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Abstract. Integral geometry descriptors are used to characterize local
textural properties of lung parenchyma from HRCT images. These quan-
tities, known as Minkowski functionals, describe the morphology and
topology (connectivity) of 2D and 3D binary structures. They have been
shown to be effective in describing properties of complex and disordered
media, such as open foams. In this paper we describe the Minkowski
functionals and propose their use for detecting and grading emphysema
and fibrosis in HRCT images. We show which relevant combinations of
the four quantities correlate well with three degrees of severity of emphy-
sema and states of fibrosis. We present some illustrative results and make
proposals for the use of these descriptors in a larger validation study.

1 Introduction

Emphysema and pulmonary fibrosis are common respiratory disorders which
destroy the lung and reduce its ability to oxygenate blood. The primary cause
is smoking, but other more subtle risk factors, such as genetic predisposition,
are known to be involved. In terms of health care costs, it ranks among the top
five western world diseases. The development of robust quantitative methods for
its early diagnosis, monitoring of its treatment and understanding of its disease
process is therefore of great importance.

High Resolution Computed Tomography (HRCT) is used regularly to assess
lung function and structure, and has become an essential tool in the detection
and assessment of emphysema and related conditions such as lung fibrosis. The
disease is characterized by the destruction of the lung’s alveolar sacs and the
collapse of their walls which results in localized fibrosis. This leads to a corre-
sponding loss of the respiratory capacity of the lung.

In HRCT images, the loss of lung tissue manifests itself as a reduction of
the mean lung density, which can be measured. One simple way is to locate
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lung regions below a given low threshold value (e.g. —910 Hounsfield Units) for
patients holding their breath at full lung capacity [1]. Histogram based analysis
has also been proposed to better determine a cut-off threshold. Nevertheless, the
use of a single, global density index has been shown to be unreliable during early
or mild stages of the disease, or when the emphysematic regions are dispersed
in normal parenchyma [2]. Also, when the pathologic process is mixed, such
as in the presence of inflammation and fibrosis, the local density can actually
increase. Emphysema and fibrosis can create complex patterns of the lung, whose
radiological appearance is commonly known as ground-glass opacities (GGO),
honeycombing (HC) and irregular linear or reticular infiltrates [3].

Since the appearance of the disease progression is textural, it is unsurpris-
ing that image texture analysis techniques have been applied to the problem
of robust quantification [2,4, 1,5, 3]. The early work of Uppaluril et al. [2] used
first and second-order texture features together with fractal dimension (see [6])
to characterize emphysema from CT images. Using pattern recognition, they
performed feature selection and trained a classifier to achieve an accuracy of ap-
proximately 90% and showed it to be significantly better than mean lung density
(MLD) and histogram analysis. Chabat et al. [4] proposed the use of grey-level
co-occurrence matrix (GLCM) texture measures to produce a 13 dimensional
feature vector containing common features of the GLCM, such as energy and
entropy. They also included a number of local shape features by considering the
number of primitives at a given grey level (quantized to 16), of a predefined
radius. These were then used to estimate the “emphasis”, size (short and long)
and uniformity, which would capture the connectivity and size of the primitives.
This approach is empirical but could be interpreted in the integral geometry
framework being presented here. The use of GLCM and the related shape and
connectivity measures suggested by Chabat are used again in more recent work
of Xu et al. [5]. This time, 3D voxel neighbourhoods were considered and the
classifier was set up to grade the pathology into severe, mild and normal lung
appearance. Across 34 subjects, they achieved significantly better discrimination
over an equivalent 2D approach. In reference [1] and recently Zavaletta et al. [3],
spatial maps of lungs have been produced which graphically show the results of
the texture classification and can be visually related to the degenerative states
of the disease. The type of classifiers used vary from simpler kNN ones, as used
in [3], to Bayesian [5] and to neural network approaches [7].

Other work which is of relevance is the study of distributions of air-spaces
in the parenchyma and their progression [8], something which could be readily
estimated by integral geometry descriptors. Notably, in-vitro histopathological
analysis of lung architecture is reported by Ochs et al. [9]. They calculated Euler-
Poincaré characteristics from histological samples and were able calculate the
total number of alveoli in the lung based on an estimate of the shape coefficient
of the alveolus. In this paper, we propose the use of integral geometry descrip-
tors: the Minkowski functionals, with the aim of producing calibrated maps of
the emphysema and related fibrosis, localizing and grading the lung parenchyma
into several stages from normal to severe. After a brief introduction to the math-
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ematical foundations behind Minkowski functionals, we present experiments on
synthetically generated data (based on a binary point-process model), and axial
HRCT slices of a subject. We discuss the results finding and make proposals for
further work.

2 Integral Geometry Descriptors

Healthy and emphysematic lung tissue present textures of distinct morphological
properties. To describe these we need geometrical and topological characteristics
that describe not only volume and shape but also connectivity. Integral geometry
provides a suitable family of such descriptors: Minkowski functionals or intrinsic
volumes. In 3D there are four such functionals and these are proportional to more
commonly known quantities such as volume, surface area, mean breadth and the
Euler-Poincaré characteristic.

