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Abstract. Radiotherapy (RT) treatments to lung tumours subject to significant
respiratory motion have been proved to be difficult. By studying the respiratory
motion of lung tumour from imaging modalities such as ultra-fast MRI and 4DCT,
the ultimate research task is to model the tumour’s respiratory motion and to use the
model to predict the tumour motion. In this paper, we are proposing a method to
build such a model by using a statistical technique called canonical correlation
analysis. We built the model from dynamic MR volumes acquired from five
volunteers. The leave-n-out (n=12) technique was used to evaluate the accuracy of
the motion prediction. The motion prediction results were compared to the motion
fields generated by using a B-Spline based non-rigid registration algorithm. The
mean absolute differences between the two motion fields are 3.40+3.20mm,
3.62+3.08mm, 3.68+3.50mm, 4.62+3.97mm and 4.29+3.14mm. Our method is
novel and efficient. Consider the model was built from low-resolution (5x5x5mm)
MR volumes, the results were satisfactory. More thorough evaluations will be
carried out on clinical data.
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1 Introduction

Radical radiotherapy (RT) is one of the primary treatments to non-small cell lung cancer.
It uses high-energy X-Ray to kill cancer cells by causing irreparable damage to their DNA.
Computed Tomography (CT), which provides high resolution anatomy and contains X-
Ray attenuation need for dose calculation is usually used to plan RT procedures. However
lung tumours may exhibit significant respiratory motions, limiting the accuracy of dose
calculation and delivery in RT procedures. Treating lung tumours that are subject to
respiratory motion has been a very active research topic in the last five years. Approaches
include treating at breath hold, target delineation and dose calculations, gated treatment
and tracked treatment. Except treating at breath hold, which relied on the reproducibility
of the breath hold, the other three approaches require a good understanding of lung
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tumour motion during respiratory cycles. However, directly tracking the tumour motion in
real-time during RT treatments is difficult. The uses of implanted markers are invasive
and can only measure the motions in a few locations. By studying the respiratory motion
of lung tumours and its surrounding anatomy from imaging modalities like X-Ray
imaging, 4DCT and MRI, it is possible to create a mathematic model which could
ultimately be used to predict the tumour position [1]~[6]. Approaches to create such
models have been reported in the past years. Low et al. proposed a linear model based on
two continuous respiratory parameters, the volume and flow measured by spirometry [1].
The location of an internal point of interest (POI), normally in the tumour will depend on
its location in the planning CT volume and the current values of the volume and air flow.
A simple linear model can be built from the correlation the respiratory parameters and the
positions of the POIL. Khamene et al also build a model based on two respiratory
parameters [2]. However the two parameters were yielded from a larger number of
respiratory signals by applying Principal Component Analysis (PCA). The first two
principal components (PC) were used as the respiratory parameters. In Khamene’s paper,
PCA was only used to reduce data dimensionality. Zhang et al extended Khamene’s idea
by using PCA to reduce the data dimensionality as well as to characterise the internal
organ motion from the current height of the diaphragm and its height 1.5 second earlier
[3]. Besides the extended application of PCA, Zhang used a free-form deformation field
computed from a non-rigid registration algorithm to represent the lung tumour motions.
Indeed, the non-rigid motion field does not only represent the tumour motion but also
represent the motions of other internal organs, including the lungs and the diaphragm.
Similar approach was used in [4][5][6]. McClelland et al found a B-Spline transformation
based non-rigid registration with control points spacing of 20x20x20mm was capable of
accurately representing the lung tumour motion [6]. He used a B-Spline cyclic function to
model the respiratory parameters (B-Spline deformation) by using motion signals
measured from a skin marker. Relatively good results were achieved.

In this paper, we propose a novel algorithm to model the respiratory motions of the
internal organs and link these motions to externally monitored surrogates such as motion
of the abdominal and thoracic skin surface. The algorithm involves two key steps: 1).
Create the free-form deformation fields by non-rigidly registering a breath-hold reference
MR volume to a set of free-breathing dynamic MR volumes; 2). Build the motion
prediction model by using a statistical technique called Canonical Correlation Analysis
(CCA).

