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Abstract. Response assessment is critical for cancer patient manage-
ment and new drug approval. Traditional methods to assess the response
are based on measuring tumor size changes in one or two dimensions
on computed tomography (CT) before and after therapy, and can be
biased. In order to investigate if changes in tumor volume can better
assess therapy response, there is an urgent need to develop accurate
and reproducible computer-aided tools. Automatic detection and seg-
mentation of lung cancers is a difficult task as lung cancers are often
large in size, irregular in shape, and can grow against surrounding struc-
tures of similar density and intensity. In this paper, we propose a novel
method for automatic segmentation of lung areas that can be distorted
by large lung cancers using robust active shape models. We also propose
a novel method for automatic detection and segmentation of large lung
cancers using a supervised learning framework followed by the analy-
sis of 3D texture likelihood maps. Finally, we present promising results
of our methods applied to different clinical applications. The proposed
computer-aided methods may provide a new powerful tool for accurate
and reproducible quantification of tumor volumes in lung cancer clinical
trials.

1 Introduction

The evaluation of therapy response is critical for determining whether a partic-
ular treatment is effective on a specific cancer type in a patient. Traditionally,
the ways to assess the response are based on measuring size changes of can-
cer in a transverse image using computed tomography (CT) before and after
a treatment [1,2]. However, the traditional uni-dimensional (maximal diameter
of tumor) and bi-dimensional (product of maximal diameter and its perpendic-
ular maximal diameter) measurements can be biased especially when a tumor
is not spherical in shape and does not change its shape in a spherical fashion.
The preliminary result in a lung cancer study [3] showed that the changes in



-166- FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

tumor volume could be determined as early as 3 weeks after a novel chemother-
apy, whereas the changes of tumor volume measured in the traditional methods
were significantly less sensitive in the same time period. In addition, manual
delineation of tumor contours is time-consuming and lacks the reproducibility.
Therefore, there is an urgent need for automatic detection and accurate segmen-
tation methods for the volumetric assessment of therapy response.

Unlike small lung nodules, lung cancers to be treated are often large in size,
present spiculate edges, and grow against surrounding structures such as the
chest wall, the mediastinum, and blood vessels, which make automatic detection
and segmentation difficult [3]. Thus, the algorithms developed for automatic de-
tection and segmentation of small solid lung nodules are most likely to fail when
applied to large lung cancers [4-13]. In those studies, larger lung lesions that were
attached to the chest wall and mediastinum could be easily and mistakenly ex-
cluded from the segmented lungs in which the subsequent lesion detection would
be performed [4-7]. Also, the existing segmentation algorithms often assumed
that small lung nodules would possess spherical shape, which is not adequate for
describing large lung cancers. Furthermore, inability to separate a larger lesion
from its surrounding structures of similar intensities was another shortcoming
of the existing segmentation algorithms.

In this paper, we propose novel methods for automatic segmentation of lung
areas as well as automatic detection and segmentation of large lung cancers from
CT images for the purpose of therapy response assessment. We first propose a
robust active shape model for the accurate segmentation of lung areas that are
distorted and occluded by large lung cancers. Next, we develop a classifier for the
detection of cancers in the segmented lung areas by boosting a k-Nearest Neigh-
bor (k-NN) classifier, whose distance measure is the Euclidean distance between
the nonparametric density estimates of two regions. The statistical validation of
the proposed classifier is also provided. Finally, the classified cancers are auto-
matically segmented by analyzing 3D texture likelihood maps of the surrounding
areas. We present the promising experimental results of our method applied to
various clinical data. The proposed methods would provide a new powerful tool
for automatic detection as well as accurate and reproducible segmentation of
lung cancers for therapy response assessment in lung cancers.

2 Method

2.1 Robust active shape models (RASM) for lung area segmentation

Large lung cancers often grow against surrounding structures, such as the chest
wall and mediastinum. Lung areas that are distorted and occluded by such lesions
are hard to segment due to the similarity of the intensities between the cancers
and the surrounding structures in CT images. In this section, we develop a robust
method to accurately segment lung areas occluded by large cancers by improving
the active shape model framework.

