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Abstract. We develop a framework of computerized generating solid
pulmonary nodules in real chest helical computed tomography (CT)
images. Spheres with random deformations are used to model nodule
shapes. The nodule density is represented by a uniform signal with ad-
ditive zero mean Gaussian noise. The insertion of synthetic nodules into
real CT images is formulated as « blending between foreground nod-
ules and background pulmonary tissues. The blending factors reflect not
only the partial volume effect but also the smoothing effect in the fil-
tered back projection (FBP) CT reconstruction. A new lesion insertion
scheme based on dual source blending is proposed to blend the image
noise and the lesion object separately for a better noise model. A subjec-
tive evaluation is performed by a human expert; and statistics of simu-
lated nodules and real nodules are compared to give a quantitative anal-
ysis. These validations demonstrate a high level of similarity between the
synthetic nodules and real nodules. An evaluation study of a commer-
cial Computer-aided detection (CAD) system on an objective database
created using this framework is also presented.

1 Introduction

Computer-aided detection (CAD) is a promising tool to assist in lung nodule
detection, and to assess lesion size change over time based on computed tomog-
raphy (CT) scans. The use of CAD may improve the performance of radiologists
in helical CT lung screening. Many techniques for automated nodule detection
and characterization have been developed [1], [2], [3], [4], [5], [6], [7]-
Evaluating these methods is difficult due to the lack of database with large
number of nodules/gold standards. Building real nodule database with expert
opinions as gold standard [8] suffers from several drawbacks, especially inaccurate
volume definition. Physical nodule phantoms can give accurate volume definition,
but it is difficult to create large amount of nodules with different characteristics.
Compared to building real nodule CT database and making physical phan-
toms, computerized generation of synthetic lesions with known characteristics
offers a powerful tool for CAD evaluation. A computerized nodule generation
method was reported by Raffy et al, where the nodules were modelled as ellip-
soids, and the insertion was a direct replacement followed by a smoothing [9].
In our previous work [10], we simulated nodules using deformed spheres, and



-A4- FIRST INTERNATIONAL WORKSHOP ON

PULMONARY IMAGE PROCESSING

Fig. 1. various nodule shapes created using TPS deformations.

inserted the synthetic nodules into real CT images using ‘weighted averaging’
between nodules and the background images. Multiple sclerosis lesion phantoms
in the magnetic resonance (MR) images were created by Rexilius et al: three
different shapes were created to model lesions, each lesion was inserted into MR
images using a ‘linear combination’ of the lesion and the MR scans [11].

In this work, we develop a framework for simulating solid nodules in helical
CT images. The simulation method is detailed in Sect. 2, the model validation is
described in Sect. 3, an application for CAD evaluation is presented in Sect. 4,
and the results are given in Sect. 5.

2 Materials and Methods

A typical pulmonary nodule is about 2mm to 30mm, takes a sphere-like shape.
The density of the major core part is similar to muscle and vessel; near the nodule
border, the density attenuates gradually until merging into the background. We
concentrate on modeling the following characteristics of pulmonary nodules: 1)
shape; 2) size; 3) core density; 4) density attenuation on the border.

2.1 Nodule shape/size modeling

Nodule shapes are modeled using unit spheres with randomly generated high
dimensional deformations. We adopt the thin-plate spline (TPS) [12] as the
non-rigid mapping to do the deformations. TPS deformations can be expressed
as:

T =T-d+k-c (1)

Here the T is n X 4 matrix in which each row is homogeneous coordinate rep-
resentation of an original control point. d is 4 x 4 affine transform matrix. k
is a n x n matrix depending on control points. ¢ is n x 4 matrix in which the
first column elements are all zeros, and the remaining three columns consist of
randomly distributed deformation coefficients.

Experiments showed that this model is able to generate highly realistic nodule
shapes, by tuning the random distribution parameters. In this work, normal
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Fig. 2. Nodule density analysis. First row: original image; segmented nodule; signed
distance. Second row: histogram of core density; density mean of different layer (indi-
cated by distance values); density variance of different layer.

distribution is used to create deformation coefficients in c. Some examples of
synthetic nodule shapes created are illustrated in Fig. 1.

The deformed unit sphere can be easily scaled, rotated, skewed by applying
further affine transform by introducing d.

2.2 Nodule density modeling

Density distribution is analyzed for selected real solid nodules with varying sizes,
shapes, CT protocols. Only isolated nodules are used, as the non-isolated nodules
are difficult to segment, thus, affect the estimation. 100 real nodules from 18 CT
exams (0.6-1.3mm collimations, 20-120mAs exposure) are selected.

It is important to distinguish the nodule core part and the volume average
layer (due to partial volume effect, reconstruction smoothing effect). Each nodule
is analyzed layer by layer from background to the center using a 3D distance
transform [13], with the border as feature points, see Fig. 2. The exterior part is
set to negative. For each pixel, the distance value indicates the layer — how far
it is from the nodule border, and in which direction — toward or away. Note that
the variance estimated for the background and volume average layer in Fig. 2 is
not valid, due to the structure noise in the background, and the fast changing
density in the transition layer.