In statistic, CCA is a well-known method developed by Hotelling in 1936 [7] to study
the relationship between two multidimensional variables. Since its invention, CCA has
been widely used in many areas including psychology, neuroscience and etc. In recent
years it was used to detect neural activity in function MRI [8][9]. In this paper, we will
demonstrate that CCA can also be a successful modelling technique to predict the
respiratory motion. Experiments were carried out on five volunteer data sets. The results
and discussion will be presented at the last sections of this paper.

2 Method
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2.1 Canonical correlation analysis (CCA)

Given a p-dimensional random variable X and a g-dimensional random variable Y (¢ < p),
both of which have zero mean, CCA seeks linear combinations aX and bY such that they
are maximally correlated.

Simple correction

:

r

Fig.1. CCA finds the linear combination of coefficients a;, a,...a, and b;, b,...b, to gives the
maximum correlation between X and Y.

Fig.1 illustrates how CCA works. Canonical correlation r between X and Y can be found
by solving the eigenvalue equations (equation 1).

Cxx_lcxycyy_lcyxa =ra

C1y'CiCax 'Curb = b M
where Cyy is the covariance matrix between vectors X and Y. The eigenvalue # is the
squared canonical correlation. a and b are the eigenvectors to the matrices Cyx 'CxyCyy

'Cyx and Cyy'CyxCxx 'Cxr. They are also referred to as canonical weights.
Given U and V where

U=aX V=bY 2)

U and V are called canonical variates. Equation (2) is called canonical function. Up to ¢
canonical functions can be found between p-dimensional variable X and g-dimensional
variable Y (g < p). In principle, they must be non-correlate (orthogonal) to each other.
Canonical correlation is the maximum possible correlation between two multi-
dimensional variables. The relationship between the two variables can be further
investigated by analysing their canonical loadings (CL) and canonical cross loadings
(CCL). By definition, CL is the covariance matrix between the original variable X or Y
and its canonical variate U or V. Similar to CL, CCL is the covariance matrix between X
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or Y and its counterpart’s canonical variate V or U. Equation (3) and (4) calculate CL and
CCL. CL and CCL explain the amount of variable X explained by variable Y or vice versa.

Cyx=Cov(U,X) Cyy=Cov(V,Y) 3)
Cyx = Cov(V, X) Cyy=Cov(U,Y) (€))

Equation (4) is equivalent to matrix equation (5)
V=CyxX &)
From equation (5) we have
X =Cy'V (6)

By combining equation (6) and equation (2), we have
X=Cyx'bY (7

Equation (7) is considered as a prediction model which characterises vector X by using
vector Y. Considering vector X as the internal organ motion signals and vector Y as the
surrogate signals measured from the skin surface, equation (7) estimates the internal organ
motion from the surrogate signals. By using equation (7), we presume that the correlation
between the internal motion and the external motion does not change over time. A higher
CL or CCL means more elements in X or Y contribute to the construction of the model,
suggesting the possibility of a more accurate prediction. This theory will be proved by our
experimental results.

2.2 Relationship between CCA and PCA

CCA and PCA are similar to each other in two ways. Firstly, both CCA and PCA are
linear subspace methods. Secondly, both of them solve the same equation (equation 8).

B'Aw =r'w ®)
In fact equation (8) is equivalent to equation (1) given

A= 0 Cy ,B= Cix 0 andw=|¢

Cx O 0 ¢, b
However, PCA are fundamentally different with CCA because it solves equation (8) by
using different matrices A and B. In PCA, matrix A equals to Cyy, matrix B is a constant 1.
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2.3 Internal organ motion

Dynamic MR volumes had high temporal resolution (0.5s for a full 3D volume) and a
large field of view (480x480x265mm) showing the skin surface and the internal organs,
but had a low spatial resolution (5x5x5mm). A breath-hold high resolution MR volume
(1.875x1.875x2mm) was acquired when the subject was instructed to hold the breath.
Dynamic MR volumes were non-rigidly registered to the reference volume using a B-
Spline registration algorithm [11]. The B-Spline control point grid contained 2250 control
points (15x15x10 with 40x40x40mm spacing), each of which had a 3D displacement (dx,
dy, dz). The displacement vector D for the registration result is given by:
D = [dx,, dy,, dzy,. ...,dx,, dy,, dz,]

Here, n = 2250.

