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Abstract. A new framework is proposed for segmenting the pulmonary
vessel tree while simultaneously estimating vessel orientations from lung
Computed Tomography (CT) images. The problem is formulated as a
joint optimization for both the segmentation and the orientation of the
vessel tree. We propose to use a histogram vector to describe vessel ori-
entation, which avoids explicit classification of branching points from a
vessel tree. The objective function encodes the orientation information
by defining a neighboring relationship between voxels, and is solved iter-
atively by alternately optimizing the segmentation and regularizing the
orientation. The validation on manually labeled datasets suggests the
potential value of our algorithm.

1 Introduction

Pulmonary vessel extraction is an important step in performing a quantitative
analysis for lung CT images. Blood vessels inside lungs have a salient tree struc-
ture over the entire lung. The radii of vessels get decrease as they extend from
the center to the periphery of the lung. The vessels typically have a higher inten-
sity than the lung parenchyma. However, it is not sufficient to classify the vessels
from the rest of the lung volume only by using the voxel intensities. The imaging
process adds noise to the data volume and under current limitations of scanning
resolution, the vessel structure in the images may become disconnected. These
factors make vessel extraction a challenging problem.

In order to achieve a robust vessel segmentation, researchers have proposed
various approaches. One is to preprocess the volume by enhancing the vesselness.
For example, Shikata et al ([1]) first enhanced the vessels by a line-filter based on
the Hessian matrix, after which the vessel tree was segmented by thresholding
the vesselness and filling local gaps. Another method turns the problem into a
tracking problem on the vessel tree after getting the initial segmentation using
some heuristic thresholding. In [2], the initial estimation of the vessels was ob-
tained from maximum intensity projection, and a rule-based scheme was adopted
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to separate the vessel tree by extracting the center lines. Wu et al ([3]) used the
method in a more principled way. They proposed a regulated morphology ap-
proach to produce a set of fuzzy spheres; a tracking algorithm subsequently
generated a set of connected trees based on constraints such as for instance
collinearity and size. There are also level-set based approaches such as those in
[4][5], which optimize the vessel boundary as the zero level set of a deformable
curve model.

In terms of optimization, the variable that all these methods try to optimize
is only the segmentation label. Other information, especially the orientation of
the vessel tree, is fixed after precomputation from either the Hessian matrix ([1])
or the morphology ([2][3]). In contrast to these previous approaches, we exploit
the orientation information in a new way. An accurate estimation of orientation
can provide better tracking in segmentation. Meanwhile, a good segmentation
eliminates noise and improves the orientation information. In this paper we pro-
pose a new method of vessel extraction to compute both the segmentation and
the orientation simultaneously.

In our framework, the orientation is regarded as a variable to be optimized
rather than a precomputed feature for segmentation. We formulate our approach
as an optimization problem and propose an iterative solution. First, a new de-
scription of orientation is applied for vessel extraction. We employ a histogram
to accommodate multiple directions at tree branching points. This is different
from using the direction vector, which is not suitable for describing bifurcation;
for instance, in previously reported methods ([1][2]) special tracking rules have
to be defined for the branching points. To initialize the orientation response in
multiple directions, we design a bank of elongated second-order filters, which
can detect more than one dominant direction.

Second, we propose a new formulation to alternately optimize both the orien-
tation information and the segmentation label. We apply the graph cut method
in segmentation, which has become a popular method for medical image seg-
mentation ([6][7][8]). This method guarantees the global optimal solution and is
computationally efficient. It can model both the data likelihood and the neigh-
boring relationship between two voxels. We introduce a novel term defined in
terms of the orientation of neighboring voxels. This leads us to a new way to
integrate the tracking and segmentation procedures.

This paper is organized as follows: Section 2 presents our simultaneous seg-
mentation and regularization framework. Section 3 shows both quantitative and
qualitative results on High-Resolution Computed Tomography (HRCT) ([9])
data. Finally, we give our conclusion in Section 4.