It has been showed that the density of each individual core follows an approx-
imate Gaussian distribution, but the means and variances vary across nodules
and cases. For filtered back projection (FBP), the noise variance in CT images is
a slowly varying spatial function [14]. In this work, stochastic noise for each sim-
ulated nodule is represented by additive Gaussian noise, and the noise variance
is estimated from a neighboring structure in real CT images with water-like
attenuation, either nearby vessels or chest walls. We represent the density of
nodule core as I, = I, + N,(0,0,), with I, being the nodule density, I, being
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object density, N, being the zero mean Gaussian noise. For volume average lay-
ers, there is a gradual density reduction from interior layers to exterior layers.
The thickness of volume average layers is related to reconstruction kernels, and
is also estimated. The modeling of volume average layer is described later.

2.3 Nodule insertion using dual source a blending

In this work, inserting synthetic lesions into real images is newly formulated as
a blending, a common technique in computer graphics [15]. Given source and
destination images, we can control blending on a pixel by pixel basis. Specifically,
cach pixel of the synthetic nodule is the source with blending factor «, and pixel
of the CT scan at corresponding location is the destination with a blending
factor 1 — . Note that the blending factor is a function of pixel positions.

The first step is the rasterization of the continuous nodule shape in digital
space with higher resolution (for better accuracy) than the original scan. The
cuboid region of interest (ROI) need to include both the core and the volume
averaging layer. This step leads to a binary representation of the synthetic shape
with 1 for interior, and 0 for exterior. The volume of the nodule is the total
number of the interior pixels multiplied by the volume of each pixel.

The second step is to calculate the a. We simulate the partial volume effect
using « channel antialiasing. « value for a pixel is set to be a number between 0
and 1 that is the percentage of that pixel covered by the nodule. A pixel in ROI
with the original resolution corresponds to a larger cuboid in the high resolution
binary image, and the « value should be the percentage of that cuboid covered
by the nodule — this is implemented by rasterization of the cuboid in the high
resolution space, trilinear interpolation in the binary image, and averaging over
the cuboid. This results in volume average layer with a single pixel thickness.
The volume average layer can be more than a single pixel layer, depending on
the reconstruction kernel used in FBP. To simulate this smoothing effect, we
add a Gaussian smoothing on the binary image, so that interpolation occurs on
a smoothed gray scale image. The kernel size is chosen roughly as the thickness
of the transition layer.

The third step is to do the blending. Given the « value for each pixel of the
ROI in the original CT image resolution, the blending can be described as

I=al,+(1-a) (2)

where [ is the final density, I, the nodule density, I the background density.
Similar technique were reported [10], [11], but not formulated as « blending.
This single source a blending gives us a better solution than direct smoothing
[9], but the volume average layer is still visually artificial — obviously less noisy
than both the nodule core part, and the background. The explanation comes
from the following analysis.

Similar to the representation of nodule density as I, = I, + N,(0,0,); we
can also describe the background as I, = I, + Ny(0, o), with I, the background
density, I, the background density without noise, N; the zero mean Gaussian
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noise. (Note that this formula is just for convenience of analysis, it does not mean
we can explicitly separate the true signal and the noise for the background. The
reason we can model a solid nodule explicitly using a constant density with
additive Gaussian noise is that we can reasonably assume that a solid nodule
has a similar density at the major core; this assumption obviously does not hold
for complicated lung field.) Then formula (2) becomes

I=I+n; with I=al,+(1—-a)l, n=aN,+(1-a)N, (3)

with I being the blending results without noise, and n is the combined noise
after the blending. The mean and the variance of the combined noise are
E(n)=0; o2=ad24+(1-a)0} (4)
By assuming 0, = 0, = o (due to the slow changing of noise variance spa-
tially), the above formula becomes

o =[0? + (1 - a)’o? (5)

With « € [0,1], we have 02 < o2. This means that the noise level will be

reduced using the above single source blending method. The worst case is that
02 =0?/2 when a = 0.5.

To compensate for this undesired effect, we propose a new way of inserting
synthetic nodule by using separate blending for object and noise, so called 'dual
source blending’ in computer graphics [15]. In this scheme, the nodule object and
the noise part are treated as two separate source images, and have different but
dependent blending factors. This new dual source blending for lesion insertion
can be described as

I=al,+ &N, + (1 —a)l, (6)
where « the original source blending factor, ¢ the new source blending factor
introduced specific for noise part. This formula can be extended as

I=I4n; with I=al,+(1—-a)l,, n=dN,+(1-a)N, (7)

with I part being same as before, but the combined noise part being changed,
compared to formula (3). By assuming o, = 0, = 0, the mean and variance of
the blended noise are

BE(n)=0; o =14+ (1-a)’o? ®)

To attain same noise levels across core part, volume average layer, and back-
ground, we need 02 = 02, i.e., 4> + (1 — a)? = 1. We can set

d=+1-(1-a)? 9)
By using dual source blending with blending factors satisfying formula (9), we

can maintain the noise level before and after the insertion, under the assumption
0o =0p =0.
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Simulated

Fig. 3. Illustration of nodule simulation result.

