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Abstract. In this paper, we present a semi-automatic region growing
algorithm to segment the intrathoracic airway tree from 3-d CT images.
A common problem with region growing is leakage. In order to limit
leakage, our method bounds the segmentation using cylinders of adaptive
orientation and dimensions. The leaks are detected based on anatomical
information of the airways and an algorithm to avoid them is proposed.
We also present an algorithm to automatically select a seed point for the
segmentation. The method was tested on a dataset of 40 patients and
results were quantitatively evaluated based on ground truth data.

1 Introduction

Airway tree segmentation is the process of identifying and extracting from vol-
umetric medical images the structures of the respiratory system that lead the
air into the lungs. With the result of the segmentation, doctors and researchers
can make measurements, check for abnormalities and generally be assisted in
diagnosing diseases in the respiratory system.

In this work, we concentrate on the segmentation of the lower airway tree,
namely the trachea, bronchi and bronchioli. Due to the natural complexity of
the airways, with several branching levels, and noise or other artefacts present
in the image, the segmentation is far from trivial. A common method to solve
the problem is region growing [1], and semi- and fully-automated region growing
algorithms have been used to segment the airways [2–4]. In this process, the
user provides one or more seed points inside the airway structure. From these
points, a region is grown by recursively aggregating voxels that pass a certain
test of similarity. Common similarity tests check differences in intensity between
neighbouring voxels.

One common problem of region growing algorithms is leakage. In the case
of the airway tree segmentation, a thin wall separates the structure from neigh-
bouring organs and air inside the lungs. Noise or other artefacts can create holes
in this wall and, since the airway lumen and the lung interior have similar voxel
intensities, the entire lung can be aggregated to the region. Another problem
specific to airway tree segmentation is the early collapse of branches. In this
case, the growing process stops too early, resulting in only partially segmented
branches.
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Tschirren et al. proposed an algorithm that takes advantage of the fact that
the airway tree is a hierarchical combination of cylindrically shaped objects [5].
In their algorithm, cylinders of adaptive radius and orientation bound the seg-
mentation, facilitating the process of leak detection. Later, Pinho et al. proposed
improvements to [5] and introduced new ways of detecting leaks using anatom-
ical, instead of pure image features [6]. In the present work, we build upon [6]
and add the following contributions:

– propose a heuristic algorithm to automatically select a seed point inside the
trachea, since chest CT scans often include the upper airways and other
regions, complicating this task;

– use cylinders of adaptive height as well as adaptive radius in order to bound
the segmentation;

– propose a new strategy to avoid leaks, by taking into account the fact that
they grow through small holes on the edges of the structure being segmented.

The proposed method was evaluated with a dataset of 40 patients, subdivided
into training and testing groups. Measures of number of branches, airway tree
length, and leakage were taken in order to evaluate the method, by comparing
it to ground truth data.

2 Method

We begin with a review of the method proposed in [5] and the ideas introduced
in [6]. In [5], multiseeded fuzzy connectivity (MFC) [7] was used to segment the
airways’ walls and lumen in an iterative process which places adaptive cylinders
(or ROIs) around the region to be grown. Airway walls and lumen compete
for voxels based on an affinity value ψ ∈ [0, 1] assigned as a function of voxel
intensities. The ROIs bound the region growing and set limits to possible leaks.
A leak detector assumes that leaks have a “spongy” structure, with many holes
and tunnels. Once a leak is detected with a special morphological operator, the
algorithm goes back to the previous step and repeats the segmentation, using
what the authors called “directional affinity”. This strategy avoids new leaks
by assigning affinity values as a function of the intensity of a voxel and of its
neighbours lying in the direction of the ROI. Airway branching is detected by
computing the skeleton of a region within an ROI, using distance transforms. The
branches of the skeleton, their spatial orientation, and the intersections between
the region and the borders of the ROI determine the radius and orientation of
the ROIs of the next step. The heights of ROIs may change if the segmentation
stops exactly at a branching point. This process continues until no more voxels
are aggregated.

