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Abstract. In order to cope with the problems caused by breathing mo-
tion, it would be beneficial for many applications to incorporate prior
knowledge of respiratory motion. In this paper, we present the extrac-
tion, modeling, and prediction of respiratory motion based on inhale-
exhale pairs of CT images. Intra- and inter-patient motion models of the
lungs are built and adapted to unseen data by the use of sparse mo-
tion indicators. The created models are thereby represented as a linear
model by applying Principal Component Analysis (PCA) on the covari-
ance of motion vectors of corresponding landmarks. For model adapta-
tion, diaphragm and rib-cage are investigated as model stimulators and
compared to a systematical selection of landmarks holding most of the
model’s variability. While the diaphragm motion correlates well with
the breathing motion achieving an average estimation error of 3.0 mm
for the intra- and 4.1 mm for the inter-patient models in average, the
predictability of breathing based on the rib-cage motion is significantly
worse. Using both diaphragm and rib-cage as stimulators, we obtained
an average estimation error of 2.8 mm for the intra- and 3.7 mm for the
inter-patient models improving prediction.

1 Introduction

Respiratory motion is a key issue in radiation therapy, tumor ablation, and other
treatments of the thorax and upper abdomen [1] but also for data acquisition.
Since breathing motion causes a significant organ movement and deformation,
an accurate knowledge of the localisation of the object in focus is difficult to
obtain. However, a precise prediction of the structures of interest would be highly
desirable for many applications, e.g., for dose reduction of healthy tissue during
radiotherapy treatment. One approach to reduce the uncertainties caused by
breathing is to use prior knowledge of the respiratory motion as, e.g., in the
form of breathing models. In contrast to biomechanical models [2, 3] that aim a
physically-based modeling of the lung, our goal is to build a general breathing
model from an ensemble of motion fields extracted, e.g., from 4D-CT or 4D-MR,
and individualize this general model using sparse motion indicators to obtain a
dense motion field for the organ under investigation.

* We thank K. Franks, J.P. Bissonette, T. Purdie, and A. Bezjak, Radiation Medicine
Program, Princess Margaret Hospital, Toronto, Canada for all image data.
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Little work has been presented for building motion models based on extracted
motion fields from 4D image data while not considering tissue properties. Ad-
mittedly, in many cases the generated models were patient-specific, e.g., [4, 5],
which means that in a clinical scenario, motion information can only be incorpo-
rated if images of the patient are already available or additionally acquired. In
contrast to patient-specific approaches, Sundaram et al. [6] created a dynamic
model of average lung deformation also registering between subjects. However,
the method did not address the clinically relevant case of adapting a learned
general model to a certain patient. Motion model adaptation of an inter-subject
model by the use of sparse motion information has been recently presented for
liver deformation to predict the drift of the exhalation position of corresponding
points inside the liver [7].

In this paper, we address the problem of extracting, modeling and estimating
breathing motion based on inhale-exhale pairs of CT images. We do not only
deal with intra-patient model building as well as its adaptation to estimate
breathing motion on different days throughout treatment, but also build inter-
subject models to predict patient-specific motion learned from a general model.

Section 2.1 introduces the available image data. Based on the motion field ex-
traction introduced in Sect. 2.2, motion model building is explained in Sect. 2.3.
The adaptation of our motion models to unseen data based on sparse motion
indicators is presented in Sect. 2.4. Systematic selection of regions providing
sparse motion information is explained in Sect. 2.5. Finally, performance of our
motion models is presented in Sect. 3.

2 Methods

2.1 Image Data

Inhale and exhale thorax CT images of seven patients all suffering from lung
cancer were available over several weeks of treatment during radiotherapy. For
each patient, image data of up to seven weeks plus two weeks of preliminary
examination was acquired. Thus, this image data captures the variability in
breathing motion throughout different weeks of treatment. Due to the fact that
all images where acquired at breath hold, motion artifacts caused by breathing
were not present. All images had an in-plane resolution of 0.85-0.97 mm and
a slice thickness of 2.5 mm. Since the images were acquired for radiotherapy
planning where the focus was set on the trajectory of the tumor, not all cases
show the lungs entirely. These cases were removed from further investigation.