2 Method

The goal of our method is two-fold: to segment the pulmonary vascular vessels,
and to estimate the vessel orientation at each voxel. We propose a new framework
for optimizing both the segmentation label and the orientation estimation. Given
the image volume I, for each voxel i with coordinates s;, we want to assign a



FIRST INTERNATIONAL WORKSHOP ON -187-
PULMONARY IMAGE PROCESSING

o8 B: Intermediate point;

x107
S - e e X
1 2
' |-+ C:End Point °
-

(d)

L R T

(©)

Fig. 1. (a) The 92 predefined directions 1)y, illustrated on a 3D sphere. (b) Three types
of points on a Y-junction. (¢) The orientation vectors o of for A) branching points, B)
intermediate points and C') end points. (d) 2D view of the orientation filter (Equ. (2)).

label [; indicating whether it belongs to the vessel tree (I; = 1) or the background
(I; = 0). Moreover we want to estimate the orientation of the vessel voxel at s;.

The orientation is described by a histogram vector o; = (0},...,05). Each
bin in the histogram corresponds to one of the predefined K unit normal vectors,
{1,..., ¥k}, ||¢k| = 1. Figure 1(a) shows the 92 directions used in the paper.
The value of bin of is a continuous value in the range of [0, 1], representing the
likelihood to the k-th direction of the vessel. Such a histogram vector is capable
of describing multiple dominant vessel directions at the same location; thus it
can generalize the description of the three types of points in the vascular tree:
the branching points with three non-zero bins, the intermediate points with two,
and the end points with one. In general o; is a sparse vector € [0, 1] (see Figure
1(b)(c) for an illustration on a Y-junction ).

Such a vector description is different from the one used by most previous
methods ([1][2]), in which the orientation is only defined on the intermediate
points, and the branching points need to be classified differently from other
points in order to initiate vessel tracking. In contrast, our histogram representa-
tion is capable of describing orientation information in all parts of the vascular
tree with the same format. Therefore, there is no need for classifying and track-
ing branching points like in [3]. This description is more robust to local noise
and broken vessels.

The data term, D7, denotes the negative log-likelihood of assigning label

l; to the pixel ¢ by the intensity at site s;. VVZS] is the neighboring connectivity
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term referring to the compatibility between i and j. A is the second order spatial
neighborhood of 26-connectivity. D and ij are the terms for orientation. W<
and WF ensure that the segmentation labels and the orientation of the vessels
change smoothly along the tree. Our algorithm computes the minimum of the
objective function:

C(L,0)=> DI+A¥ > > Wi+ DE+aR Y > wh.

icl i€l 1AL jEN; icl ill=11,=1|jEN;

Each term is a function of the segmentation label field L = {l;}, and the ori-
entation field O = {o0;}. The first half of the formulation, >, DY + >, > W,
is the popular segmentation energy function, which can be efficiently optimized
by the min-cut/max-flow algorithm ([6]). In contrast, the variable o; in the sec-
ond half, Y, DE + 3", > W, is a continuous variable, which leads us to a

different regularization approach as explained in Section 2.3.

2.1 Initial Estimation of Orientation

To locate the multiple dominant directions, we apply a bank of directional filters
tuned along the set of directions {4} }. This is different from using the Hessian
matrix ([1]), which is suitable for only one dominant direction. To detect thin
structures, we generalize the elongated second-order derivative filter in [10][11]
to 3D as:
10 N A
Fle,8,7) = ds20 5 575xXP (75 + 5 + ) - @
Copr T hao? o (2,9, T=R(a,0,7)(2,9,2)T

The direction of the filter is controlled by the Euler angle (a,/3,7). The
predefined direction % determines o and (. The third Euler angle v comes
from n evenly distributed angles from 0 to 7. We empirically choose n = 4 as
a tradeoff between accuracy and running time. dz>o makes the filter respond
only to the forward direction. o controls the scale of the filter, A\, controls the
elongated scale along x-axis, and A\, controls the thickness of the thin structure
(see Figure 1(d)). We set ¢ = 1, A\, = 16 and A, = 1 in our experiments. R is
the rotation matrix defined by (a, 3,7). By rotating the filter in 3D we get a
bank of filters { F'(«v, 8,7)} for different directions. So an image volume needs to
be convoluted with K x n filters. The initial estimation of the orientation bin
o" is the maximum response out of the n filters of 1, normalized to the range
[0,1] divided by the maximum response of the whole volume.

