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Abstract. Vessel segmentation within pulmonary images serves as a
basis for a variety of applications, including PE detection and visual-
ization, lung nodule detection, assistance in bronchoscopic navigation,
lobe segmentation, and surgical planning. Although applications have
different segmentation requirements, speed and accuracy is a clear ben-
efit. A new approach combining a single parameter vessel enhancement
filter and fuzzy connectedness is presented. The advantages of vessel
filtering are brought to bear with a minimal impact on time by limit-
ing the scales. Vesselness and intensity features are combined within a
fuzzy segmentation framework, reducing the number of required scales
and avoiding some of the drawbacks of each feature alone. Validation
was performed on five datasets and Dice Similarity Coefficients (DSC)
demonstrate an improvement of 9% (from 81% to 90%) on average for
small vessels without influencing the accuracy for large vessels (95%)
compared to an intensity-based method alone.

1 Introduction

Vascular tree segmentation in pulmonary computed tomography (CT) images
is a core component of a variety of applications. Both the computer-aided di-
agnosis (CAD) and visualization of pulmonary emboli (PE) require vessel seg-
mentation [1-3]. Although smaller vessels may have less direct clinical relevance,
segmentation of these vessels can provide important information for tree hier-
archy, lobar lung segmentation, and lung region assessment [4]. In PE CAD,
the segmentation is used to reduce false positives while in visualization the seg-
mentation is used as a basis for display. The same holds true for lung nodule
CAD [5]. Navigation through the airways can make use of the vessel segmenta-
tion as well [6]. Finally, scoring and determining bronchio-arterial ratios within
the airways also makes use of vessel segmentation [7].

Several challenges face vessel segmentation methods. Variations in attenua-
tion due to partial volumes effects and the presence of PE can limit the segmen-
tation extent. Nearby high density structures such as airway walls or connective
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tissue can be confused with vessels. Finally, arteries and veins in close proximity
can cause their segmentations to overlap [4, 8]. Although we do not address this
last issue, we believe that an improved segmentation is also advantageous for
artery-vein separation methods.

Intensity-based segmentation approaches using either threshold-based meth-
ods [4,9,10], front propagation techniques [8], or fuzzy techniques [11] have
proven to be very efficient. These methods use an intensity model that is directly
or indirectly utilized to detect and delineate vessels. However, due to variations
in intensity as explained above, these methods tend to leak into surrounding
non-vessel structures in some areas while missing smaller vessels.

Vessel enhancement filters, such as the Hessian-based filters [12,13] have
proven to be very capable in vessel segmentation. These methods compute eigen-
values of the Hessian matrix and combine them into a final value. These filters
need to be applied at multiple scales to capture vessels of varying diameters.
Approaches such as Zhou et al. [1] use up to 12 different scales. Speed quickly
becomes an issue when multiple scales are used. Additionally, bifurcations usu-
ally do not have high responses to line-filters resulting in disconnected pieces.

We propose to use vessel enhancement filtering (Section 2) in combination
with our intensity-based fuzzy approach [11]. Compared to other enhancement
techniques our filter response function has been analytically designed to combine
the eigenvalues of the Hessian matrix in such a way, that the output becomes
maximal for tubular structures with Gaussian intensity profile. In particular it
does not rely on any other parameter than the scale factor [14]. We demon-
strate that this combination (Section 3) allows for accurate vessel segmentation
with only a few filter scales, which would not be possible with vesselness filters
alone. In addition, the intensity information is capable of steering the fuzzy-
connectedness region growing process in areas such as bifurcations for which the
filter output is lacking. The result is a synergy of the benefits of the individual
methods compensating their individual drawbacks. The speed of intensity-based
methods is preserved with the specificity benefits of vessel filtering (Section 5).

2 Optimized Vessel Enhancement

Vessel enhancement filters are typically based on the eigenvalues of the Hessian
matrix H [12,13] and have already been successfully applied to pulmonary vessel
segmentation [1, 15]. In practice, the image signal is convolved with the six second
order derivatives of the Gaussian g and the eigenvalues of the resulting Hessian
matrix are combined into a filter output that enhances tubular-like structures.