2.2 Motion Field Extraction

Lung motion fields are derived from inhale-exhale images using a surface-based
tracking technique where the surface is represented as a triangulated mesh. By
propagating a topologically identical patient-specific lung surface mesh from
inhale to exhale, anatomical point correspondences are assumed to be preserved.
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The trajectories of corresponding points of the adapted meshes thus provide
a sparse motion field. A continuous description of the sparse motion field is
finally obtained by interpolation using thin-plate-splines [8]. For the extraction
of motion fields from 4D-CT data an abundant amount of other methods exist.
In [9], we have recently compared surface-based tracking to three other common
techniques. Mesh propagation extracts motion fields that provide an accuracy
to manually set landmarks of approximately the voxel size. In a qualitative
analysis, the motion fields show plausible characteristics also similar to the other
methods. Most prominent advantages of surface-tracking are its ability to cope
with discontinuities in motion fields, its low computational cost, and the fact
that it directly provides a segmentation in all phases.

Patient-specific lung surface models for motion field extraction are obtained
by selecting one chosen reference inhale image per patient and apply a trian-
gulation of the thresholded image. These meshes cover the outer border of the
lung lobes and also the surfaces of the bronchial and pulmonary vessel tree as
well as the tumor surfaces [8]. By adapting the generated patient-specific refer-
ence lung mesh to inhale and exhale images over all weeks of treatment, vertex
correspondences are preserved for all images of the same patient.

In addition to the lung motion field, the movement of the rib-cage is ex-
tracted. For that purpose, a general rib-cage surface model [10] is automati-
cally positioned in all inhale images, adapted, and finally propagated to the
corresponding exhale image. Since all ribs and vertebrae are labeled separately,
motion fields can be easily assigned to each individual structure.

For both lung and rib-cage, mesh adaptation is performed using an iterative
shape-constrained deformable surface model method [11]. In each iteration, the
concordance of model and object boundary in the image is optimized. An appro-
priate parameter setting for lung surface mesh propagation can be found in [8].
Figure 1 shows the adapted surface meshes of lung and rib-cage in one data set.

2.3 Motion Modeling

The proposed motion models capture the variability in motion of a given learning
set by applying principal component analysis (PCA) on the covariance matrix
of the motion fields. Since the key issue for model building is to establish cor-
responding landmarks, this aspect will be explained separately for intra- and
inter-patient motion models in detail below.

Suppose we have a set of M motion fields denoted as vi,...,v)s. Each v;
contains the components of N motion vectors a; defined at N corresponding
landmark positions v; = [a1i$,a1iy,a1iz, ... ,aNi$,aNiy,aNiz]T. After aligning
our training sets, averaging all vectors, and applying PCA on the covariance
matrix, we obtain a mean motion field ¥ and its principal modes of variation ¢y,
covered in the matrix ®. Thus, we can express a given motion field v; as

v, = \7+‘I>b, (1)

where b; is the weight vector.
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Fig. 1. Extracted lung surface mesh and adapted rib-cage shown in one slice and as
surface rendering. Coloring in image slice indicates labeling of individual structures.

Intra Patient Since a topologically identical mesh is adapted to all images of
the same patient as explained in Sect. 2.2, corresponding vertices are assumed
to provide the correspondences of our intra-patient motion model.
Inter Patient Motion field extraction was based on patient specific surface
meshes. Thus, vertex correspondences between meshes of different patients were
not given. In order to establish inter-subject correspondences, a model of the
outer surfaces of the lung [12] is additionally adapted to all data sets. By adapt-
ing a topologically identical surface model, we again assume anatomical point
correspondences to be preserved. However, in order to not only establish corre-
spondences on the outer surface of the lung but also in the inside, we moreover
define a cartesian grid inside the lung mesh. A patient-specific grid inside the
lung is obtained by applying a thin-plate spline deformation field calculated from
corresponding points of individualized surface and lung model to the grid points.
Figure 2 illustrates the definition of inter-subject correspondences.