Intrinsic volumes have been successfully used in material science to charac-
terize and discriminate morphology of various media [10, 11]. In material science
the structure of interest is usually homogeneous. In this paper we are interested
in characterizing a medium that is composed of various locally homogeneous
but texturally differing regions. To do so we compute Minkowski functionals for
equal-sized regions of voxels rather than the whole image.

Minkowski functionals are unbiased, stereological estimators and provide lo-
cal and global morphological information. In contrast to more standard char-
acterisation methods such as pair-correlation functions or cord-length distribu-
tions, they incorporate information from higher order correlations. Minkowski
functionals have nice mathematical properties such as C-additivity, see (4),
which means that they can be computed efficiently based on simple configu-
ration counts.

Mathematically, the Minkowski functionals are defined for a convex, compact
set K C R? via Steiner’s formula. Let K @ B, be the dilation of the set K by a
closed ball of radius r centered on the origin. Then the volume V of K @ B, can
be written as a polynomial function of r as follows:

3
_ 3 k
VIK&B,) = > (k) Wi (K)r". (1)
k=0
Here Wy, is the kth Minkowski functional. For example, if C' is a cube of side-
length a then

4
V(IC®B,) = da+6ad% + 3anr®+ ?Wrg (2)

and so Wy(C) = a®, W1 (C) = 2a%,W5(C) = an and W3(C) = 4r/3. This
also illustrates the relation of between the Minkowski functionals and the more
common descriptors volume V', surface area S, mean breadth B and Euler-
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Poincaré characteristic x:

Wo(K) = V(K),  Wi(K) = 1S(K), )
WalK) = 2nBK), Wa(K) = ().

As the reader is more likely to be familiar with the latter quantities, we will
present our results in terms of V.S, B and y. The Minkowski functionals are
proportional to these quantities and so we simply refer to these descriptors as
Minkowski functionals.

3 Method

To compute a Minkowski functional for a binary image their definition is ex-
tended from compact convex sets to sets that are finite unions of such. This
is done exploiting C-additivity of Minkowski functionals, that is, for compact
convex K7 and K5 we have

Wi(K1UKs) = Wi(Kr) + Wi(Ka) — Wi (K1 N K2). (4)

Further their definition is extended to the interior A9 of a compact n-dimensional
geometrical object A, in 3D space as follows [12]:

Wi(47) = (F)*HEw(A). ()

These extensions are required as each voxel is assumed to be a cube of edge length
1, and the image is defined to be a number of white voxels in regular lattice of a
black background. Each white voxel is subdivided into its component geometrical
objects, the interiors of which are disjoint. Using (4) and (5), the computation of
the Minkowski functionals now reduces to the problem of counting these objects:
i.e. finding the numbers of open cubes ns, open faces ns, open edges ny, and
vertices ng ensuring that for adjacent white voxels each shared geometrical object
is only counted once.

By repeated application of (4) and (5), and using the known values of the
Minkowski functionals for a cube, face, edge and vertex, the Minkowski func-
tionals can then be shown to be [12]:

V = na,
S:76n372n2,
3 3
B=2n3—ny+ °ny,
2”3 n2+2n1,
X = —ng +na2 —n1 + ne. (6)

For our data, to find ng, n2, n1 and ng, we use the method in [13], referred
to as the algorithm of equations. A black voxel does not give any contribution to
the sums of geometrical objects. Given a white voxel we find its contribution to
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the total of geometrical objects, not counting any shared geometrical objects of
thirteen of the twenty-six adjacent voxels. Indeed, Blasquez and Poiraudean [13]
refer to these voxels as the preceding voxels, however their contributions are
independent of the order in which they are found.

4 Experiments

To analyse a binary image, the image was split into a number of identical cuboids
of a given size in order to describe the heterogeneity of the data. Each cuboid
was then embedded in a black background, to ensure the boundary geometrical
objects are all counted in a consistent manner. Then the Minkowski functionals
were found for each cuboid and maps of the Minkowski functionals were pro-
duced. We investigated the correlation of the 4 quantities by principal component
analysis (PCA) and produced grey-scale maps of the principal variation and the
first three principal components mapped to the green, red and blue channels
respectively.

4.1 Synthetic Data

We first use the described method to test whether Minkowski functionals can
differentiate between idealized, and fairly crude, models of diseased and healthy
lung tissue.

The models are sampled in a window of size 320 x 500 x 30 containing 3
partially overlapping regions of equal overlaps. The first two models are Boolean
models [14] which use a random point process to place different structuring
primitives or grains, see Figure 1. The third model is a Voronoi tesselation [14].
In a Boolean model the locations of grains are independent and identically dis-
tributed uniformly on the region. For the healty tissue, the grains are 2 x 2 x 2
cubes and 3500 grains are placed in total. For the fibrotic tissue, 4000 points
are chosen, and at each point is placed a cuboidal segment. The segments have
lengths that are uniformly distributed on the interval [15,20], and gradients that
vary between £0.8. Their thickness is fixed and is 5 in the z-axis and 2 in the
zy-plane. Finally, for the emphysematic (honeycombed) tissue 800 points are
placed at random and the corresponding Voronoi tesselation is computed. The
thickness of the walls of each Voronoi cell is chosen to be one voxel. Figure 1
shows slice 15 of the synthesized volume.