In [6], the authors proposed improvements to the above algorithm. First, ex-
ecution speed was increased with a simplification of the skeleton computation:
instead of computing the real skeleton, an approximation was obtained by di-
rectly linking the centres of gravity of intersections between a region and their
respective ROI. For intersections occurring on the side and upper borders of
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Fig. 1. Avoiding leaks. The segmentation is repeated with an increasing neighbourhood
mask until no leaks are detected.

the ROIs, a global centre of gravity for the ROI was obtained and connected to
the regions of intersection. This approximation is certainly not precise enough
with respect to skeleton accuracy, but suffices for the estimation of the radii and
orientations of the ROIs of the next step.

The second improvement dealt with the detection of leaks. Instead of the
purely image based approach adopted in [5], the leak detection uses anatomical
knowledge about the airways. For instance, the number of offspring branches
from one level to the next is usually not larger than 3 or 4 and the radius of
a branch is normally a decreasing function of its length and branching level.
By checking the number of branches and their areas resulting from intersections
with ROIs, leaks can be easily detected. Similar ideas were used in [8], with
wavefront propagation algorithms, and in [9], with region growing.

In order to further improve [6] by detecting more airway branches and reach-
ing deeper into the lungs, we propose to extend the region growing with two new
ideas. The first is to use ROIs of adaptive height instead of only adaptive radius,
such that hl = Hρ(l−1) and hl ≥ Hmin, where l ≥ 1 is the current branching
level, hl is the height of the associated cylinder, in millimetres, H is the default
initial height, ρ ∈ [0, 1] is the height change ratio, and Hmin is the minimum
height limit. By doing this, short branches at higher branching levels, which
otherwise would not intersect an ROI, can be detected.

Secondly, whenever the segmentation within an ROI is repeated due to a
leak, each candidate voxel and its neighbourhood within a mask are analysed.
Only if the voxel and all its non-visited neighbours pass the similarity test (voxel
intensity lower than a threshold T in our case) is the voxel aggregated to the
region. Each time the segmentation is repeated, a mask of higher radius is used,
until no leaks are detected or a maximum number of attempts is reached. The
reasoning behind this approach is that a leak always occurs due to the presence
of holes on the boundaries of the region being segmented, so we are basically
trying to discover their sizes. In contrast to the direction affinity adopted in [5],
our neighbour affinity technique allows more possibilities of continuing with the
segmentation, while trying to avoid leaks. The 2-d scheme of Fig. 1 illustrates
the idea and Algorithm 1 details the process.
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Algorithm 1 region grow(image, seed)
1: /* intialization and computation of 1st ROI */
2: while ¬ empty(roi queue) do
3: r ← pop(roi queue)
4: roi region grow(image, r)
5: has leak ← detect leak(r) {using anatomical information}
6: if has leak ∧ (count leak < max count leak) then
7: set neighbour affinity(mask[count leak]) {set mask to avoid leak}
8: count leak ← count leak + 1
9: reset(image, r)

10: push(roi queue, r)
11: else
12: if has leak then
13: remove leaking branches(r) {may remove all branches}
14: end if
15: roi list ← process roi(r)
16: for all ri ∈ roi list do
17: push(roi queue, ri)
18: end for
19: count leak ← 0
20: set neighbour affinity(null) {switch neighbour affinity off}
21: end if
22: end while

In the algorithm, Step 1 comprises a sequence of steps to compute the first
ROI, using the given image and seed point, and push it onto an ROI-queue.
After growing a region within the ROI at the front of the queue, Step 5 detects
leaks using anatomical information. A leak is identified when the ROI splits into
more than 5 regions for levels 1 through 4 and into more than 3 regions for
higher levels. In addition, a leak is also identified when the area from a branch
to its children increases by a factor f ≥ 2. The regions of intersection between
the ROI and the region grown corresponding to leaks are put in a list. If a
leak is detected, Step 7 switches neighbour affinity on by providing the next
neighbourhood mask to be used in the similarity tests. The ROI is reset and
pushed back onto the queue in Steps 9 and 10, respectively. If leaks are still
present after trying all masks, Step 13 removes from the list obtained in Step
5 the corresponding branches. Step 15 processes the remaining branches of the
current ROI and returns a list of ROIs for the next iteration, which are pushed
onto the queue. Finally, Step 20 switches neighbour affinity off and the process
restarts.