Applying CCA directly to the displacement vector D is computationally prohibited.
PCA, a dimensionality reduction technique was performed to reduce the number of the
internal organ motion variables to n principal components (PC). Zhang et al chose the first
two PCs which covered more than 83% of variance to build their model [3]. However, for
the datasets we used, we need three PCs to represent around 80% of the variations.

Given the control point motion D, the PCs P. Equation (9) estimates the original
variables.

_ K
D=D+Y AP =D )
k=1
where A is the principal component coefficient.

2.3 Skin motion

The skin surface is clearly visible in the dynamic MR volumes, and its position can be
measured automatically using a threshold algorithm similar to the method used in [4]
(fig.2). 6 control points were manually picked from the thoracic and the abdominal areas.
For each control point, current position m, and its precursor position m, , were measured to
form the skin motion signals.

M =[my g, mp,...... Me 11, Mg 2]

m;, ,(t22)
m; ., = Myt < 2)

By adding a precursor position m;,, we had the advantage that it incorporated temporal
correlations into the model, distinguishing the inspiration and expiration portions of the
breathing cycle.

where
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Fig.2. Skin motions were measured from the dynamic MR volumes by using a threshold based
segmentation algorithm.

The input variables to CCA must be zero mean. Equation (10) calculates the standarised
motion signals.
. (M -M)
std(M)

Given the PCs of the internal organ motions P, and the skin motions M, CCA calculates
CCL C and canonical weight b between P and M. From equation (7) we have

(10)

P=C'oM" 11

By using equation (9) and (11), the estimated control point displacements D’ can be
calculated from the real-time measurement of the skin motion.

3 Experiment results

3.1 Spectrum of PCA Eigenvalues

For all the volunteers, PCA was applied to the internal control point displacements to
reduce the number of variables from 6750 to 3 PCs. For the five volunteers, the first three
eigenvalues account for 86.3%, 82.0%, 76.5%, 95.9% and 85.4% of the total variance in
the data.

32 CCA

The CCA function was implemented in Matlab (The MathWorks, USA) statistics toolbox.
The two parameters of CCA were the PCs of the internal motions and the skin motions.
For all the five volunteer datasets, the skin motion variables had strong canonical
correlations with the internal motion variables. The mean correlations between the three
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pairs of canonical variables were 0.983 1 0.007, 0.8251 0.08 and 0.595 % 0.07. CL and
CCL measured the strength of overall relationships between the skin motions and the
internal organ motions. The mean cumulative sums of CL for the five datasets were 0.83,
0.89, 0.87, 0.65 and 0.80 respectively. The mean cumulative sums of CCL or the five
datasets were 0.70, 0.83, 0.83, 0.54 and 0.77. The higher the cumulative sum of CL or
CCL is, the more likely the model can deliver a satisfactory result. In the fourth dataset,
we observed considerably lower values of CL and CCL. This indicated the motion
predicted by the model built from the fourth dataset might not be as accurate as the
models built from the other datasets.

3.3 Model evaluation

Five separate CCA models were built from the volunteer MR data. The registration results
were assessed visually by an expert. Four out of five dataset were considered to be
registered successfully. For one dataset, the registration results exhibit more than two
voxel misalignment in the borders of the chest and the lungs. The leave-n-out strategy was
adopted to evaluate the performance of the CCA models. From each of the datasets, 12
volumes which cover at least one respiratory cycle were dropped. The models were built
from the other 48 volumes and used to predict the deformation fields of the missing
volumes. Fig.3 shows the deformation field at an arbitrarily selected point inside the
dynamic volume and the predicted deformation field at this point from one of the five
CCA models. Generally the organ respiratory motions in the anterior-posterior direction
(Y) and the left-right direction (Y) are not as considerable as the motion in the foot-head
(Z) direction. Therefore the motion signals in x and y directions were easier to be
contaminated by noise. Fig.3a and fig.3b show our attempt to model and predict the noisy
signals. Fig.3c shows the predicted deformation field is closely matched the measured
deformation field in Z direction. We calculated the mean absolute difference (MAD)
between the predicted deformation fields and the deformation fields generated by a B-
Spline-based non-rigid registration algorithm. For the five datasets, the MADs are
3.40%3.20mm, 3.62+3.08mm, 3.68%+3.50mm, 4.62+3.97mm and 4.29%3.14mm. Fig.4
shows the MAD maps generated from the B-Spline control points around the lungs in the
mid-coronal slices (Y=0). It is clear that most of the errors are around 5mm. In some
extreme cases, the differences can be up to 12mm because of the noise, the image
registration errors and the surrogate signal measurement errors. The motion prediction
errors around the lungs in the 4™ volunteers are bigger than the errors in other subjects
because of two major reasons. 1). The volunteer has a fast respiratory rate and the
temporal resolution of the dynamic MRI (0.5s/volume) is insufficient to produce an
accurate motion prediction model; 2). Considerable errors were produced by the image
registrations.

