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Abstract. The estimation of lung ventilation would allow to prevent
high functional lung regions from radiation injuries during radiation ther-
apy of lung cancer. As 4D-CT images are a standard procedure for radi-
ation therapy planning, the usage of these images for the additional lung
ventilation estimation would be advantageous over other imaging meth-
ods specifically performed for ventilation estimation only. This would re-
quire both a registration of images of different respiratory phases yielding
deformation vector fields and a suitable metric of ventilation estimation
based on the deformation vector fields. We apply two different image
registration methods and two different metrics to a set of 4D-CT images
and compare them with each other and with a global reference measure
based on independent lung volume measures from image segmentation.

1 Introduction

In radiation therapy planning of lung tumors it would be advantageous to con-
sider spatial information of lung function (e.g., ventilation) to prevent high func-
tional lung regions from radiation injury and achieve better quality of life. The
current standard of care for ventilation assessment is nuclear medicine (NM)
imaging [1, 2]. Recent techniques based on oxygen-enhanced magnetic resonance
(MR) imaging utilize hyperpolarized noble gases (e.g., 12°Xe) [3,4]. Images ac-
quired with NM techniques suffer from a low spatial resolution. Also, for both of
NM and MR techniques, there are issues including a long scan time, high costs,
and low availability in radiotherapy departments. More recently, several groups
[5-8] have employed four-dimensional (4D) CT images [9, 10] for ventilation as-
sessment. Four-dimensional CT images for treatment planning can be used for
ventilation assessment as well, thus not requiring any additional imaging ses-
sions. Therefore, the 4D-CT-based approach potentially has several advantages
over NM or MR technique as it is free, fast, available, and of high spatial reso-
lution. However, the accuracy is dependent on image registration algorithms as
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well as of the metrics for ventilation. Several investigators demonstrated varia-
tions in registration results between algorithms [7,11,12]. In the previous work,
we showed apparent discrepancies in deformation vector fields (DVFs) and ven-
tilation images calculated by different registration algorithms [8]. There have
been two different metrics used for ventilation assessment based on the DVFs.
Guerrero et al. have employed difference in Hounsfield units (HU) as a metric of
ventilation, and showed good agreements between global measures of ventilation
(i-e., tidal volume) for patient data calculated using this method and those of
manual measurements [6]. Reinhardt et al. have used the Jacobian determinant
and demonstrated good agreements between local ventilation for sheep data de-
termined by this approach and Xe-CT [5].

The contribution of the current work is to compare two different image reg-
istration methods with each other, both applied to 4D-CT and to also apply
both of the reported metrics to estimate ventilation from the resulting DVFs
on a set of four human 4D-CT scans. In addition, we compare our ventilation
metrics with the relative change in lung volume for each phase transition taken
from independent lung segmentation of each CT volume. Jacobian and relative
volume change should be equal by definition — however, from a technical point
of view this is not trivial and worth to show. Moreover, it can be considered as
a necessary condition for a reliable ventilation estimation.

2 Methods

2.1 Data Sets and Image Acquisition

The 4D-CT scans were performed on the GE Discovery ST multislice PET/CT
scanner (GE Medical Systems, Waukesha, WI) in cine mode at Stanford Cancer
Center. Case 1 of the four examined cases was a patient with lung cancer, the
other cases were breast cancer patients not showing lung metastases. During the
CT scan, patient respiratory traces were acquired using the Varian RPM system
(Varian Medical Systems, Palo Alto, CA), with the marker block placed on the
upper abdomen. Scan parameters were set as follows: 0.5 s gantry rotation, 0.45 s
cine interval, and 2.5 mm slice thickness. Each image reconstruction took 360 deg
of data. The projection images were retrospectively sorted into ten respiratory
phase-based bins of 3D CT image data (i.e., from 0% to 90% phase at 10%
intervals). Figure 1 shows coronal views of two exemplary phases of Case 3 and
all ten phase-to-phase subtraction images.