Seed Point Selection As mentioned previously, region growing algorithms
need one or more seed points to mark the start of the segmentation. Algorithms
that automate the seed point selection for the segmentation of the airways typi-
cally detect a circular region near the centre of a slice of the image volume. The
region is supposed to correspond to the trachea, and the seed point is taken as
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Fig. 2. A situation where other structures may mislead the detection of the trachea in
an axial slice of the CT scan.

its centre of gravity. This process may fail if the chosen slice contains misleading
regions (e.g., if the CT scan contains parts of the upper airways) or does not
contain the trachea at all. Fig. 2 illustrates the former case with a slice contain-
ing the trachea, the oesophagus, and a tumour. In the present work, we propose
a more robust method to automatically select a seed point inside the trachea.

For one axial slice i = 1 . . . N of the image volume, the method works as in
Algorithm 2. Let us use the threshold below operation to turn all voxels with
intensity below a certain threshold to white and the rest to black [10]. Step 1
thus finds the best threshold to segment the air in the image, which includes
the areas inside the lungs and airway lumen, using Otsu’s method [11]. Step 2
applies a masked, morphological closing operation to the slice in order to fill
all holes. Step 3 identifies 8-connected regions in the resulting image and labels
them. Step 6 removes noise, i.e., all regions with size s ≤ Smin pixels. Step 10
takes care of eliminating narrowed regions, i.e., with excentricity e > emax, and
steps 12 through 15 identify the region of the slice with highest excentricity, Rei

.
After these steps, a number of regions may be left in each slice. These regions

comprise the trachea and areas corresponding to air outside the lungs, the upper
airways, the lungs, etc. The challenge is then to choose the slice containing only
the trachea or at least to correctly identify it when other structures are present.
For this, we minimise a function of several parameters, in order to favour:

– slices with fewer regions, since, in general, the upper part of the trachea
tends to appear alone in the image;

– slices that maximise e, of Rei
, given that the upper part of the trachea, just

below the infraglotic cavity, tends to be elliptical;
– slices in which the major axis of Rei

is aligned with the sagittal plane;
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Algorithm 2 find trachea(slicei)
1: threshold(slicei) {segment air}
2: close(slicei)
3: regionsi ← label(slicei)
4: for all Rj ∈ regionsi do
5: if size(Rj) < Smin then
6: remove(regionsi, Rj) {remove noise}
7: else
8: e ← excentricity(Rj)
9: if e > emax then

10: remove(regionsi, Rj) {remove narrow regions}
11: else
12: if e > maxe then
13: maxe ← e
14: Rei

← Rj

15: end if
16: end if
17: end if
18: end for

– slices with lower indexes, since the search is for the top of the trachea (as-
suming slice 0 coincides with the top position of the CT scan);

– slices in which Rei
is small, which avoids confusion with the lungs;

– slices in which Rei
maximises the area of the ellipse, so that only “regularly”

shaped ellipses are chosen.

We therefore define the minimisation as

arg mini=1..Nf(i, ei, ai, si, ri) = nri

(
i

N
+

si

S
+ (1 − ei) + ai + (1 − ri)

)
, (1)

where {ei, ai, ri ∈ [0, 1]}. In this equation, i is the slice index, nri
≥ 1 is the

number of regions of the slice, si is the size of Rei
in pixels, with S being a max-

imum size threshold, ei is the excentricity of Rei
, ai is the angle between Rei

’s
major axis and the sagittal direction, and ri is a measure of area maximisation.
The latter is computed by taking the ratio between the number of pixels of Rei

and the area of its corresponding ellipse. Lastly, the selected seed point is the
centre of gravity of the Rei

that minimises f(·).