An active shape model (ASM) represents the shapes of interest as a Point
Distribution Model (PDM) [14]. Then, it constructs a shape space as a set of
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(a)

Fig. 1. The segmented lung area using RASM. Red points are active shape model and
green lines are the connected contour. (a) Large cancers attached to the chest wall and
mediastinum (large red circle) and the initialization of the ASM, (b) ASM finding the
false boundary of lung, and (c) RASM finding the correct boundary of lung and the
large white area in the left lung is a large lung cancer.

orthogonal basis P by applying the Principal Component Analysis (PCA) and
finds an optimal shape for a new example of the shapes with PCA reconstruction.
Given the shape space P, the projection C of a new example shape X is given
as C = PTdX, where dX = X — S and S is the mean shape from the aligned
shapes of the training set. Based on the projection C, we can easily find a
corresponding shape in the shape space as X = PC + 8. For simplicity, we
denoted dX = PC. Since § is constant, the accuracy of X depends on C which
is related to dX. In many applications, dX is often optimized with some low-
level image features such as the gradient along normal directions to the boundary
of an initial shape toward the strongest edge in the image [14].

The ASM method as described above, however, is not suitable for the accu-
rate segmentation of lung areas with large cancers attached on their walls, since
the cancers occlude the real boundary of the lung and appear as the strongest
edge, as illustrated in Fig. 1(a) and (b). To overcome this difficulty, we develop
a robust ASM (RASM) based on the robust M-estimator [15]. The goal is to
recover the projection C' with the majority of the correct dX and to restrain
the outlier points of dX. Mathematically, it computes C' by minimizing the
following robust energy function:

Erpea(C) = minG ([[dX — PCY|, 0) (1)

where, G(x,0) = 22/(2? + ¢2) is the Geman-McClure error function and ¢ is a
scale parameter that controls the convexity of the robust function. The solution
for C' can be obtained by an iterative gradient descent search on E,p.q:

ctt = c 1 xaAC (2)
where, A is a small constant that determines the step size and

aETpca o?
= -2P(dX — P
FTe; X = PO) = pCE+ 072

AC =
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(b) (©)

Fig. 2. Effects of F.,, (only one slice from the whole volume is shown). (a) Original
volume, (b) Volume filtered with F.y, and (c) Volume after thresholding.

The iterative process is performed until HE%Z;) — E$‘p>m|\ < €, where € is a pre-

selected tolerance. Using the robust projection C*, we obtain a robust shape in
the shape space as: 3
X=PC"+S

The result of this process is illustrated in Fig. 1(c), where the lung area occluded
by a large lesion is accurately segmented.

2.2 Detection of large lung cancers

In this section, we present a novel method for automatic detection of large lung
cancers from the segmented lung areas. The method is based on 3D texture
analysis using a machine learning framework, i.e., boosting the k-NN classifier.
However, the accuracy of the detection may be hindered by various structures
within a lung. Thus, we first apply a 3D cylinder filter to suppress the intensity
values of vessels and other elongated structures as well as noise inside a lung,
while maintaining the intensity values of large lung cancers intact [16,17]. The
cylinder filter F,, is defined as:

e

6 yGQg

where, (2§ is the domain of the cylinder filter centered at 2 with orientation 6.
F,,, is a hybrid minimum neighborhood filter that produces strong responses to
large blob-like objects (e.g., large cancers). In this paper, we have selected the
parameters of F,,, empirically and used a cylinder with radii of 1, 2 and 3 voxels
and length of 7 voxels at 7 different orientations. In Fig. 2(a) and (b), we can
see that vessels and noise are effectively suppressed while the large lung cancers
remains intact. After the filtering, we isolate the candidate regions for large lung
lesions by simple thresholding (Fig. 2(c)). The threshold value is automatically
determined by analyzing the histogram of the filter response image [16]. Each
candidate region is then classified with a learning framework described below.
To apply a supervised learning framework, we collected volumetric samples
for positive (lesion) and negative (non-lesion) examples manually. Let @5 be the
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region of a volumetric sample bounded by a sphere. We estimate the probability
density function (pdf) of the intensity values of the interior of ¥;;. We use a
nonparametric kernel based method to approximate the pdf. Let i € [0,255]
denote the random variable for intensity values. The intensity pdf of ¥y, is
defined as:

(i— I(y))Q) dy 3)

. 1 1
Pip) = V(¥um) // oy V2102 op <_ 202

where, V(%)) denotes the volume of ¥,,, y are the voxels in the domain ¥y,
and o is the standard deviation of a Gaussian kernel.