In case of the rib-cage, corresponding landmarks are obtained for both intra-
and inter-patient models from corresponding mesh vertices since the same model
was adapted to all patients.

e

(a) Reference grid of lung model (b) Patient individualized grid

~

Fig. 2. Establishing inter-patient correspondences. Reference cartesian is deformed by
calculated thin-plate spline deformation field which uses corresponding vertices of the
outer lung surfaces. Examplarily, warping is shown for two-dimensional contour.
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2.4 Motion Model Adaptation

The task of estimating the patient’s motion field v under the assumption of
sparse motion indicators expressed as v; can be modeled as a conditional distri-
bution p(v,|vs) where v, are the motion vectors of the vertices to be estimated.
We are interested in the maximum likelihood estimation of the conditional dis-
tribution under the condition that the motion of a small set of landmarks is
known. For that purpose, we partition the motion field v into to two disjoint
subsets v, and v; resulting in
v(l
v = (Vb> (2)

and equivalent partitions for the mean vector ¥ and the covariance matrix X

— Va Eaa 2al7
v=|_ 3= . 3
(Vb> (Eba Ebb) ®)
The maximum likelihood estimate ¥,); of the conditional distribution given v;
can be calculated as [13]

Valp = Vo + EabEb_bl(Vb — V). (4)

Note that usually, E,:bl is not invertible owing to multi-collinearity in the land-
mark positions and unreliable due to chance covariance in a limited training
set. Therefore, we apply some regularization. In this case, we perform a ridge
regression [14] by replacing Egbl with f),;)l = Z;bl + I, where 7 is a positive
and typically small constant.

2.5 Landmark Selection

For many clinical applications, an indication of optimal positions for sparse mo-
tion indicators is of special interest, e.g., in case of MRI navigator images. As-
sume that we were able to place motion indicators at arbitrary positions inside
the lung neglecting any practical limitations. Then the question arises what will
be the optimal choice for indicator positions? We tackle the problem in an itera-
tive procedure using the properties of our created motion model. In order to find
positions with most predictive power, we try out any motion vector as motion
predictor and select the corresponding landmark position that belongs to the
motion vector which reduces the variance of the model more than others. After
calculating the modes invariant with respect to that chosen motion vector, we
rerun the selection.

For the pointwise selection, we follow the formulation given in [15], where
the variability of the weight vectors b; before and after creating the invariant
modes are compared.

Assuming the same partioning into two disjoint subsets as derived for the
mean and covariance in Eq. 3 also for the corresponding matrix ® containing
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the eigenvectors, we obtain:

&,D®! &, D] L
T a a a b . a
Z=2oDbe" = (‘IJbDQZ 'I>bD<I'bT) ith &= (@b) ' )

The diagonal matrix of eigenvalues is denoted as D.
Following [15], we express the invariant mode b; by

b; = b; — Ry®,b; = (I - Ry@,)b;, (6)

with Ry, = D®][®,D®]] L.

Comparing the variability of the weight vectors before and after creating
the invariant mode with respect to the stimulator expressed as vy, the points
with maximal predictive power can be found. Note that in this case v; contains
the motion vector corresponding to one landmark position. When applying this
procedure iteratively, the k best predictors can be found.

3 Results

As shown in [9], the motion fields extracted as in Sect. 2.2 provide a landmark
accuracy of about the voxel size. Thus, for the following evaluation of our motion
models, we assume the extracted motion fields as our ground truth. While this
enables us to evaluate the performance of our models at a few thousand discrete
positions meaning the mesh vertices, it has to be noted that there might be a
slight bias compared to landmarks set by experts.

