Consequently, lung seg-
mentation results need to be manually verified, which is time-consuming
and costly. We propose a novel algorithm for detecting gross abnor-
mal lung segmentations based on a fast 3D shape retrieval approach.
First, the segmentation result to verify is used to query a 3D lung shape
database containing normal lung shapes. Second, the 3D shape dissimi-
larity between query and retrieved shape is utilized to assess the abnor-
mality of the segmentation. Our method represents a first step toward
the development of a quality assessment system for lung segmentations.

Key words: Segmentation abnormality detection, shape retrieval, shape
context, lung segmentation

1 Introduction

Lung diseases like cancer, chronic obstructive pulmonary disease (COPD) or
pneumonia are a major health problem. Multidetector computed tomography
(MDCT) based lung imaging plays an important role in the early detection, di-
agnosis, and treatment of lung disease. Automated image analysis of lung MDCT
data supports physicians in the quantitative assessment of lung disease [1]. One of
the first steps in lung image analysis is to segment the lungs. Several approaches
to lung segmentation in MDCT have been proposed. An overview can be found
in [1]. The majority of approaches are based on gray-value analysis and assume
that there is a large density difference between lung tissue and surrounding
structures. In case of normal lungs, such approaches produce sufficiently accu-
rate results. However, they frequently fail to deliver correct lung segmentations
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if the lungs contain high density pathology regions like masses (tumors) or pneu-
monia. In general, the segmentation of diseased lungs is a non-trivial problem
which is important for clinical applications and research.

Recently, a few papers proposing more robust lung segmentation algorithms
have been published. For example, Sluimer et al. propose a segmentation by
registration scheme to robustly segment diseased lungs [2, 3]. While delivering
promising results, not all pathological cases could be handled successfully [3].
In addition, the proposed approach is quite computing-time intensive [3]. An
adaptive border marching algorithm was presented in [4] to reliably include
juxtapleural nodules in lung segmentations. An approach for the robust segmen-
tation of lung parenchyma based on the curvature of ribs was presented in [5].
In summary, up to now available robust lung segmentation approaches are not
able to handle all possible pathological cases successfully and/or require sig-
nificantly more computing-time than conventional lung segmentation methods.
This is especially a problem for the automated analysis of large numbers of lung
MDCT data sets, as required in multi-center clinical trials or the automated pro-
cessing/analysis of lung image databases collected by the Lung Image Database
Consortium (LIDC) [6] or the Reference Image Database to Evaluate Response
(RIDER)1 projects, for example. Even the verification of the correctness of sev-
eral thousand lung segmentation results is a costly and time-consuming task.
To efficiently deal with this problem, an automated quality assessment/control
system is needed that allows the automatic identification of abnormal lung seg-
mentations (e.g., segmentation errors, breathing artifacts, etc.). Once abnormal
segmentations are identified, different remedy strategies can be applied, includ-
ing:

– adapt parameters and rerun the segmentation algorithm,
– apply a more robust—but usually more time consuming—method,
– manually correct the automatically generated segmentation result,
– switch to a semiautomatic/manual segmentation approach, or
– exclude the data set from further analysis.

A process might even utilize a sequence of the above outlined strategies depend-
ing on the classification result of the segmentation after each processing step.

In this paper we present a novel approach to detect grossly abnormal lung
segmentations based on a shape retrieval method. The main idea behind our
approach is as follows. First, the 3D lung segmentation result is used to query
a reference lung shape database. Data sets in the reference database are repre-
sentatives for normal lung shapes. Second, an assessment of the segmentation
abnormality is derived from a 3D shape dissimilarity between query shape and
the best match found in the reference database. Our approach builds on a fast
shape retrieval approach based on shape contexts which we recently introduced
for 2D shape retrieval [7]. This allows the rapid assessment of segmentation re-
sults. While content-based image retrieval systems have been developed for lung
images [8, 9], we are not aware of similar approaches for 3D lung shape.

1 http://ncia.nci.nih.gov/collections
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Abnormalities in 3D shape can be caused by segmentation errors (e.g., due
to high density lung pathology), breathing artifacts, pleural effusion, missing
data and so on. The work described in this paper represents a first step toward
the development of a lung segmentation quality assessment system that can
differentiate between different causes of abnormal segmentations.