2.2 Segmenting the Frontier Band

The vascular vessels are typically brighter than the rest of the lung region. How-
ever, in the regions towards the boundary of the lung, the vessels become as thin
as only one or two voxels. Small motion blur and imaging noise make it difficult
to identify these vessels. In contrast to voxel intensity, the orientation informa-
tion is relatively more robust because the orientation filter typically covers a
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Fig. 2. (a) A patch from HRCT lung volume. Blue arrows:
the initial orientation 6; estimated from convolution with
the filter bank. Red arrows: the orientation after regular-
ization, o;. (b) The histogram vector of 6; and o;.

Fig. 3. The active band
(red region) and the
segmentation (green re-
gion) for the first itera-
tion.

large neighborhood. We introduce the orientation into the connectivity term as
follows:

kK k
Wi, = w05, Wi = . 3
I EA w7 0 otherwise ’ 3)

e o= {(lpk,sjfs,-) for  (thk,s; —si) >t

k=1

where (-,-) is the vector dot product and ¢ is a threshold (¢ = 0.9 for our
experiments). In this definition, the spatial regularization weight wfj is high if
the voxel j is along any of the detected directions at voxel . I/Vf] in Equ. (1) is
defined to be symmetric: W;”; = max(ﬁ/fj, WJSI) We set \Y = 3/7 in Equ. (1).
The data likelihood term is defined as DY = —log Pr(I|l;). This likelihood

is computed by the local Parzen-window nonparametric density estimation. A
small neighborhood around each voxel is sampled by an isotropic Gaussian PDF.
The implementation details for optimizing the segmentation labels L given Equ.

(3) are illustrated in [8] by using the min-cut/max flow algorithm.

2.3 Regularization of Orientation Vectors

The initial estimation of vessel orientation depicted in Section 2.1 is very noisy.
‘We desire a sparse solution for vector o;, in which each vector should have strong
responses only in no more than three bins. Also the estimation should be spatially
coherent. For this purpose we apply the multi-modal regularization framework
introduced in [12]. The value of o; is regularized from the initial estimation o;.
The data term in Equ. (1) is defined as:

K K
Dff = Jlo; — oil|* + k(e 5f = Y (0f)*), in which 6; = — Y " of". (4)

k=1 k=1

The first term restricts the regularization results o; to be close to the input o;.
The second term enhances predominant orientations and attenuates the spurious
ones, while ¢ controls the number of non—zero peaks (see details in [12]).
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We set ¢ = 6 and k = 0.5 in this paper to favor 1 to 3 non-zero differ-
ent peaks. For the spatial regularization term, W1R7 in Equ. (1) is defined as:
WE = Zszl wf;(of — of)?. As normalized bin values in o; are non-negative
real-valued, we minimize this stage by solving a constrained system of linear
equations. The details for optimizing the orientation {0} with the Gauss-Seidel
algorithm are given [12]. We set A}Y to be 6. Figure 2(a)(b) shows an example
of the regularization results.

2.4 TIterative Optimization of the Objective Function

‘We propose an iterative approach to alternately optimize the first and the second
half of the objective function Equ. (1). In each iteration, we maintain a region
called Active Band (AB). The segmentation and regularization is only applied
sequentially inside this region, and the labels outside AB are fixed.

In the initialization stage, AB is obtained by thresholding the response of
multiple orientation filters (see Figure 3). Next, orientation is regularized within
AB. After the regularization, segmentation labels within AB are computed by
the min-cut/max flow algorithm. At the end of each iteration, AB is updated by
dilating current vessel tree labels (we use a dilation radius of 2).

The tubular-like structure of AB prevents the segmentation from leaking into
the lung parenchyma. This improves computation efficiency without sacrificing
accuracy. Such an idea is also adopted in [7]; but in contrast, we do not use
Laplacian pyramids to obtain the active band. The convergence point of iteration
gives a sub-optimal solution to the objective function of both L and O.

