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Abstract. Tracheal stenosis is a life threatening condition for which the
successful treatment relies on the precise evaluation of its dimensions and
severity. Recently, Active Shape Models (ASMs) were proposed for steno-
sis assessment and stent prediction, with promising results. An effective
ASM, however, depends on the applied surface registration technique,
which should not be influenced by the stenotic regions. The present
work reviews previously proposed registration techniques and formulates
a new method to estimate the shape of the healthy trachea of a patient
with stenosis. Experiments with real and simulation data showed that
the new method outperforms the conventional methods with respect to
registration accuracy.

1 Introduction

Tracheal stenosis is a stricture of the windpipe that can be life threatening. Re-
construction or resection surgeries and the use of stents are important resources
in the management of the condition. However, a successful treatment relies on
the correct assessment of the stricture, which determines its location, length and
degree of severity. Manual and computer aided approaches for the assessment of
stenosis have been described in the literature [1–3].

Concomitantly, Active Shape Models (ASM) have been an important tool in
computer aided diagnoses. In order to register the models to clinical data, the
sum of the square of residuals between the model and the target is iteratively
minimised. A problem may arise if the distribution of the residuals is not Gaus-
sian, since standard least squares minimisation applied to non-Gaussian data
distributions is known to be suboptimal. Deviations from Gaussian assumptions
are normally evidenced by the presence of outliers in the data.

With the above concepts in mind, Pinho et al. claimed that correct assess-
ment of stenosis depends on a good estimation of the healthy trachea of a patient
and they used ASMs of tubular approximations of healthy tracheas for assess-
ment of stenosis and prediction of stent dimensions [4]. The challenge in this
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approach, however, is to avoid the influence of stenotic regions on the registra-
tion of the ASM to clinical data. For this, they used a method in which, at each
iteration, residuals corresponding to shape landmarks over regions with steno-
sis have their influence on the registration reduced by keeping these landmarks
fixed w.r.t. the shape obtained in the previous iteration. Eventually, the fixed
landmarks act as a counterforce against the attraction of stenotic regions, aiding
the model in producing the desired healthy trachea.

Despite the promising results, the work above lacked a thorough analysis of
the surface registration mechanism and experiments with clinical data. In the
present work, we build upon [4], concentrating on the surface registration step
of the ASM, and add the following contributions:

– formulate FixedLandmarks as a new method to avoid the influence of mis-
leading regions during the registration of ASMs;

– build the ASM using correspondence optimisation of landmarks, as proposed
by Huysmans et al. [5], instead of the tubular approximations used in [4];

– investigate the behaviour of FixedLandmarks and other methods through a
comprehensive set of experiments on clinical as well as on simulation data;

– present qualitative and quantitative comparisons between the registration
methods and standard least squares with respect to the estimation of the
healthy trachea.

We begin this paper with a review of ASMs and their use in the estimation
of healthy tracheas, in Section 2. In Section 3, the registration mechanism and
methods previously used with ASMs are briefly described before the formulation
of the FixedLandmarks. In Section 4, the experiments and results are presented
and the article is concluded in Section 5.

2 Active Shape Model of Healthy Tracheas

ASMs are built from a training set of N aligned shapes, xi, each represented
by the concatenation of its n, d-dimensional landmarks, which must correspond
across the training set. Principal Component Analysis then extracts the N eigen-
vectors and non-negative eigenvalues of the covariance matrix of the training set.
New shapes x are obtained with a linear combination between the average shape
of the training set, x, and the dn × N matrix of orthonormal eigenvectors, P:

x = x + Pb , (1)

where b is an N ×1 vector of weights, which are the parameters of the model [6].
ASMs can be registered to an object of the class they represent by adjusting

the parameter set b. When the model is applied to an image, the registration is
usually an iterative process: the landmarks of the shape generated by the model
at the current iteration are moved along their normals, generating a candidate
shape y, which matches high gradients corresponding to edges of the target.
Afterwards, a new set of parameters b̂ is computed in order to allow the model
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to be registered to y. The set b̂ which defines the best fit of the model to the
candidate shape is obtained by minimisation of the squared error between y and
x, represented by the following error function:

ξ(b) = (y − x)T (y − x) . (2)

Expanding Eq. (2) with Eq. (1) and minimising ξ with respect to b results in:

b̂ = PT (y − x) . (3)

This minimisation is herein referred to as StandardLS. This whole procedure is
repeated until no significant changes have been made to the shape generated by
the model at subsequent iterations.