For the candidate areas of large cancers isolated above, the learning for their
classification has a discrete target function f: R™ +— {®,©}, with the label ®
for lesions and © for non-lesions. For k-NN, an instance x is represented as a
point in R™ by a feature vector (ai(x),---,a,(x)), where a;(x) = P(i|%um).
The Euclidean distance is used as the distance measure between two instance
vectors. Given a query instance x, to be classified, k-NN returns f (xq), as its
estimate of f(x,), which is the most common value of f among the k training
instances nearest to x4, that is, f(wq) = ArgMaX,c (g 0} Zi;l 6(v, f(zi)), where
21, -+, 2 denote the k instances from training samples that are nearest to x,,
and 6(a,b) = 1 if a = b and 0 otherwise. To obtain an accurate classification,
k-NN requires a large training set, which results in slow classification due to the
large number of distance calculations. We overcome this difficulty by boosting
k-NN [18]. As in [18], our purpose for boosting k-NN is to improve the speed
of k-NN by reducing the number of prototype instances and thus reducing the
required number of distance calculation without affecting the error rate.

2.3 Segmentation of large lung cancers

‘We now segment the classified large lung cancers. Because of the hazy appearance
and irregular shape of large lung cancers and the large overlap of intensity values
between large lung cancers and surrounding vessels, simple thresholding and
contour based segmentation method do not provide accurate segmentation. The
proposed method involves the analysis of a 3D texture likelihood map using a
nonparametric density estimation [19], followed by eigenanalysis of the Hessian
matrix to accurately remove vessels overlapped with large lung lesions.

We extract the region of interest (ROI) surrounding a classified large lung
cancer based on the detection of the large lung cancers. For each voxel in the
ROI, we evaluate the likelihood of the voxel belonging to a large lung cancer by
measuring the 3D texture consistency between the large lung cancer and a small
spherical region (i.e., 3D texon) centered at the voxel.

Let @5 be the region of a volumetric sample of a classified large lung cancer
bounded by a sphere. Using (3), we estimate the pdf of the intensity values of
the interior of @y, i.e., ppr = P(i|®Pps). Similarly, let &1 be the region of the 3D
texon centered at the given voxel in the ROI. Again using (3), we also estimate
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Fig. 3. Results. Segmented large lung cancers projected onto a slice (top), 3D recon-
struction of large lung cancers (middle and bottom).

the pdf of the interior of @, ie., pr = P(i|®r). To measure the similarity
between the two pdfs, we use an information theoretic distance measure called
Kullback-Leibler Divergence (KLD) [20]. The Bhattacharya distance, which is a
symmetrized variation of KLD, between @, and @ is:

B(pumllpr) = —log p(pumllpr) = —log / [par (D)% [pr (i) di

We evaluate the 3D texture likelihood of the 3D texon at every voxel in ROL.
We define this likelihood using p, since it increases as the Bhattacharya distance
between two distributions decreases. The radius of a 3D neighborhood sphere
used in our paper is less than 3 voxels and the model interior texture is mostly
homogeneous with some level of noise. Thus, it is not necessary to consider
the spatial correlation between voxels. Finally, we remove the remaining vessels
around large lung cancers in the 3D likelihood map by using the eigenanalysis
of the Hessian matrix [21-23]

3 Results

We have 10 chest CT images containing 16 large lung cancers. To test the pro-
posed method, we collected 500 volumetric samples, containing 300 training
samples and 200 testing samples, from 4 training clinical chest CT images. The
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samples were of size 15 x 15 x 3 voxels from the CT volumes. Each sample was
converted to an instance vector in R?°®, representing its nonparametric den-
sity estimate. For the boosted k-NN, we used the standard Euclidean distance
as the distance measure between two instances as described in Section 2.2. We
performed bootstrapping to estimate the generalization error of our large lesion
detection method [24]. We trained and tested the proposed method on bootstrap
samples. After 20 steps of boosting, the mean error rate converged to 3.50%.

We applied the trained classifier to all 10 CT volumes containing 16 large
lung cancers. The CT volumes were acquired by multi-slice HRCT scanners with
5mm slice collimation. The number of slices in each CT scan ranged from 44 to
69 (and digitally resliced to obtain cubic voxels, resulting in 130 to 205 slices),
each of which are of size 512 x 512 pixels, with in-plane resolution of 0.82mm.
The classifier detected all 16 lesions successfully with no false negatives (Fig. 3).
However, it also detected 2 false positive lesions, which the trained radiologists
classified as atelectases.