2.2 Registration Schemes

Given two reconstructed phases (one named reference phase, the other template
phase in the following), image registration tries to find a deformation vector field
u : R? — R? such, that the displaced template phase is similar to the reference
phase. In this work, two fundamentally different registration schemes have been
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Fig. 1. Coronal views of reconstructed phases 30% and 80% (first column) and phase-
to-phase subtraction images (remaining columns): row-wise are displayed 10% — 0%,
20% — 10%, ..., 0% — 90%. Motion of diaphragm and vessel tree, particularly in the
lower regions of the lung, is clearly visible. The change in sign for the diaphragm region
occurs when changing from exhalation (0% to 60%) to inhalation (60% to 0%).

employed to estimate u. Whereas the first scheme matches surfaces (lung wall,
vessel tree) followed by a thin-plate-spline interpolation to achieve the dense
DVF, the second scheme is volumetric by itself.

2.3 Surface-based Registration

In the first, surface-based method we automatically determine the lung surface
by a Hounsfield threshold at —650 HU and a marching cube triangulation in
one phase. This surface not only covers the outer lung border but also the inner
structures separating the parenchyma from the larger lung vessels. The number
of triangles of this iso-surface ranges from 38,000 to 87,000. The method of de-
formable surface models [13] is now applied on this iso-surface of the lungs to
adapt it to the second phase by minimizing the energy term E = Fept + aFipnt.
The external energy F.,; drives the mesh towards the surface points obtained in
a surface detection step. The internal energy Ej,; restricts the flexibility by pe-
nalizing differences from the shape model. A number of such minimization steps
is iteratively performed on the mesh. Details on the candidate point selection
and on the calculation of the external energy can be found in [14]. The internal

energy

Ei =7y > ((vj=vi) = sR(¥; — %)) 1)

J kEN(j)

preserves shape similarity of all mesh vertices v; to the model vertices V; from
the initial iso-surface. N (j) is the set of neighbors of vertex j. The neighboring
vertices are those connected by a single triangle edge. The scaling factor s and
the rotational matrix R are determined by a closed-form point-based registration
method based on a singular value decomposition prior to calculation of (1) to
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allow a similarity transformation (rigid transformation plus isotropic scaling)
without effecting the internal energy.

By use of all vertex deformation vectors of the deformable surface, we con-
struct a coarse displacement field for the lungs. Interpolation by thin-plate-
splines on a subset of these vertices is used to create a dense field from it. The
subset is obtained by replacing all vertices having a neighbor closer than 10 mm.
Further details on this shape-tracking method, the impact of its parameters, and
its computational performance are given in [14].

2.4 Volume-based Registration

The volumetric registration tries to find a DVF such, that the displaced tem-
plate phase minimizes both a certain similarity measure D and a regularizing
term S. By adding a regularizing term, the registration problem is well-posed.
For D we choose the popular sum of squared differences while for S an elastic
regularizer [15] based on the Navier-Lamé equation is employed. The elastic reg-
ularizer assumes that the underlying images can be characterized as an elastic
and compressible material. Its properties are modeled by the so-called Lamé
constants A, p.

Based on calculus of variations we arrive at a system of non-linear partial
differential equations to be solved,

pAu+ (u+ AV - Vu=VT,(R-T,), (2)

with T, and R corresponding to the displaced template phase and the reference
phase, respectively.

For the discretization of (2) finite differences in conjunction with Neumann
boundary conditions have been chosen. The resulting system of linear equa-
tions consists on one hand of a sparse, symmetric and highly structured matrix
arising from the regularizer and, on the other hand, of a so-called force vec-
tor corresponding to the similarity measure. By nature, the larger the contrast
of misaligned image structures is, the larger the modulus of the force vector is.
Therefore, in CT images bone structures get typically perfectly matched whereas
soft tissue may be not aligned. This holds particularly for the lung-rib interface
with on the one side the parenchyma following the breathing motion and on
the other side the ribs staying in place or even moving in opposite direction. To
circumvent mis-alignment of parenchymal structures we added a simple masking
of the force vector. For every voxel with Hounsfield value above 0 HU in the ref-
erence phase, the force vector is set to zero for this voxel position. This results
in a lung deformation which is not influenced by mis-alignment of the rib cage.