Huysmans et al. proposed a method for shape modelling of cylindrical sur-
faces using cylindrical parametrisation [5]. In their method, the shapes of the
training set are first aligned using the iterative closest point algorithm [7] and
mapped on the unit cylinder, with a criterion to minimise distortions. The choice
of landmarks along the boundaries of the shapes is made automatically, in the
parametric domain. Likewise, the correspondences between the landmarks are
established in the parametric domain, using minimum description length [8].
The optimised landmarks are later mapped back onto the original shapes. The
boundary shapes, xi, are eventually described by the concatenation of n land-
marks xvj

= (xj , yj , zj) and used to build the model.
As shown in [6], shapes generated with ASMs resemble those in the train-

ing set. By constructing the model with healthy tracheas only, local distortions
typical of stenotic geometry are not present. As a result, the edges in the image
corresponding to regions with stenosis have low impact on local deformations of
the ASM. Yet, the shape generated by the model can still be globally narrowed.
In order to cope with this drawback, the registration is divided into two iterative
stages. The first stage, a rigid registration, aligns the average shape of the model
to the target trachea. This procedure aids the gradient based search in finding
the location and orientation of the target trachea. In addition, landmarks of
the shape generated by model which are located in the vicinity of regions with
stenosis tend to remain far from their corresponding target. In the second, non-
rigid registration stage, those landmarks are kept fixed at each iteration in order
to minimise their influence on the adjustment of the model parameters. As the
shape generated by the model iteratively deforms, the expected result is a tra-
chea that matches the healthy regions of the target and produces an estimation
for the healthy caliber of its narrowed parts.

3 Surface Registration

When the distribution of the residuals, {rj |j = 1, . . . , n}, between x and y in
Eq. (2) is not Gaussian, due to the presence of outliers, StandardLS may produce
suboptimal results. The literature presents different approaches to avoid the
influence of outliers. In the remainder of this section, we review some of these
approaches applied to ASMs and formulate a new one, called FixedLandmarks.
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Weighted Least Squares The influence of outliers can be reduced by assigning
weights to the contribution of each residual, modifying Eq. (2) to

ξw(b) = (y − x)T W(y − x) , (4)

where W is a diagonal matrix of weights. Minimising ξw with respect to b yields

b̂ = (PT WP)−1PT W(y − x) , (5)

which is the basic formulation of weighted least squares (WLS ) minimisation.
From the above definition, it is clear that a good choice of weights is key for

an effective use of WLS. In the field of Robust Statistics, estimators that are less
affected by deviations from Gaussian or other model assumptions can be devised
to further improve the effects of WLS [9]. Rogers et al. used robust statistics
with ASMs in different medical applications and filled matrix W with the Huber
weighting function [10]. Theobald et al. compared several weighting functions
for landmark occlusion detection, among which the Talwar, the Cauchy, and the
Gaussian weighting functions performed best [11]. Fig. 1 shows the four functions
described. In all of them, σ is the standard deviation of the residuals, which can
be estimated at each iteration from the median of their absolute values [10].

whuberi
=

{
1, ri < σ
σ/|ri|, σ ≤ ri < 3σ
0, ri ≥ 3σ

wtalwari
=

{
1, ri < σ
0, ri ≥ σ

wcauchyi
=

1

1 +
(

ri

σ

)2 wgaussi
=

1

σ
√

2π
e
−

(ri−μ)2

2σ2

Fig. 1. Huber, Talwar, Cauchy, and Gaussian weighting functions.