3 Experiments

As stated in Section 1, the proposed method was tested with a dataset of
40 patients, provided as part of the workshop and airway segmentation chal-
lenge EXACT09: Extraction of Airways from CT 2009. The data was subdi-
vided into one training and one testing group, each with 20 patients, num-
bered CASE01. . .CASE20 and CASE21. . .CASE40, respectively. The segmen-
tation was evaluated by a team of trained observers. The aim of the workshop
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was to compare the performance of different algorithms. For this purpose, a
ground truth was constructed from all submitted segmentations and all submis-
sions were evaluated with respect to this ground truth.

The objective of the experiments was to check, for the testing group, how
many branches were detected, the segmented tree length and the amount of
leakage. The following measures were used to compare the submitted results:

– Branch count: number of branches detected.
– Branch detected: the fraction of branches that were detected with respect to

the branches present in the ground truth.
– Tree length: the sum of the length of the centre lines of all correctly detected

branches.
– Tree length detected: the fraction of tree length that was detected correctly,

relative to the tree length of the ground truth.
– Leakage count: the number of unconnected groups of “correct” regions that

are neighbours of a “wrong” region.
– Leakage volume: the volume of regions that are wrongly detected.
– False positive rate: the fraction of the volume of regions that are detected

wrongly relative to the volume of all detected regions.

The trachea was excluded from the branch length and branch count related
measurements. For the voxel based measures of leakage, both trachea and main
bronchi were excluded. Furthermore, the exact airway shape and dimensions
were not taken into account.

We implemented algorithms 1 and 2 in C++, and the programs were executed
on an Intel R© Core

TM

2 Quad CPU, at 2.4 GHz, with 8GB of RAM, running
under Windows Vista

TM

Ultimate 64-bits. The region growing algorithm used
a single threshold value T = −800HU for the whole airway tree and did not
employ multiseeded connectivity, as opposed to [5], since we only segmented
the airway lumen, not the walls. In addition, intensities of candidate voxels
were averaged within a 6-connected neighbourhood to reduce noise artefacts.
The parameters ρ and Hmin were primarily chosen empirically for the training
group, but adjustments were necessary during the experiments with the test set.
Eventually, ρ = 0.85 provided the best results except for CASE32, for which it
was set to ρ = 0.75, with Hmin = 2mm in all cases. For the neighbour affinity,
we used spherical and cubic masks with radii from 1 to 7 voxels, defining, in
this order, 6, 18, 26, 92, 124, 342, 728, 1330, and 2197-neighbourhoods. These
masks remained unchanged during the experiments with the test set, but new
masks were added until the results for the training group were, at least visually,
acceptable. With respect to the seed point selection, we used in Algorithm 2

Smin = 250 pixels and emax = 0.75, and, in Eq. (1), S was equal to the number
of pixels of the slice and N = min(300, Na) slices, where Na is the number of
axial slices of the image volume. Again, these values were empirically chosen for
the training group, but remained unchanged with the test set.
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3.1 Results

The results obtained with the region growing algorithm applied to the testing
group1 can be seen in Table 1. The main difficulty in the segmentation of the
airways is to find the balance between the number of segments detected and
leakage. In general, it is very difficult to increase the former without allowing
the latter to increase as well. Our approach thus remained on the conservative
side in terms of branch count and reach, but mostly with low leakage count.

Table 1. Evaluation measures for the twenty cases in the test set.