The detected large lung cancers were then segmented using the method de-
scribed in Section 2.3. Fig. 3 illustrates four representative cases of the segmented
large lung cancers. In the figure, the 3D reconstruction of the segmented 3D large
lung cancers (middle and bottom row) as well as their 2D projections on one of
the slices (top row) are shown. From the figure, we can also see that the sur-
rounding vessels are accurately removed from the large lung lesions segmented.
Table 1 compares the greatest diameters, their greatest perpendicular diameters
and tumor volumes of the 16 lung cancers from the results of the manual seg-
mentation by experts and the automatic segmentation by the proposed method.
The table shows that the mean relative error of the greatest diameter and its
greatest perpendicular diameter are 2.8% and 2.2% and shows that the mean
relative error of the tumor volume is 8.4%. We also compared the overlapping
ratios of the tumor regions segmented manually and automatically, which ranged
from 80.9% to 97.3%. The low overlapping ratios were resulted from the cases
in which the cancers were heavily occluded by blood vessels, where the expert
radiologists also found difficulty. The mean overlapping ratio was 90.9%. These
results demonstrate the potential of our method to correctly segment occluded
lung areas as well as the accuracy of the classification and segmentation of the
large lung cancers. These results demonstrate the potential of our method to cor-
rectly segment occluded lung areas as well as the accuracy of the classification
and segmentation of the large lung cancers.

4 Discussion

Lung cancers to be treated are often large in size and grow against surrounding
structures such as chest wall, mediastinum, and blood vessels. Large lung cancers
attached to such structures make it difficult to accurately segment lung areas
from chest CT images, since they occlude the real boundary of the lungs and
have similar intensity values to the surrounding structures. In this paper, we
proposed a novel method for automatic and accurate segmentation of lung areas
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Table 1. Comparisons. d1 and d2 are the greatest diameter and its greatest perpen-
dicular distance of each tumor. Vol is the volume of each tumor. Overlap ratio is the
volume overlap ratio of the manual segmentation results and automatic segmentation
results. Manual and Auto are the measurements on the manual segmentation results
and the automatic segmentation results, respectively.

Dataset d1 d2 Vol Overlap
(mm) (mm) (mm?) Ratio

Manual Auto|Manual Auto|Manual Auto| (%)

1 95 94 37 36 | 9676 9043 92.5

2 74 73 35 33 | 13357 12237| 90.2

3 84 83 25 24 | 12704 11753 91.2

4 34 35 32 33 | 1643 1819 93.6

5 21 20 16 16 278 254 92.1

6 13 13 11 11 305 291 92.5

7 15 16 13 13 462 503 90.0

8 51 52 18 18 | 2152 2228 91.6

9 21 20 12 12 258 235 82.2

10 21 20 19 18 | 1402 1226 97.3

11 7 7 7 6 61 57 80.9

12 68 67 59 58 | 5988 5583 94.3

13 36 37 27 28 | 6268 6783 91.4

14 22 23 13 13 291 320 88.3

15 27 26 17 16 657 591 95.6

16 39 38 33 32 | 4583 4212 91.6
mean error (%) 2.8 2.2 8.4 90.9

that were distorted and occluded by large lung cancers using robust active shape
models.

We also proposed a novel method for the automatic detection and segmen-
tation of large lung cancers from chest CT images. The proposed method first
extracted candidate lung cancer areas by applying the 3D cylinder filter. Then,
each candidate region was classified by boosting the k-NN, whose distance mea-
sure was the Euclidean distance between the two intensity pdfs. We performed
bootstrapping to estimate the generalization error of the method and showed the
mean error rate of the method converged to 3.50%. Each cancer detected was
automatically segmented by analyzing the texture likelihood map of the region.

The very promising results of our methods applied to various clinical chest
CT images were also presented. Although the evaluation of therapy response is
critical for determining whether a particular treatment is effective on a specific
cancer type in a patient, the traditional methods such as uni-dimensional and bi-
dimensional measurements of tumor size are not sensitive enough to accurately
evaluate the changes in tumor volumes. In addition, the manual delineation of
cancer contours is time-consuming and lacks the reproducibility. The proposed
methods provides a new powerful tool for automatic detection as well as accu-
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rate and reproducible segmentation of large lung cancers for therapy response
assessment in lung cancers.
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