In the present work, we assume that the rigid registration stage of the ASM,
as described in Section 2, results in a shape near healthy regions of the trachea
and far from narrowed ones. Therefore, according to the definitions above, the
ri’s corresponding to landmarks over these narrowed regions will be considered
the outliers in the distribution.

Surface Extrapolation In this approach, the purpose is to use the model to
predict missing parts of the target shape. At each iteration k of the registration,

y(k) ≈ (x + Pb̂
(k)

)|L, where L, of size m, denotes the set of landmarks of the
model actually used. It is possible that m � n, where n is the total number of
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landmarks of the model. The parameter set b̂
(k)

is computed as in Eq. (2), but
using only the components of P and x corresponding to the m target landmarks.

Rajamani et al. used extrapolation to predict the shape of the femur from
manually sampled points during hip surgery [12]. In their method, the m sampled
points are matched to the nearest landmarks of the shape generated by the model
at each iteration. Furthermore, a weighting term added to the error function
restricts the deformation freedom of the ASM as m decreases, forcing the model
to produce shapes similar to the average shape. In [13], extrapolation was used
to plan reconstructions of mandibular dysplasia. The ASM is registered to parts
of the mandible that are considered as being regularly shaped.

Again, we assume that the shape generated by the rigid registration converges
to a location near healthy regions of the trachea and far from those with stenosis.
Thus, the set L will represent landmarks associated to healthy regions, to which
the ASM is expected to yield the best possible match.

Fixed Landmarks Here we formulate a new registration technique, which we
refer to as FixedLandmarks.

After the rigid registration, the landmarks of the shape generated by the
model at the current iteration are displaced along their normals. If a high gradi-
ent is not found within a threshold distance d > 0, the corresponding landmarks
remain fixed, while other landmarks are allowed to move as usual.

Let then x(k) = x + Pb(k) be the shape generated with the model at any
iteration k of the non-rigid registration. Let y(k+1) be the candidate shape gen-
erated by displacing the landmarks of x(k) and let dy(k+1) = y(k+1) − x(k). As
described in the previous paragraph, if ‖y(k+1)

vj − x
(k)
vj ‖ > d, then y

(k+1)
vj = x

(k)
vj

and dy
(k+1)
vj = 0, where j = 1 . . . n. In other words, some landmarks of the can-

didate shape y(k+1) remain fixed w.r.t. x(k). Grouping the dy
(k+1)
vj = 0 and the

corresponding columns of PT results in two subsets of landmarks, L′ and L′′, of
sizes n′ and n′′, respectively, such that dy(k+1)|L′′ = 0. Let us then write

b̂
(k+1)

= PT (x(k) + dy(k+1) − x) , (6)

from Eq. (3), and split it into

b̂
(k+1)

=
[
PT (x(k) + dy(k+1) − x)

]∣∣∣
L′

+
[
PT (x(k) + dy(k+1) − x)

]∣∣∣
L′′

, (7)

which does not affect the result. Since dy(k+1)|L′′ = 0, we finally obtain

b̂
(k+1)

=
[
PT (y(k+1) − x)

]∣∣∣
L′

+
[
PT (x(k) − x)

]∣∣∣
L′′

, (8)

showing that b̂
(k+1)

is determined by both the displaced landmarks y(k+1)|L′ and
the landmarks x(k)|L′′ , which remained fixed1. Consequently, when computing

x̂
(k+1) = x + Pb̂

(k+1)
, (9)

1 Note that L′ and L′′ can be different at each iteration.
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x̂
(k+1) will be the best fit, in a least squares minimisation sense, to y(k+1)|L′

and x(k)|L′′ . Provided that there are enough healthy areas around regions with
stenosis, the fixed landmarks force the shape generated by the model to remain
far from those regions, while enabling correct matches at the healthy areas. As
the shape deforms iteratively, it progressively assumes the form of the desired
healthy trachea, guided by the regions where correct matches occur.