2 Related Work

Content-based retrieval systems are a prerequisite to effectively utilize databases
like medical image archives. The two most popular query techniques in this
context are semantic retrieval and query by example. In the latter case, the
user provides an example depicting the content of the query. To process such an
request, algorithms are needed that assess the similarity/dissimilarity between
query and examples stored in a database. This allows for the ordering of the
database examples based upon their relevance, and to retrieve the closest match.

Shape is an important feature for querying object databases. Several methods
for 3D shape retrieval have been proposed. A review of methods can be found
in [10]. In the case of large databases, the time needed to assess the similarity of
images is critical for retrieval performance, and thus, for practical applicability.

Shape contexts [11, 12] represent a powerful method for shape description and
similarity assessment. They have been used for applications like shape retrieval
[13, 14] or hippocampal surface mapping [15]. Fig. 1 illustrates the basic idea
of shape contexts on 2D shapes. Given an object in an image, a representation

(a) (b) (c)

(d) (e) (f)

Fig. 1. Examples of 2D shape contexts. (a-c) Sampled object shapes shown with log-
polar histogram bins placed on a reference point. (d-f) Shape contexts corresponding
to (a-c).

of the object’s shape based on a finite set of 2D points P = {p1, ...,pn} with
pi ∈ R

2 is generated by sampling the object contour. Point sampling can be
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done randomly or with an equidistant spacing. A reasonable selection of n, the
number of sample points, is required to have a good representation of the input
shape. For a point pi of the shape represented by P , a coarse histogram Hi of
the relative coordinates of the remaining n − 1 points is computed:

Hi(k) = #{q �= p|(q − pi) ∈ bin(k)} . (1)

The calculated histogram Hi is denoted as the shape context of pi [12]. For
example, Figs. 1(a-c) depict three different 2D shapes, each with a selected ref-
erence point pi and a log-polar histogram outline around pi. The corresponding
shape contexts are depicted in Fig. 1(d-f). The shape context in Figs. 1(d) and
1(e) show similarities, because the object shapes are similar (normal lung shapes)
and reference points on both of the shapes have been chosen such that they are
approximately corresponding. In contrast, the similarities of the shape contexts
of the normal lung shapes (Figs. 1(d-e)) and the abnormal lung shape (Fig. 1(f))
are quite low. Consequently, shape contexts can be utilized to compare shapes.

The bins of the histogram are usually chosen such that they are uniform
in log-polar space, which makes the descriptor more sensitive to shape points
nearby the point pi. Normalization to rotation of a shape is achieved by aligning
the histogram with the shape tangent or normal vector direction in point pi.
Invariance to isotropic scaling can be gained by normalizing the shapes regarding
their size before they are used to calculate the shape context.

For shape retrieval, the similarity/dissimilarity between the query shape and
all the shapes in a database need to be assessed. For example, this can be ac-
complished by using shape contexts. As outlined in [7], a major drawback of
utilizing shape contexts directly for shape retrieval is the high computing-time
needed for the comparison of a query shape with shapes in a database, since
each shape is usually described by several hundred or thousand shape contexts
which need to be compared individually. Consequently, methods that utilize a
single shape signature are preferable for shape retrieval, especially when large
databases are queried.

3 Method

Our approach to detect gross abnormalities in lung segmentations consists of
two main processing steps. First, the given lung segmentation is used to query
a 3D lung shape database containing normal lung shapes. Second, the 3D shape
dissimilarity between retrieval result and query segmentation is used to assess
the segmentation. The left and right lung are processed independently, thus
we utilize two databases of normal left and right lung shapes. However, the
processing scheme is the same for left and right lungs. The individual components
of our method are described in detail in the following sections.

3.1 Fast 3D Shape Retrieval

For efficient 3D shape retrieval from a database, we use a shape signature which
is based on shape contexts. The utilized approach represents an extension of
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our previous work on fast 2D shape retrieval [7] to 3D. The main idea behind
our approach is outlined in Fig. 3. For a given 3D shape, represented by a
point set P = {p1, . . . ,po} with pi ∈ R

3 (Figs. 3(a-c)), all the corresponding
shape histograms Hi with i = 1, . . . , o are calculated. The 3D (spherical) shape
contexts Hi (Fig. 2) are then rearranged into 1D shape context vectors vi,
based on which a single shape signature is calculated for P (Figs. 3(d-f)). The
similarity of two shapes can then be assessed by comparing the corresponding
shape signatures. Basically, the task of assessing shape similarity is transformed
into the task of assessing the similarity of shape signatures. Consequently, in
terms of computing time, expensive point-to-point shape context comparisons
are avoided.