For evaluation of our motion models, we are interested in the possibility to
predict inhale-exhale motion fields of the lungs. We compare the prediction of
anatomical related regions to systematic landmark selection from Sect. 2.5. In
each case prediction is performed as described in Sect. 2.4. As anatomical related
regions, we focus on the main breathing motors which are diaphragm and rib-
cage. The diaphragm motion is extracted by manually labelling the dome of the
surfaces close to the diaphragm on all lung models. As stimulators for model
adaptation as described in Sect. 2.4, we then use all motion vectors belonging
to the vertices of the labelled surfaces. In case of the rib-cage, we focus on the
rib motion since there is almost no spine motion.

Intra patient motion models are evaluated in a leave-one-out study. In
each case, one week is chosen and a motion model is built out of all remaining
weeks and adapted to the 'unseen’ motion field. The estimated motion field is
then compared to the respective extracted motion field and the error at mesh
vertices is evaluated. The results when using diaphragm and rib-cage as model
stimulators are given in Tab. 1. By comparing the prediction power of the respec-
tive anatomical region to the mean motion model v, it can be seen that model
stimulation using the diaphragm denoted as PC Apy 4 significantly improves the
estimation while the rib-cage (PC Arc) even worsens the prediction. However,
using both diaphragm and rib motion (PCAgcp) as model stimulators yields
almost the optimal parameter fit with an error of 2.8 mm in average. The best
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possible prediction that can be achieved with our model is given for compari-
son by projecting the true motion field in the PCA space. Figure 3 shows the
prediction in the sagittal view for two selected cases.

Inter patient motion models are evaluated in a similar leave-one-out study.
Motion models of all patients besides the one under consideration are built and
adapted to all weeks of the corresponding patient with results given in Tab. 1.
Although we observed significant differences in breathing patterns between pa-
tients, there have to be similarities in the respective motion fields which can
be seen from the fact that the mean model already compensates about 40 % of
the breathing motion. In case of the inter-patient model, we took into account
20 eigenvectors that correspond to the largest eigenvalues covering about 98%
of the variance. Again, the prediction using the diaphragm is much better than
using the rib-cage with 4.1 mm in average compared to 7.4 mm.

When applying landmark selection from Sect. 2.5 on both intra- and inter-
patient models, the predictive power of the first N-landmarks was investigated.
In each case, we additionally took all neighboring vertices into account to be less
sensitive to the exact landmark position. Having motion information only at the
positions of the first N=3 selected landmarks including their neighbors yields an
error of 4.0 (5.8) mm in average for intra-(inter-) patient models and for N=>5
and N=7 an error of 3.5 (5.1) mm and 3.0 (4.8) mm, respectively. A typical
distribution for N=5 is given in Fig. 4. For many cases, it could be observed
that the first selected landmark was located close to the diaphragm while the
second one in the anterior part of the corresponding other upper lung.

Fig. 3. Result of motion estimation shown in three orthogonal slices for Patient 3 using
the inter-subject motion model and assuming the motion of the dome of the diaphragm
to be known. Inhale contour is shown blue, red exhale, and yellow estimation.

4 Conclusion

Breathing motion is a complicated factor in several applications working on the
thorax or upper abdomen. In many cases, the treatment would benefit from
prior knowledge of the organ deformation and location. Although latest image
devices are able to acquire dynamic images covering the respiratory motion, e.g.,
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Table 1. Result of intra- and inter-patient motion models. Approximation of inhale-
exhale motion by model in leave-one-out test. All values are given in millimeters. Per-
formance of mean motion model as well as PCA model with optimal parameter fit
indicates model quality. Prediction error is given when using different model stimula-
tors. Mean motion of entire lung and respective regions presented for comparison (m,
mpra, mprc). Last row gives mean value of all rows as absolute value and relative to
mean lung motion in percent. For details see text.