4 Experiments

We carried out experiments on simulation as well as on clinical data in order to
compare the different registration techniques discussed in Section 3. With the
simulation data, ground truths were formally established and the experiments
provided a reliable quantitative comparison between the registration techniques.
The experiments with clinical data, in turn, provided a qualitative comparison
between them.

To build the ASM, we used N = 9 healthy tracheas at total lung capacity,
each with n = 1024 landmarks. The low-dose, chest CT scans of their respective
patients were obtained from pulmonary medication studies carried out at the
University Hospital of Antwerp, Belgium, and patient data were anonymised
before the images were used. The tracheas were segmented from the images using
a region growing algorithm dedicated to the segmentation of the airways [14] and
then converted to a 3-dimensional shape with the marching cubes algorithm [15].
The 3-d shapes were later supplied to the correspondence optimisation algorithm,
as in Section 2, which eventually produced the shapes used in the model.

4.1 Quantitative Comparison

In order to quantitatively compare the registration methods, we ran a large set
of leave-one-out tests using simulation data. First, for each of the N healthy
tracheas, 72 phantoms of stenosis – 24 anteriorly located (A), 24 posteriorly
(P), and 24 roughly symmetrically narrowed (S) – were created. The stenotic
areas were generated by applying a local erosion mask to the binary images of
the segmented healthy tracheas until the stenosis achieved the desired shape [4].
The phantoms followed the categories of Fig. 2, based on [16], and were validated
by an expert in the pulmonology field. For example, phantom I-1P represents a
posterior stenosis of less than 25% along the upper third of the trachea.

For each run of the T = N leave-one-out tests, the model was built with
N−1 tracheas and was then registered to the phantoms created from the trachea
not present in the training set. In all tests, the average shape of the ASM was
initially roughly placed near the target trachea in the image. Moreover, the non-
rigid registration methods were only triggered after the convergence of the rigid
registration. Since the initial conditions were always the same, our evaluation is
guaranteed to be fair.

The quality of the assessment of stenosis using the ASM strongly depends
on the estimation of the healthy trachea of the patient. Therefore, the objective
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of this set of experiments is to register the model to the phantoms using all
the registration methods and to measure the distance between the estimated
tracheas and their originally healthy counterparts. For this purpose, we employed
the algorithm proposed in [17] to compute errors between surfaces using the
Hausdorff distance.

The iteration limit for the registration was set to 200. The minimum squared
error between shapes generated at subsequent iterations, i.e., ξ

(k)
r = (x(k) −

x(k−1))T (x(k) −x(k−1)), was set to 10−7mm2. In the FixedLandmarks, the land-
marks were displaced within a distance d = 1mm along their normals. For the
Surface Extrapolation, the m landmarks of the candidate shape that guided the
deformations were those that remained near the target surface (d ≤ 1mm) after
each iteration of the registration. In addition, we dropped the weighting term
defined in [12], since shapes similar to the average shape of the model are very
unlikely to produce a good estimation of a specific healthy trachea. In this way,
the Surface Extrapolation becomes equivalent to using WLS with a step func-
tion yielding binary weights. Besides the robust approaches of Section 3, we
also included in the comparison the StandardLS, i.e., not distinguishing between
healthy and stenotic areas on the target surfaces. In total, we ran 4536 tests.

4.2 Qualitative Comparison

In addition to the simulation experiments, we made a retrospective study with
chest CT scans from 3 patients. The use of the CT scans was approved by
the ethics committee of the Ghent University Hospital (doc. ECUZG2009/140),
Belgium, and patient data were anonymised before the images were used in the
experiments. The 3 patients had stenosis with the following characteristics:

– Patient 1 had severe posterior stenosis along the lower half of trachea,
– Patient 2 had severe lateral stenosis along the two lower thirds of the trachea,
– Patient 3 had severe symmetrical stenosis along the lower half of the trachea.

No preprocessing was applied to any of the 3-d CT images. In addition, they
were very anisotropic in the axial direction, with pixel resolution, in mm, (0.62,
0.62, 3.00), (0.98, 0.98, 5.00), and (0.44, 0.44, 3.00) respectively.