We produced a scatter plot of the 4 functionals projected onto the first three
principal components of the covariance of the output, see Figure 2. Data from
the five vertical bands of the synthetic image are plotted and clearly show the
distribution in the Minkowski sub-space and good separation of the different
structures. We used the same dimensions to map the descriptors onto the green,
blue and red colour channels to produce the descriptor map in Figure 1 (bottom-
right).
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Fig. 1. Minkowski functionals found on synthesized data generated using Boolean and
Voronoi models. Top: Slice 15 of synthesized volume size 320 x 500 x 30 (parameters of
models are given in section 4.1). Second row: Minkowski functionals found on voxel regions
of size 20 x 20 x 10 from slices 11 to 20. Bottom row: Projection of functionals onto
principal mode of variation e3 from PCA of data m = (V, S, B, x)”; RGB mapping of
three principal modes of variation.

4.2 HRCT Lung Images

An axial HRCT scan of a subject with lung fibrosis was acquired using a GE
Lightspeed Plus CT scanner at a tube current of 150mA. The slice images were of
size 512 x 512 with in in plane resolution of 0.684 x 0.684 mm and a slice thickness
of 0.625 (Figure 3). We calculated the Minkowski functionals on thresholded lung
data, using a threshold of —600 Hounsfield units, and taking voxel regions of size
6 X6 x4.

In order to visualize the results, we performed principal component analysis
on the output from axial slices 29 to 33, and produced colour descriptor maps by
mapping the 4 measures on to a 3D sub-space spanned by the first three principal
axes of the PCA. Illustrative results for three slices are shown in Figure 4. The
colours are, approximately: normal tissue appears as green; fibrosis as a blue to
purple hue and honey-combing as brown and red.
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Fig. 2. Scatter plot of measures from vertical bands of synthetic image projected onto
pairs of the first thee principal components of variation, [eo,e1] and [eg, e2]. Bands are
numbered from left-to right (with respect to images in Figure 1).

Fig. 3. Original and close-up of ‘stripped’ data of axial slice 40, size 512 x 512, with
in-plane voxel resolution of 0.684 x 0.684mm. This slice clearly shows the honeycombing
artefacts and fibrosis.

5 Discussion and Conclusions

The results of Figure 4 show that Minkowski functionals can discriminate be-
tween different stages of degeneration in emphysematic/fibrotic lung. Minkowski
functionals not only have the advantage of being descriptors that have a clear
geometric/topological interpretation, see Table 1, but are also easy and fast to
compute. They are fully 3D descriptors that go beyond simple local lung density
estimation.

After submitting this paper we discovered concurrent but independent work
on the use of Minkowski functionals for grading of emphysematic/fibrotic lung
by Boehm et al. [15, 16]. The authors select specific volumes of interest that have
been labelled by experts as either normal, emphysematic or fibrotic lung tissue.
The Minkowski functionals of these volumes are then computed as a function of
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Table 1. Interpretation of Minkowski functionals for homogeneous structures. If W is the
volume of the sampling window then V,, = V/W, S, = S/W, B, = B/W.

Specific fibre length (edge density) Ly B,/m(1-V,)

Number of particles Isolated particles - x
Mean thickness of edges Sy /7Ly
Mean section area of edges Vi /Ly
Porosity (volume fraction) p 1-V,

the threshold value used in the binarisation of the image. Using an integrative
filtering procedure a single numerical quantity is produced that then can be used
for classification. As in our study, the authors show that Minkowski functionals
are cffective tools for the grading of emphysematic/fibrotic lung and provide
information that differs from densitometric measures. In contrast to Boehm et
al. we do not classify volumes of interest, but rather aim at the segmentation of
the whole lung into the various stages of degeneration. This is achieved by using
localized versions of the Minkowski functionals that can then be displayed as
spatial maps, see Figure 4. In further work we are planning to examine distribu-
tion of these localized functionals for the various stages of pathology. Modelling
the spatial distribution of the localized topological measures as a mixture dis-
tribution then provides the basis of segmentation of the lung.

In Section 4.1 we present a crude model for some of the structures that may be
encountered in diseased lung. More advanced probabilistic model development
is needed as important groundwork for statistical inference and the analysis
of longitudinal data. The computation of Minkowski functionals is a first step
towards model fitting as explicit expressions of these functionals are known for
various models, for example the Boolean model.

‘While the promise of the proposed descriptors is clearly illustrated with our
results, supervised validation on a larger survey is needed and planned as further
work. In this paper, a simple PCA illustrates how the Minkowski functionals
differentiate between textures. Further work will exploit these characteristics in
more sophisticated method for feature selection [1] as well as classification and
learning [7].
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Fig. 4. Results on axial HRCT slices of subject with severe pathology. Left column: original
HRCT data. Right column: Results of PCA projection of first 3 principal modes of variation
from covariance analysis of slice 30 (second row). Slices 20, 30 and 40 shown. Normal tissue
colours as green; fibrosis colours as a blue-purple hue; honey-combing as brown and red.