Assuming that a vessel v(r)(r = (z,y, 2)) can be modeled locally by a cylinder
with a radial Gaussian intensity profile with, e.g., a, b being the intensity values
at the vessel center and boundary, respectively, which is orientated along the
z-axis for the following considerations,
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v(r) =b+ (a—b)exp— (1)
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we compose the filter h(r) as a linear combination of second order derivatives
of the Gaussian with the standard deviation o} chosen to be the same as the
standard deviation of the vessel model o, such that its convolution with this
ideal vessel signal v(r) is maximized [14]

S=vxh= | v(r)h(—r)dr (2)

This can be solved analytically using the mathematical framework of La-
grange multipliers yielding

2
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with ¢ = 1/5;—;/2 /Oy

In reality, the orientation of the vessel is not known, but the filter has to be
oriented along the vessel to obtain maximum response. This direction is equal
to the eigenvector corresponding to the eigenvalue with the smallest magnitude
of the Hessian matrix. Let the eigenvalues of H be A 23 with |A;| < [Xa] < |As3,
then the optimal filter output can be computed as:

2
Sopt =V *x hrot = g)\l — )\2 — )\3 (4)

Since vessel structures are brighter than the background we expect Az 3 < 0.
Unfortunately, very bright, plate-like structures for which the cross-sectional
profile is Gaussian only in one direction, i.e., the intensity decreases rapidly in
one direction but not in the orthogonal one, the filter output might still become
large because of either |\o| or || being large. Hence, we multiply the filter
output (4) by an isotropy factor

()

1 Ral=lxs)

{o if \a>0 or A\3 >0
K =
[X2]+[As]

else

As the pulmonary vascular structure consists of vessels with varying diam-
eters, multiscale results are therefore obtained combining the filter output at
different scales op,,. It can be shown that the filter output with an idealized

/2

vessel is proportional to ai , which needs to be accounted for

Sopt = max (H . 0;3/2 . Sopt(o'hi)> Y oi (6)

Results of the optimized vesselness filter, shown in Figure 1, allow for a clear
distinction between vessel- and non vessel-like structures. Fig. 1a shows the orig-
inal HU values while in Fig. 1b the lung regions have been replaced by the fil-
ter output. Additionally we have recently shown its applicability to liver vessel
enhancement in CT data [14]. Note that compared to other Hessian-based tech-
niques such as [12], our filter function requires only a single parameter (scale).
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(a) Original (b) Filter output

Fig. 1. Contrasted CT dataset of the lung. (a) Original (lung window) and (b) vi-
sualization for which the lung areas have been replaced by the filter output using
op = [1,2,4] mm while the body regions are shown as original value (vessel window).

3 Combined Fuzzy Segmentation

For the sake of completeness we will first briefly review our general fuzzy segmen-
tation framework [11] before detailing the incorporation of the vesselness filter
output into the intensity-based system and discussing the different parameters.

3.1 Fuzzy Vessel Segmentation

Assuming a segmentation of the left and right lung [16] is already given, we first
detect multiple seed points throughout the whole lung. To this end we segment
the major vessels with a high specificity using an intensity-based method [4].
Hence we apply a lower threshold 7' = 150 HU and eliminate components smaller
than Vi, = 500 voxels in size. Next each resulting component is converted into
one or more seed-points by locating and clustering vessel points with locally max-
imal distance to the vessel surface utilizing a 3D distance transformation. The
cluster representatives s; are selected with preference to large distance values,
i.e., large radius estimates. Assigning to the so detected seed-points a proba-
bility measure of Pyegsel(s;) = 1, we calculate the probability measure for the
remaining voxels using the fuzzy connectedness algorithm [17].

The likelihood that two neighboring voxels ¢, d belong to the same class, here
to the vascular tree, is described by the local affinity . (c,d). Using, e.g., an
intensity-based probability function, the affinity can be defined as

R e DR R (GES (C I

pr(c,d) = {6 20
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with f(c) being the intensity value at position ¢ and p,? being the expected

intensity value and variance of the used Gaussian function. The “strength of

connectedness” pn of two distant voxels ¢, d along a certain path pc q is simply
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the smallest pairwise fuzzy affinity along this path. A path pcq from ¢ to d is a
sequence of m > 2 neighboring voxels <c(1) =c,c®, .. cm = d>7 ie.,

fix (Pe.a) = min [/Ln(c(l),c(z)), ---,uh-,(c(m*”.,c(’"))} (8)

The global connectivity pg(c,d) is then the largest of the strength of connect-
edness of all possible paths IPc 4 between c, d:

pr(c,d) = max [un(p;)] Vj 9)
pj€Pc.a

The probability measure that a voxel x belongs to a vessel is hence:

Pyessel(x) = max [pr (x,8;)] with Piegser(s;) =1 Vi (10)
Si

Note that even if Pyessel drops below 0.5 for a voxel, this voxel can still most
likely belong to the vascular tree. In fact, an appropriate threshold has to be
applied for binarization.