Since the registration is an iterative, edge based search, neighbouring organs
and structures as well as noise may mislead the search. Therefore, the registration

CATEGORY LOCATION AND LENGTH

I Upper third of the trachea
II Middle third of the trachea
III Lower third of the trachea
I-II Upper third extending to middle third

II-III Middle third extending to lower third
I-III Upper third extending to lower third

CATEGORY DEGREE

1 <25%
2 26–50%
3 51–75%
4 >75%

Fig. 2. Categories of stenosis based on location and length (L) and degree (R).
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is dependent on the initial search location. At this point, the initialisation of
the registration is done manually, by conveniently placing the average shape of
the model inside the image, namely, near the target trachea. For each patient,
the initial position of the model was manually set for one registration method,
recorded, and then replicated for all other methods. The results were reviewed by
an expert in the pulmonology field in order to qualitatively compare all methods
with respect to the estimated healthy trachea.

The ASM built for these experiments contained all the N = 9 healthy tra-
cheas. As before, the maximum number of iterations was set to 200, the minimum
ξ
(k)
r was set to 10−7mm2, and d = 1mm. WLS and StandardLS were used in the

same way as in the experiments with simulation data.

4.3 Results and Discussion

For the quantitative comparison between the registration methods using the sim-
ulation data, we subdivided the phantoms of each healthy trachea into G = 10
groups, according to the categories defined in Fig. 2, each with a different size
Sg. The reasoning behind this subdivision is to show how the methods behaved
relative to variations in location, length, and degree of stenosis across the whole
set of T leave-one-out tests. Let us then define, for a test instance t, δmaxgtp

and δmeangtp
as the maximum and mean distances, respectively, between the

estimated trachea for phantom p, of group g, and its original, healthy equiva-
lent. As stated in Section 4.1, these distances are obtained using the algorithm
proposed in [17]. Afterwards,

δmaxgt
=

1
Sg

Sg∑
p=1

δmaxgtp
and δmeangt

=
1
Sg

Sg∑
p=1

δmeangtp
(10)

can be calculated as the average, per-group maximum and mean distances, re-
spectively, for one test instance.

For the final comparison, we computed each group’s average maximum error,
μmaxg

, and average mean error, μmeang
, for each method, across the whole set

of T leave-one-out tests. That is,

μmaxg
=

1
T

T∑
t=1

δmaxgt
and μmeang

=
1
T

T∑
t=1

δmeangt
. (11)

The results and their respective standard deviation bars are shown in Fig. 3.
As expected, the StandardLS did not perform well. The influence of the

stenotic regions on the registration indeed made the resulting shape much nar-
rower or deformed than desired. The use of WLS brought some improvements,
but not enough to completely remove the influence of stenotic regions. The prob-
lem with the weighting approaches is the difficulty in finding the proper weight
assigning function to act only on the regions with stenosis. If the weighting
scheme is too tight, the shape may not deform enough, remaining similar to
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Fig. 3. Per-group μmaxg
(a), μmeang

(b), and respective standard deviation bars
for each method across the whole set of leave-one-out tests. Along the horizontal
axis, the number of phantoms in the test group, Sg, is shown in parentheses.

the mean shape. If it is too loose, the shape may be strongly attracted by the
areas with stenosis. Regarding the Surface Extrapolation, using only the points
near the target surface to guide the deformations eventually resulted in few,
very localised points, especially in the most severe cases. Without a stronger
clue to indicate the shape to be obtained in a global level, the method could
not converge to the desired result, which explains its poor performance. We can
therefore conclude that the FixedLandmarks was the best registration method. It
is especially worth noting how other methods performed worse as the length and
degree of stenosis increased, while the FixedLandmarks was hardly affected. Its
μmeang

’s remained near 0.5mm in all but one test group, I-III, which represented
the longest and most severe types of stenosis in the simulation data.