The corrected linear system of equations is then linearized and iteratively
solved by a conjugate gradient scheme. The whole registration method is em-
bedded into a multi-resolution setting (typical image pyramid has a resolution
of 512 x 512 x 136 at level 0, 256 x 256 x 136 at level 1, 128 x 128 x 68 at
level 2 etc.; registration is executed on levels 4 to 1) and preceeded by an affine
pre-registration.
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3 Evaluation

For the datasets considered in this work no ground-truth such as nuclear medicine
data or annotated landmark positions was available. But both registration meth-
ods have been previously validated with a method reported in [8]. For that
validation similar CT scans with known annotated landmark positions were
used. Unlike the current study, ten biphasic thorax CT data sets (max in-
hale and max exhale reconstructions only) were used. Two independent ex-
perts set corresponding landmark pairs (18-20 pairs) at vessel- and bronchi-
bifurcations in all images. The landmark positions at one state were trans-
formed using the DVFs obtained from the two registration methods and com-
pared to the reference landmarks. For the validation the average Euclidean dis-
tance before and after registration have been compared. Given an average er-
ror of 5.99 mm =+ 3.97 mm before registration, both methods showed a reduced
error in all testcases (2.50 mm + 2.16 mm for the surface-based method and
2.28 mm =+ 1.87 mm for the volumetric method). Taking into account the rela-
tively large difference between max inhale and max exhale state in that previous
study, we expect a more accurate result and smaller registration errors for the
consecutive registration in 10% steps given in the 4D-CT datasets investigated
in this work.

To analyze the DVFs restricted to the lung, segmentation of the lung is
required. For this purpose we use the segmentation scheme reported in [16].
The segmentation provides a binary mask of the lung but with the vessel tree
excluded. To evaluate the segmentation result, we computed the total lung mass
at each respiratory phase by integrating the density p = (HU + 1000)/1000
over the segmented lung. Then, the lung mass at each phase is subtracted from
their mean (mean lung mass is 593 g, 558 g, 580 g, 628 g for patients 1 to 4,
respectively). From these absolute differences, for patient 1 to 4 a mean error
of 82¢g £ 66¢g, 11.0g £ 45¢g, 145 ¢g £ 6.2 g, 6.5 g £ 3.7 g, respectively,
result. Each DVF (restricted to those parenchyma voxels having a Hounsfield
value above —1000 HU) is analyzed using the two different metrics:

1. Jacobian analysis. Given two phases, the corresponding DVF u maps each
position in the reference phase onto the corresponding position in the tem-
plate phase. Thus, the determinant of the Jacobian of x + u(z) represents
the local volume change at position z between reference phase and template
phase,

AVjae(z) := det(V(z 4+ u(z))) — 1. 3)

A value of zero indicates local volume preservation whereas a positive (neg-
ative) value corresponds to local expansion (contraction).

2. Hounsfield analysis. Given two phases and the corresponding DVF u, a
local change in lung volume can be estimated from the relative difference of
corresponding Hounsfield values (cf. [6]). By denoting a Hounsfield value at
position z in phase i as HU,(z) the metric is defined by

HUi(z + u(z)) — HUip1 (2)
HU; 1 (2)(HU; (z + u(zx)) + 1000)

AViu(z) = 1000 4)
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Again, a positive (negative) value indicates local expansion (contraction).
Note that the images have been smoothed with a Gaussian kernel before
computing AVyy.

Moreover, the lung segmentation [16] of each phase was used to compute the
lung volume and from that the relative change in lung volume for each phase
transition. This we took as a global reference value for our volume change esti-
mates.