Branch Branch Tree Tree length Leakage Leakage False
count detected length detected count volume positive

(%) (cm) (%) (mm3) rate (%)

CASE21 69 34.7 39.4 35.7 0 0.0 0.00
CASE22 132 34.1 86.4 26.1 7 160.0 1.14
CASE23 89 31.3 56.6 21.7 6 56.1 0.52
CASE24 69 37.1 56.0 34.4 14 277.2 1.66
CASE25 76 32.5 58.5 23.2 8 557.8 3.27
CASE26 35 43.8 24.3 37.0 0 0.0 0.00
CASE27 36 35.6 25.9 31.9 0 0.0 0.00
CASE28 53 43.1 35.2 32.1 1 473.7 7.60
CASE29 73 39.7 46.9 34.0 4 27.6 0.40
CASE30 47 24.1 33.2 21.7 0 0.0 0.00
CASE31 61 28.5 39.0 22.2 7 578.0 6.98
CASE32 64 27.5 46.6 21.4 2 1740.7 14.34
CASE33 70 41.7 50.2 34.2 5 670.3 11.25
CASE34 140 30.6 85.4 23.9 10 2407.9 12.70
CASE35 95 27.6 61.1 19.8 3 39.7 0.32
CASE36 83 22.8 69.7 16.9 0 0.0 0.00
CASE37 67 36.2 52.3 29.4 2 105.9 1.11
CASE38 28 28.6 23.5 35.3 0 0.0 0.00
CASE39 109 21.0 84.8 20.7 2 93.5 1.04
CASE40 88 22.6 63.6 16.4 13 1420.6 10.24

Mean 74.2 32.1 51.9 26.9 4.2 430.4 3.63
Std. dev. 29.5 6.9 19.6 6.9 4.4 672.3 4.92

Min 28 21.0 23.5 16.4 0 0.0 0.00
1st quartile 53 27.5 35.2 21.4 0 0.0 0.00
Median 70 31.9 51.3 25.0 3 99.7 1.07
3rd quartile 95 39.7 69.7 34.4 8 670.3 10.24
Max 140 43.8 86.4 37.0 14 2407.9 14.34

Further improvements to the proposed method include more robust algo-
rithms to detect leaks and avoid them. One characteristic of the neighbour affin-
ity we adopted is the fact that the resulting segmentation will become thinner as
1 Provided by the organisers of the workshop.
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the neighbourhood mask increases, but this can be corrected with local dilation
operations. Another improvement is the use of adaptive intensity thresholds,
employed in, e.g., [9, 3]. In fact, we have already tried this approach and pro-
duced some primary results. We observed that although the number of branches
may increase considerably, so may the number of leaks. As a consequence, this
technique must be coupled with efficient leak detection and removal.

With respect to the automatic seed point selection, the proposed algorithm
performed very well in all cases. The selected point was always located inside
the trachea, at the top. In very few situations, however, the point was set at a
lower location. This happened when the trachea had an almost circular shape
along all or nearly all of its length. Since we favoured elliptical regions, such a
shape happened to appear at slices with higher indexes. Given that the trachea
was not considered in these experiments, it was not a problem, but adjustments
to the function of Eq. (1) may still be necessary.

Table 2 presents the execution times of the proposed algorithms applied to the
testing group. For the region growing, execution time is naturally an increasing
function of the number of detected branches, but all executions ran in less than
1 minute, with half of them below 3 seconds and 75% below 8 seconds. The seed
point selection, in turn, showed less varying execution times, mostly because
N = 300 slices for all cases. The differences between cases lay mainly in the
complexity of each slice processed by the algorithm. Finally, Fig. 3 presents the
segmentation results for 2 patients.

4 Conclusions

In this work, we presented a semi-automatic region growing method for the
segmentation of the intrathoracic airways from tomographic scans. The method
uses cylinders (or ROIs) of adaptive orientation and dimensions to bound the
segmentation. The role of these ROIs is to set a limit to leaks, a common problem
with region growing algorithms, and to allow them to be more easily detected.
Our approach uses anatomical information about the airways in order to detect
the leaks and we proposed a novel algorithm to avoid new leaks once they are
detected. We also proposed a heuristic algorithm to automatically select a seed
point at the top of the trachea, which is later provided to the region growing
algorithm. The method was tested on a dataset of 40 patients, and remained on
the conservative side in terms of branch detection, but with a low number of
leaks in most cases.
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