⇒ vi =

8>>><
>>>:

v1

v2

...
vnbins

9>>>=
>>>;

Fig. 2. Example of a 3D (spherical) shape context histogram Hi and the corresponding
rearranged shape context vector vi. A log-polar partitioning scheme is used to define
the 3D histogram bins. To gain invariance to rotation, the axis of the shape histogram
(red arrow) is aligned with the surface normal at a sample point pi. The bin content
is rendered in gray.

Given two 3D point sets Px = {px,1, . . . ,px,m} and Py = {py,1, . . . ,py,n} to
compare, let the matrices Sx = [vx,1, . . . ,vx,m]T and Sy = [vy,1, . . . ,vy,n]T store
all the rearranged shape context vectors of the shapes Px and Py, respectively.
We then define the following shape dissimilarity measure:

SD(Px, Py) = 1 − corr(scc(Px), scc(Py)) , (2)

where the shape context covariance (signature) of a point set P is defined as
scc(P ) = cov(S), and cov(S) denotes the covariance matrix of all the rows
(shape context vectors) in S. The function corr in Eq. 2 denotes the normal-
ized correlation coefficient. Low values for SD indicate a high similarity, and
large values indicate shapes with low similarity. Given a query shape Pquery

and a normal lung shape database DB = {P1, . . . , Pw}, the shape retrieval re-
sult Pimatch

is generated by evaluating imatch = argmini=1,...,w{SD(Pquery, Pi)}
with Pi ∈ DB. To speedup the retrieval process, all shape signatures scc(Pi)
of database shapes can be calculated in an offline processing step and stored in
the database. In addition, only the upper triangular part of scc(P ) needs to be
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considered for correlation calculation and storage, because of the symmetry of
the covariance matrix. This reduces computing-time and the required storage
space for the shape signatures. Matrices Sx and Sy are of size m × nbins and
n×nbins, respectively. nbins denotes the number of histogram bins. The numbers
m and n of points in each point set can be different, but we prefer that m and
n are the same. Consequently, we randomly sample u = m = n points from the
surface of the left and right segmented lung shape.

(a) (b) (c) (d) (e) (f)

Fig. 3. 2D example of shape signatures derived from shape contexts. (a-c) Point sets
representing shapes. (d-f) Corresponding shape signatures H; a nonlinear gray-value
transformation was applied for better visualization of signature patterns.

To gain invariance to rotation, a surface normal vector is calculated for each
sample point (Fig. 4(e)) to align the shape context. To robustly compensate for
differences in size, we utilize the following approach. The left and right lungs of
the database are roughly normalized before the shape signature is calculated by
isotropically scaling them so that they have a height of hl = 260 mm (approx. av-
erage lung size in z-direction). To calculate shape contexts of database shapes, a
minimum radius of rminDB = 6 mm and maximum radius of rmaxDB = hl/3
is used. Furthermore, after sampling shape points from the query data set,
several shape signatures scc(Pquery,γ) = sccγ(Pquery) are calculated by using
rminQγ = γrminDB and rmaxQγ = γrmaxDB with the scale factor γ ∈ O and
O = {0.5, 0.6, . . . , 1.5} for the log-polar histograms. The size invariant shape
retrieval match Pimatch SI

is found by evaluating

imatch SI = argmin
i=1,...,w

{SD(Pquery,γi , Pi)} (3)

with γi = arg minγ∈O{SD(Pquery,γ , Pi)}. The corresponding parameter γimatch SI

represents a discrete estimate for the relative size between query shape and re-
trieved normalized shape from the lung database.

Depending on the imaging protocol used, the scans can show heart motion
artifacts. In addition, ribs, airways, as well as pulmonary arteries and veins
can cause certain local variations in shape (Figs. 4(a) and (b)). To better deal
with this variation, we smooth the volumetric lung shape data sets by applying
a convolution with a Gaussian kernel (σ = 10) before the surface points are
sampled. Examples for smoothed lung shapes are shown in Figs. 4(c) and (d). In
comparison, the corresponding original shapes are shown in Figs. 4(a) and (b).
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(a) (b) (c) (d) (e)

Fig. 4. Sampled surface points utilized to describe lung shapes shown with correspond-
ing normal vectors. (a) Left and (b) right lung. (c) Smoothed lung shape corresponding
to (a). (d) Smoothed lung shape corresponding to (b). (e) Magnified lower right section
of the smoothed lung shown in (d).