| Intra Patient Model |

v PCA |PCApia| PCArc |PCAgcp m MmpraA|Mprc
Pat. 1{4.14+1.2{2.1+0.7/23£0.7[48+1.9|22+0.7 109+ 1.7| 154 | 3.7
Pat. 2{{4.5+14(28+09(4.1+13(49+1.6|3.2+£0.9([12.6+2.4| 23.1 | 9.7
Pat. 3{2.2+05[14+03(1.5+04(2.0£0.5|1.5+£0.4(69+15]| 12.0 | 24
Pat. 4{{4.6+19(1.7+05[1.9+0.6(3.3£1.5|2.0£0.4 [[10.0£4.1| 209 | 34
Pat. 5(4.7+15(|3.3+0.7/40£07{49+£13|39+06|73£22| 11.1 | 4.6
Pat. 6{{4.2+06(3.8+08(4.2+1.2(4.8+0.5|{3.9+1.0(10.8+2.1| 20.2 | 3.2
Pat. 7|({3.24+0.7{3.0+0.8|3.3£1.0{34+£1.4|3.1+1.1(10.0+1.4| 18.7 | 4.1
mean [[3.9 (39.8)|2.6 (26.4)|3.0 (30.6)|4.0 (40.1)|2.8 (28.9) 9.8 173 | 44

| Inter Patient Model |
v PCA |PCApra| PCArc |PCAgcD m mMpra|Mgrc

Pat. 1/{6.3+1.2|3.2+0.5{4.14+0.8|7.0+1.6 |4.1+0.8(10.9+1.7| 15.4 | 3.7
Pat. 2||8.6+1.8|4.3+0.6{6.1+1.0(11.0+3.0{5.0+£0.9(12.6 £2.4] 23.1 | 9.7
Pat. 3{3.6 £0.4|1.8+0.1{27+0.3{50+1.021£0.3|69+15]| 12.0 | 24
Pat. 4/6.7+1.8|2.8+£0.7{3.9+1.0|6.64+2.4|3.6+1.0|10.0+£4.1] 209 | 3.4
Pat. 5[|59+16(25+04(3.14+04|74+08|32+£05|73£22] 11.1 | 46
Pat. 6/{80+1.2|40+1.0{484+1.0{/9.0+2.3|4.6+1.0|10.8+2.1] 20.2 | 3.2
Pat. 7/[4.3£1.0/29+04|4.14+0.5|6.0+0.7]3.6£0.6|10.0+1.4| 18.7 | 4.1

mean |[6.2 (63.3)[3.1 (31.6)|4.1 (41.9)|7.4 (75.8)[3.7 (37.7)|[ 9.8 | 17.3 | 4.4

4D-CT, there is not always a multiphase breathing gated examination available.
Thus, in this paper, we focused on motion model creation from inhale-exhale
pairs of CT data sets and adaptation to 'unseen’ data. Due to the fact that the
images were acquired at breath-hold, no image artifacts caused by breathing were
present. From the extracted motion fields, patient-specific models but also inter-
subject models have been built and compared. For model stimulation, different
sparse motion indicators have been investigated. If the diaphragm motion is
known, we achieved a prediction error of 3.0 (4.1) mm for the intra (inter)-
patient model covered. Using sparse motion information obtained from the rib-
cage is thereby less appropriate. With a systematic selection of landmarks, most
important regions for providing sparse motion information have been found.
Although there are several attempts for patient-specific modeling, it is to the
best of our knowledge the first time that an inter-subject breathing model based
on statistical properties of extract motion fields has been built and adapted to
patient data.
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Since we worked so far on a small size of training data, improvement can
probably be expected when enlarging the amount of patient data. Future stud-
ies will be carried out on multiphase data taking the dynamic properties of
respiration into account.
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Fig. 4. Systematic point selection. Potential predictive power of each landmark position
displayed on mesh surface (a). Ratio of variance of coefficients b; and b; from Eq. 6
color coded from blue (small) to red (high). Selected first five points color coded from
first (blue) to fifth (red) shown in (b) and (c). First selected point typically close to

diaphragm while second in corresponding other lung.
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