3.2 Feature Combination

Using an intensity-based function alone, one can observe that small vessels that
are significantly darker than large vessels are often missed while already leak-
ing into non-vessel structures. Hence it is reasonable to focus on small vessels
when applying the vessel enhancement filter while vessels of larger scale are seg-
mented well using an intensity-based function alone. Additionally to minimize
the computational complexity we prefer to use as few filter scales as possible. A
combination of ¢, = [1,2,4] mm have been experimentally determined to be a
good choice (see also Fig. 1). Having now the original and filter output values,
the local affinity becomes a multimodal function with p, ,, (c,d) being depen-
dent on the parameters (i ), 0%1,2) and f{m}(c) being the intensity value and
filter output at c, respectively. The scalar output of u, has been chosen to be the
maximum value of (1.2 T'he parameters fi(; 2} are the average intensity and
filter output values of the seed points s; while 0%112} have to be chosen (Sec. 5).
Consequently, the fuzzy connectedness region growing targets large vessels
via the intensity-based function and smaller vessels via the filter output. How-
ever, in areas where the filter output is locally low, such as it is the case for some
bifurcations, the intensity-based function will still prevent the growing process
to terminate early. That is, locally low filter responses will not cause additional
vessels to be missed while also having no impact on the false positive rate.

4 Validation

The validation of pulmonary vessel segmentation systems is especially difficult
because of the complexity and size of the vascular tree structure. Often such
methods are only qualitatively validated because of a missing ground truth
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for clinical data. Additionally some authors estimate the accuracy of their ap-
proaches by counting the number of manually placed centerline points that are
included into the segmentation output [1], which however allows no quantifica-
tion of false positive regions. Wu et al. [9] compare their segmentation results of
clinical data with additive artificial noise to the result of the original data. Such
evaluation feature indicates the robustness of the segmentation method against
noise but does not quantify the segmentation accuracy itself.

We use a fast, semi-automatic method to create reference segmentation in
sub-volumes based on the random walker algorithm [18,19]. The user first de-
fines a 3D region of interest (ROI) and threshold-based fore- and background
seed points are added within this subvolume. These seeds are then used as initial-
ization for the random walker algorithm, a graph-based segmentation approach
that can be used for interactive segmentation purposes. To this end, each voxel
is represented by a node and neighboring voxels are connected by weighted edges
using a weighting function, such as

wij = oxp (=f - Ady; - [1(xi) = I(x;)]) (11)

Here I(x;) is the intensity value of voxel i, Ad,; the distance between voxel ¢ and
j and 8 a free parameter (here: 3 = 150). Next, the random walker algorithm is
consecutively applied along with user interaction until the segmentation output
is sufficiently accurate. Although strictly spoken one would have to validate the
semi-automatically created segmentation results itself, which is as already dis-
cussed difficult due to a missing ground truth, the characteristics of the described
method indicates that it is very well suited for validation purposes:

— The random walker algorithm allows the creation of any arbitrary segmenta-
tion given enough seed points, i.e., the user is not bounded by the system [18].

— Ounly a comparibly small number of seed points is required to produce a
segmentation that is almost identical to a manual segmentation [19].

— Variations of the exact position of the seed points results only in small differ-
ences in the final result, i.e., the method allows the creation of results with
a higher reproducability than manual methods [19].

Using the so created reference segmentations for quantitative validation and
parameter optimization we use sensitivity (TPTJF%)7 specificity (#ﬁ,ﬂp)7 and
the Dice similarity coefficient (DSC)

2.-TP
DSC_2-TP+FP+FN (12)
with TP, FP, and FN being the true positive, false positive, and false negative
voxel count as validation features. Note that each threshold for Pyegse1 Will result
in one set of features.

Although the semi-automatically created reference segmentations have a high
accuracy, they are still limited by the time the radiologist (or any other medical
expert) can spend on their creation. We avoid superficial differences between
the automatic segmentation and the ground truth from influencing the results



FIRST INTERNATIONAL WORKSHOP ON -239-
PULMONARY IMAGE PROCESSING

= intensity-based
- e 5, = 2500
09 \ =, = 3000 09
=, = 3400
0.8 08
o Q
1%} @
3 3
07 07
0.6 06
|
|
j
°% 025 05 075 °% 025 05 075
P P
e s
(a) DSC for large vessels (b) DSC for small vessels

Fig. 2. DSC for all datasets with varying parameters. The red curves show the per-
formance using the intensity-based method only. For larger vessels (a) the variation of
parameters does not have any significant influence on the accuracy within the optimal
band of thresholds highlighted by the gray bar. In (b) one can see that the inclusion of
the vesselness criteria shifts the DSC curve for small vessels towards higher thresholds.

by not counting voxels within a margin of one voxel along the outer vessel sur-
face as neither positive nor negative. This methodology also reduces a potential
validation bias since the interior segmentation should be more independent on
the semi-automatic method than the contour.