Fig. 4 presents an example of the estimation of the healthy trachea for phan-
tom II-4A generated from one of the healthy tracheas used in our experiments,
using the StandardLS, GaussWLS, HuberWLS, Surface Extrapolation, and Fixed-

Landmarks methods. The dashed, outermost silhouette in each case represents
the original healthy trachea and the FixedLandmarks yielded the best fit to it.

As mentioned before, the results from the experiments with clinical data
were reviewed by an expert in the pulmonology field. It can be seen in Fig. 5
that the FixedLandmarks produced very plausible healthy tracheas. They have
an acceptable caliber and generally follow the curvature of the patient’s trachea.
Fig. 6 shows the results of other methods applied to the CT scan of patient 1. It
can be seen how the severely narrowed trachea influenced the registration and
either made the estimated tracheas too narrow and deformed or led them astray.

It is important to mention that the quality of the results obtained with the
FixedLandmarks depends on the choice of the sets L′ and L′′, which corresponds
to landmarks that are allowed to move and those that remain fixed, respectively.
These sets, in turn, depend on the choice of d. Intuitively, as d increases, the
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Fig. 4. Shape estimation for phantom II-4A of one healthy trachea from the
simulation experiments, using, from left to right, the StandardLS, GaussWLS,
HuberWLS, Surface Extrapolation, and FixedLandmarks methods. The dashed,
outermost silhouettes represent the healthy trachea used to build the phantom.

FixedLandmarks tends to perform like the StandardLS, since L′′ will tend to
be empty and no landmarks will remain fixed. The registration will thus not
be guarded against the attraction of stenotic regions. If d is too short, L′ will
tend to be empty and, as opposed to the previous case, all landmarks will remain
fixed. One option to solve this problem is to let this parameter be set by the user.
Different values of d should then be tried until acceptable results are yielded.
Another possibility is to devise an adaptive algorithm to change d as needed
during the registration. Nevertheless, the value d = 1mm proved to be a good
empirical choice in our comprehensive set of experiments.

The FixedLandmarks tended to fail when the rigid registration stage con-
verged to a location where estimated healthy areas were either still far from
the target trachea or too close to areas with stenosis. In the former case, the
model shape was not attracted by the edges of the target. In the latter case,

Fig. 5. Results of the estimation of the healthy trachea with the FixedLandmarks

for patients 1, 2, and 3, from left to right. The estimated trachea, in green, is
shown in the CT scan of the patient, overlaid on their segmented stenotic trachea.
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Fig. 6. GaussWLS (L), Surface Extrapolation (M), and StandardLS (R) regis-
tration methods applied to the CT scan of Patient 1. The estimated trachea, in
green, is placed in the image, overlaid on the segmented stenotic trachea. With
Surface Extrapolation, the estimated surface failed to match the lower part of
the trachea. With other methods, the surface was too narrow or deformed.

the stenosis had stronger influence on the deformations, making the estimated
shape somewhat narrower than desired. As stated above, the parameter d can
be adjusted to try to reduce this problem, but further investigation of the rigid
registration stage is still necessary.

Finally, we observed that problems with all approaches occurred mainly at
areas where the shape of the trachea has more variation, namely the upper
and lower thirds. This problem may be solved by an increase in the size and
variability of the training set of the ASM and further experiments are ongoing2.

5 Conclusion

We investigated the behaviour of registration methods used with Active Shape
Models to estimate the healthy trachea of patients with tracheal stenosis. The
estimated tracheas can be used, for instance, in surgery planning and prediction
of stent dimensions. A new method, named FixedLandmarks, was formulated in
order to avoid the influence of stenotic regions during the registration of the ASM
to image data. The method works by keeping landmarks of the model associated
to regions with stenosis fixed w.r.t. the previous iteration of the registration,
which forces the shape generated by the model to stay far from these regions
while enabling correct matches along healthy areas of the trachea. Experiments
were carried out on simulation as well as on clinical data and the FixedLandmarks

proved to be the best method when compared to other ones.
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