3 Results

The two datasets were acquired from one patient with no known pulmonary
disease. Using a volumetric expiratory HRCT protocol ([9]), the patient was
scanned once at end-inspiration and again at maximal end-expiration with a 4-
detector CT scanner (GE Lightspeed, 2.5 mm collimation, 120kVp, 240mA, 0.5s
gantry rotation time, 15mm per rotation). Images were reconstructed to 1.25
mm-thick slices with a 512x512 matrix of 0.63-mm in-plane resolution and were
further downsampled by half-resolution to 256 x256x200. Before vessel extrac-
tion, a rough mask of the whole lung was estimated via semi-automatic level-set
segmentation ([13]) to remove extra parts of the bones, heart, and large airways.

Three iterations were run for each volume to obtain convergence. Figure 4(a)
shows the final vessel 3D mask on one volume. Most of the extracted vessels are
thin (i.e. not over segmented) and connected without manual initialization. We
evaluated our segmentation results using a similar approach to that used in [1].
About 3000 points uniformly distributed within vessels were manually labeled
for each volume. For verification, the lung region is divided into five distinct
regions (see Figure 4(b)) depending on the distance from two seed points man-
ually placed on the border of the left and right lung around the hilum, where
most vessels enter the lung region. The peripheral region £ contains mostly thin
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(a)

Fig.4. (a) The extracted 3D vessel mask from the 256x256x200 volume, with no
leakage apparent from visual inspection. (b) The five divided regions according to the
distances from the two seed points.

region A B C D E all regions
case 1|127/129 [300/307 | 491/503 | 794/821 | 557/585 || 96.8%
case 2 |321/327(384/393 | 544/564 | 554/577 | 201/215 | 96.5%
total | 98.3% | 97.7% | 97.0% | 96.4% | 94.8% 96.7%

Table 1. Validation on different regions. The left in-/~is the number of points correctly
extracted; the right is the number of points available for validation in each region.
The true negative is mainly from thin vessels around the lung periphery due to the
restriction of the resolution. Note that false positive ratios are, however, unable to
be reported, as in [1], due to the absence of the ground truth of the entire vessel
segmentation.

vessels, while thick vessels exist in region A. For each region we counted the num-
ber of correctly classified samples. Table 1 lists the true positive rates averaged
over different regions and different volumes. While our results are comparable
to those reported in [1] for regions A, B and C, our accuracy decreases from
the hilum to the periphery of the lungs (region D and E), where the vessels are
almost one pixel thin and get blurred by both imaging noise and low resolution.

Due to the absence of the ground truth of orientation, we only provide qual-
itative results for the estimated orientation. Figure 5(a) shows an example of
the initial orientation estimated from the multi-orientation filter bank in a small
region. Figure 5(b) is the final regularized orientation, which is more smooth
and sparse, i.e. the noise was eliminated.
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Fig. 5. A partial region from the entire mask. (a) The initial orientation from the
filters. (b) The final orientation, which is much more regularized and has less noise
than (a).

4 Conclusion

In this paper a new method is proposed for simultaneously segmenting the pul-
monary vessel trees and estimating the vessel orientation from lung CT images.
The orientation information is represented by histogram vectors, which unifies
the representation for branching, intermediate and end points in a vessel tree.
The orientation is also a variable to be optimized in the objective function, in
contrast to being fixed in existing methods such as those reported [1](3]. The
approach has two phases for each iteration: in the first phase, the estimated
orientation is regularized by fixing the segmentation mask; in the second phase,
the segmentation mask is updated by a min-cut/max-flow algorithm.

Future plans include applications of our method for nodule and abnormality
detection. Also we want to examine quantitative validation of orientation and
connectivity, and compare them with existing methods in a large scale test. Re-
garding computation efficiency, current unoptimized implementation took about
40 minutes on the 256 x256 x200 volumes for one iteration on a Intel Xeon 3GHz
CPU. This can be improved, since the method, especially the regularization step,
is highly parallelizable. And about 60% of the time is spent sampling the Gaus-
sian PDF for D¥ (see [8]), which can be reduced by a better sampling function.
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