5 Results

The proposed method has been evaluated on five different randomly selected
contrast enhanced chest CT scans from clinical routine of patients referred for
PE. These data have been acquired using Siemens Sensation 16/64 scanners with
voxel sizes ranging from 0.55-0.7 mm in z,y and 0.6-0.7 mm in z-direction. For
quantitative validation 30 manually selected ROIs of size 50 voxel have been
semi-automatically segmented. For each patient, two ROIs have been randomly
placed in regions of large vessels and four in regions of small vessels within the
periphery of the lung. Although the intensity-based method alone provides in
general good results, the evaluation of large and small vessels individually (Fig. 2,
red curves) reveals that for thresholds of the probability measure Pyessel that are
very well suited for large vessels, the accuracy for small vessels is not optimal.
Adding the output of the vesselness filter to the fuzzy segmentation method
does especially increase the segmentation accuracy of smaller vessels for high and
medium thresholds without significantly affecting, as expected, the segmentation
output for large vessels, since we apply the filter for smaller scales only. The
comparison for different parameter settings of o1 and o9 are shown in Figure 2.
In fact, only the ratio between both parameters is of importance when combining
both affinity features, hence we keep o1 = 200 HU constant while varying o9 €
[2500, 3400]. One can observe that an increased value of oo will shift the DSC
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Fig. 3. Dice similarity coefficient and ROC curve for all datasets including large and
small vessels with varying parameters. (a) The red curve shows the DSC using the
intensity-based method only and the blue curve using a combination with o2 = 3000.
Note that the blue curve has its optimum in the middle of the preferred threshold
range. (b) ROC curves with (solid line) and without the one voxel security margin
(dashed line) used for evaluation. The circles represent the operating points of the left
and right boundary of the band of optimal thresholds, respectively.

curve for small vessels towards higher threshold. Unfortunately, the maximum
accuracy also decreases slightly with increasing oo. This is most likely caused by
introducing also some false positive regions by the vesselness feature, where the
filter output responses relatively high to non-vessel structures. Note, however,
that the optimal threshold for small vessels using the intensity feature alone
has practically no relevance since it would cause severe leakage in other regions.
Taking this into account a parameter of o = 3000 (blue curve) turns out to be a
good compromise as its DSC just turns to its maximal value at the left boundary
of the specified optimal range of thresholds. Using, e.g., a threshold for Pyegsel
of 0.4 that segments the vessels relevant for PE applications consistently well,
the DSC increases from 81% to 90% for small vessels while being 95% for large
vessels. Comparing the intensity-based function only with the combination using
o = 3000, the overall DSC curves are shown in Figure 3a. The overall sensitivity
and specificity within the band of optimal thresholds varies between 88.4—92.9%
and 99.8—99.4% with security margin and between 88.4—92.9% and 98.4—97.5%
without the security margin (Fig 3b).

Segmentation examples are shown in Figure 4 using a threshold for Pyegser of
0.4. The top row shows that the proposed method (right) is able to capture more
vessels than the purely intensity-based method (left). For the example shown in
the lower row even a reduction of the threshold for Pyegser to 0.2 for the intensity-
based method would only cause severe leakage into non-vessel structures but not
the inclusion of the missed vessel. The vessel segmentation without vesselness
filters typically requires 30 seconds. The addition of the filter responses adds
about 20 seconds (per scale) to this time on a common PC. However, more
efficient implementations involving the GPU reduce this time drastically [14].
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Fig. 4. Segmentation result using the proposed method (right) in comparison to the
intensity-based method (left) for two different patients (best viewed in color). One can
observe that the new segmentation extends further to the periphery than the purely
intensity-based one.

6 Summary and Conclusions

We have presented a vessel segmentation method combining a minimal param-
eter vesselness filter with fuzzy connectedness. The method combines the filter
output with an intensity model in our fully automatic fuzzy approach to pul-
monary vessel segmentation in contrast enhanced CT data. One can observe
that using intensity features alone the optimal thresholds band suited for large
vessels does not overlap with the band for small vessels. Hence such methods
tend to leak into surrounding non-vessel structures in close proximity to larger
vessels while missing smaller vessels. The results show that using the combi-
nation improves the DSC by 9% (from 81% to 90%) for small vessels without
influencing the accuracy for large vessels (95%) compared to the intensity-based
method alone. Additionally we were able to limit the number of required vessel-
ness filter scales to three, resulting in a computationally efficient method. The
result is a method with the benefits of the vesselness filter, i.e., accuracy, and the
intensity model, i.e., speed, without the drawback of each method individually.
In the future we plan to extend the validation to more datasets, especially also
to patients with other lung deseases.
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