This object insertion method can be easily applied to nodule ‘cut and paste’
procedure in which a real nodule is ‘cut’ from its original position, and ‘paste’
into desired positions. This ‘cut’ step is actually a segmentation processing; and
the ‘paste’ step is an object insertion procedure. The proposed dual source o
blending technique is very suitable for ‘pasting’ nodules. This ‘cut and paste’
technique can create ‘new’ nodules, but is relatively restricted compared to the
synthetic model presented in this work.

3 Model Validation

The synthetic nodules simulated from this model were evaluated qualitatively
and quantitatively with three studies. First, an expert radiologist carefully re-
viewed a randomly mixed set of 200 nodules (100 real + 100 synthetic) and
provided, for each nodule, a 1 — 10 scale visual rating (1 = not real, 10 = def-
initely real). Second, the radiologist then rated another random mixed set of
20 nodule cases (10 real + 10 synthetic, with 2 — 10 nodules in each case) on
a case by case basis. The ratings were compared between the simulated nodule
group and real nodule group. Third, the correlation coefficients of the density
attenuation profiles for 20 real nodules and 20 similar sized synthetic nodules
were calculated to provide a quantitative measurement of the similarities.

4 Applications for CAD evaluation

A commercial CAD system for automatic lung nodule detection and volume
measurement was tested using computer-simulated nodules of various sizes and
different contexts (isolated and juxta-vascular) inserted into helical CT exams
with different dosages. Two normal CT chest cases (1 low dose = 20mAs /
1 regular dose = 120mAs; both 1.25mm collimation) were used as bases for
simulation. For each case, two groups (isolated and juxta-vascular) of nodules
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with a certain diameter and random shape were inserted. Each group included
50 nodules. Different nodule diameters (4,5, 6,8,10mm) were used. The CAD
detection and volume measurement results were scored against the truth.

5 Results

In the model validation studies, 89/100 real nodules and 86/100 synthetic nod-
ules were rated highly realistic (ratings > 7) in the first study, as were 9/10
real cases and 8/10 synthetic cases in the second study, showing no significant
statistical difference (Fisher exact test, p > 0.674). The correlation coefficients
of attenuation profiles between simulated and real nodules showed a mean of
0.95 and standard deviation of 0.03.

With regard to CAD evaluation, the CAD detection rates were all 100%
except one sub-group (4mm low dose, 98%). The volume measurement errors
were similar for different size groups (6 — 10mm: mean < 2.0%, std. < 2.3%;
4 — 5mm: mean < 3%, std. < 5%). For simulated juxta-vascular nodules, the
detection rate gradually deteriorated as nodule size decreased (6 —10mm: 96+ %;
5mm: 86 + %; and 4mm: 73 + %), as did the volume measurement errors (6 —
10mm: mean < 4.2%, std. < 10%; 4 —5mm: mean < 6.8%, std. < 14%). Overall,
the CAD performance (detection or volume measurement) was not significantly
affected by the different dosages.

6 Discussion

In the literature, the shape of nodules (lesions) was usually represented by sim-
ple shapes; the density distribution and attenuation profiles have not been thor-
oughly investigated; and how to merge the simulated nodule with the background
has not been properly solved, especially the noise synthesis.

In this work, by applying randomly generated high dimensional deformations
on spheres, we can create very realistic nodule shapes; dissecting nodules layer by
layer using distance transform to investigate density distribution and attenuation
profiles forms a solid base for simulating the density and the volume average
layer; the newly formulated o blending framework for lesion insertion gives a
well-understood description of the merging between nodule and background for
each pixel. Additionally, the newly designed dual source a blending technique for
lesion insertion is able to maintain the noise level across the lesion, the volume
average layer, and the background, thus, makes the inserted nodule look more
realistic. The Validation demonstrates a high level of similarity between the
synthetic nodules and real nodules.

Using the proposed technique, it is possible to conduct a flexible performance
evaluation of a CAD system on nodules with different sizes, contexts, shapes,
densities, in CT images with different dosages.

The techniques presented in this work, including shape simulation using ran-
domly deformed sphere, object density analysis using distance transform, object
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insertion based on dual source a blending, can be easily extended for simu-
lating other lesions, such as colon polyps, mass or calcs in digital mammogra-
phy/tomosynthesis.

Although the deformed nodule shapes presented in this paper are very real-
istic, they only represent a small fraction of the possible shapes of real nodules,
for example, modeling of highly spiculated nodules, partly solid nodules are not
discussed. The main target of this work is to simulate nodules that are most
suitable for early detection and accurate estimation of growth — small, some-
what round, solid nodules probably occur most often for early stage pulmonary
nodules.

7 Conclusions

We proposed a new simulation model to insert synthetic lung nodules, with
shapes and density statistics similar to real nodules, into normal CT chest ex-
ams. Nodule shapes were modeled using spheres with added random non-linear
deformations. Nodule density and attenuation profiles were analyzed on real
nodule samples. The volume average layers were simulated using a dual source
a blending between synthesized nodule and real CT background. The synthetic
nodules simulated from this model were evaluated qualitatively and quantita-
tively. These Validation studies demonstrated a high level of similarity between
the synthetic nodules and real nodules.
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