4 Results

Without any further parameter tuning, both methods have been successfully
applied to the four patient cases with ten phases each. The quality of registration
has been assessed by visually inspecting each residual image (i.e., the subtraction
image obtained after registration). Almost all registrations indicate an optimal
match of lung wall and diaphragm. In addition, in most cases the vessel-tree
has been correctly aligned. The results for method 2 are slightly better than for
method 1 which can be explained by the volumetric nature of method 2 (see
Figure 2 for an exemplary view). For outer-lung regions such as spine or rib cage
the residual images from both methods indicate a worse alignment compared
to the subtraction images obtained before registration (compare with Figure 1).
This is based in method 1 on the extraction of the lung surface only and in
method 2 on the threshold applied on the force vector.

According to Section 3 the resulting DVFs are analyzed using two different
metrics to estimate the local change in lung volume (see second and third col-
umn of Figure 2 for exemplary views). By using the lung segmentation of each
phase, the values AVj,e and AVhy are integrated within the lung (displayed
in Figure 3). Dependent on the patient case these relative volume changes lie
between —7% for exhalation and +11% for inhalation.

Finally, the volume change estimates from both registration methods and
both analysis metrics are compared with our global reference segmentation (de-
picted red in Figure 3). A quantitative comparison is provided by Table 1. Here,
for each registration method and each analysis metric the absolute difference be-
tween estimated volume change and segmentation-based volume change is given
in percentage. Overall, the Jacobian analysis yields an error in volume change es-
timation of 0.8% and 0.4% for method 1 and 2, respectively, while the estimation
error of the Hounsfield analysis is larger (1.4% and 0.9%).

5 Discussion and Conclusion

We have applied two fully independent image registration methods to 4D-CT
lung scans. The resulting DVFs for each phase-to-phase transition are analyzed
with two different metrics in order to estimate local lung ventilation. An overall
inspection reveals similar estimates of Jacobian and Hounsfield analysis.
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Fig. 2. For the same coronal view as in Figure 1, residual (left), Jacobian analysis
(center), and Hounsfield analysis (right) are investigated after registration of 90% onto
80% phase with method 1 (top) and method 2 (bottom). Note that the two metrics
are analyzed and visualized within the lung only — white regions belong to either the
vessel tree or are outside the lung.

For a quantitative inspection we integrated these estimates over the lung
and compared this estimated change of lung volume to that arising from an
independent lung segmentation. Our results show that for both registration
methods the volume change estimated by Jacobian analysis agrees well with
the segmentation-based volume change (mean deviation of 0.8% and 0.4%). The
Hounsfield analysis as the second investigated metric indicates a less optimal
result (mean deviation of 1.4% and 0.9%). Since this metric is sensitive to local
changes in the DVF but also to imaging- or reconstruction-related artifacts, a
concluding rating is difficult. For a deeper insight, beside the global comparisons
a point-based comparison between Jacobian and Hounsfield analysis seems to be
worthwhile.

Table 1. Mean and standard deviation of absolute difference (in %) between estimated
volume change and segmentation-based volume change.

Case Jacobian analysis Hounsfield analysis
method 1 method 2 method 1 method 2
1 0.84 £0.75 0.54 £ 0.48 1.75 £ 1.57 1.26 + 1.59
2 0.74 £0.48 0.47 £0.42 1.29 +£1.55 1.08 +£1.04
3 1.09 £0.61 0.26 £ 0.29 1.59 £ 1.09 0.70 £ 0.94
4 0.50 £0.29 0.35 £0.25 0.91 £0.72 0.54 = 0.50
mean 0.79 £ 0.53 0.41 £ 0.36 1.38 +1.23 0.89 £ 1.02
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Fig. 3. Volume changes (in %) for each patient case and for each phase-to-phase transi-
tion obtained by either Jacobian analysis (dashed) or HU subtraction analysis (dotted)
for method 1 (green) and method 2 (blue). For comparison, the volume change derived
by a lung segmentation is depicted (red).
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