Let SDDB(Pquery) denote the dissimilarity between query and retrieved
database shape. Gross shape abnormalities can be detected by applying a thresh-
old to SDDB(Pquery).

4 Experiments

For our experiments, we utilized 54 left and 57 right lung shapes for building
a normal lung shape database. In addition, 22 left and 16 right gross abnormal
lung segmentations were available. Abnormalities were caused by different kinds
of lung pathology (e.g., cancer), missing data, segmentation errors, and severe
breathing artifacts. All lung shapes were represented by u = 4000 randomly
selected surface sample points. The selection of u represents a good trade-off
between computing time, needed for calculating shape histograms, and the abil-
ity to describe local surface details. Shape histograms with nbins = 360 were
utilized (partitioning scheme: 5, 8, and 9 bins for radius, longitude, and latitude,
respectively; see Fig. 2).

Two experiments were performed to assess our method. First, we performed a
leave-one-out experiment on the database shapes. There are two reasons behind
this experiment. First, the experiment allows us to find out how well the left out
shape is represented in the database. This is an important analysis, because we
have a limited number of database shapes for the left and right lung. Clearly,
the more lung shape cases are stored in the database, the better the population
can be described. Second, it allows us to find out which 3D shape dissimilarity
(SD) values we can expect for normal lung shapes. In the second experiment,
the available abnormal left and right lung shapes were used to query the corre-
sponding normal lung shape databases. The SD histograms of both experiments
are plotted in Figs. 5(a) and (b) for the left and right lung, respectively. And
the corresponding receiver operating characteristics (ROC) are shown in Fig. 6.
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Fig. 5. Shape dissimilarity (SD) histograms for normal and gross abnormal shapes.
(a) Left lung and (b) right lung.

(a) (b)

Fig. 6. Receiver operating characteristics (ROC) for the (a) left and (b) right lung.

The time required for producing a point representation of a query segmen-
tation was 220 seconds. The generation of the eleven shape signatures needed
for gaining size invariance took 72 seconds. The intrinsic shape retrieval process
required 0.5 seconds on average. Our experiments were performed on a standard
image pressing workstation, and the utilized implementation was not optimized
for speed.

5 Discussion

The shape dissimilarity (SD) histograms in Figs. 5 show that normal lung shapes
have quite low SD values compared to abnormal shapes. For the left and right
lung shapes, there is some overlap in terms of shape dissimilarity. This is also
clearly visible in the ROC plots in Fig. 6. One cause for this might be that some
normal shapes are not well represented in our database. For the reported ex-
periments, a limited number of lung shapes was available. Clearly, the currently
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(a) (b) (c) (d)

Fig. 7. Impact of surface smoothing. (a) and (c) Lung segmentations containing seg-
mentation errors; (b) and (d) corresponding smoothed lung shapes. The gross segmen-
tation error is clearly visible in (b), but the error caused by a tumor in (c) is not visible
in (d) due to size.

utilized number of database shapes is not representative for all possible lung
shapes, as indicated by our experiments. For example, barrel chest “shaped”
lungs are underrepresented. In this context, we plan to evaluate our method on
a larger data collection in the future.

Using smoothed lung shapes for analysis clearly represents a trade-off. On
the one hand, only basic shape characteristics are utilized for shape analysis, and
heart motion artifacts, rib patterns on the lung surface, etc. do not influence the
shape dissimilarity measure. On the other hand, some (smaller) abnormalities
might not be detected, because they are not or only allusively represented by
the smoothed shape (Fig. 7). In this paper, we are specifically aiming at assess-
ing/detecting gross abnormalities based on shape analysis. In the future we plan
to expand our approach by utilizing shape representations on different scales.
This will allow us to detect more and smaller abnormalities. In this context, cal-
culating shape signatures for specific sub-parts of lung shapes might also enable
to detect smaller and local abnormalities.

6 Conclusion

We have presented an approach to assess grossly abnormal lung segmentations
based on a shape retrieval approach. Our method represents a step towards the
development of an automated quality assessment system. Such a system will be
beneficial for the automated analysis of large numbers of MDCT lung scans. In
addition, it offers the prospect of developing novel approaches to robust lung
segmentation.
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