The cumulative sums of CL and CCL of the fourth dataset are considerably lower than
those of the other four datasets. The experimental data prove the theory that the signal
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prediction from the CCA model with high cumulative sum of CL or CCL is not as
accurate as the prediction from the model with high cumulative sum of CL or CCL.
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Fig.3. 12 volumes were dropped successively from the dynamic MR volumes. A leave-n-out
strategy was used to predict the motion signals measured from the missing 12 volumes. From an
arbitrarily selected point inside the MR volume, the predicted motion signals are closely matched

the measured motions in Z direction. In X, Y and Z directions, the mean errors are 2.86 = 2.40mm,
3.62% 3.16mm and 2.89 & 2.37mm.

Generally, the results are satisfactory considering our models were built from low-
resolution MRI with 5x5x5mm voxel spacing. Therefore, the errors correspond to about
one voxel.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Fig.4 The MAD maps were calculated from the mid-coronal slices (Y=0) showing that most of the
prediction errors around the lungs are approximately Smm. The motion prediction errors around the
lungs in the 4™ subject were higher because of the large image registration errors. The white
contours outline the boundary of the lungs and the dark spots suggest the locations of the B-Spline
control points.

4 Discussion and conclusions

We proposed an algorithm to model the respiratory motion of the internal organs by using
CCA and MRI. In this pilot study, CCA models were built from dynamic MR volumes
acquired from five volunteers. By using the leave-n-out strategy, the deformation fields of
the dynamic MR volumes were successfully predicted by using our model (average error
is less than 1 voxel). Although we only used the skin motions to build and drive the
model, it did not mean the skin surface was the only surrogate source possible with our
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model. Without any modification, the model could be adapted to more parameters due to
the nature of the CCA method.

Similar to Khamene’s method, our model was built from 3D dynamic MR volumes
while many other reported methods involved the uses of cine mode CT [1][3][6]. CT
volumes acquired in cine mode often contain discontinuities in the data between adjacent
couch position due to sorting errors and inter-cycle variation. Extra procedures are needed
to correct the artifacts caused by these discontinuities [3]. By using an ultra-fast MR
sequence, it is possible to acquire the whole 3D anatomy of the lung from one scan.
Furthermore, by using MRI, it is possible to conduct a relatively long scan. 30 seconds
MR data were acquired from each of the datasets in this study. Compared to other studies
(24 seconds in [2], 20 seconds in [6], 11 seconds in [1] and one respiratory cycle in [3]),
our data cover more respiratory cycles sampling more inter-cycle variation. Potentially,
more data can be acquired with MR if required. But for CT studies, it is difficult to
increase the data acquisition time due to the radiation dose limit.

Many of the methods mentioned in the introduction use polynomial or cyclic function
to model the respiratory cycles. By using these methods, a presumption was made that the
end positions of inspiration and expiration remained the same over time. However, this
presumption is obviously wrong as the end respiratory positions can vary more than
10mm (fig.3) in reality. Our method did not make such presumption. It modeled the whole
respiratory signals including the inter-cycle variation. In this study, our models were built
from 48 dynamic MR volumes and used to predict the internal organ motions shown in
the other 12 MR volumes. Reasonable results were achieved. Without the radiation dose
limit, we can acquire more MR volumes and potentially can build a even more accurate
model. Zhang et al. reported a method to build the respiratory motion model by using
PCA [3]. Similar to CCA model, PCA model can also model the inter-cycle variation of
the respiratory motion. But the use of CT has efficiently limited the acquisition time. In
fact, Zhang’s CT data only covered one respiratory cycle.

Although our approach has many unique advantages and the uses of MRI to plan RT
procedures are beneficial (see Introduction), we have not yet evaluated our model on
clinical data. Therefore, the clinical accuracy of our model remains unknown. Having an
efficient and successful respiratory motion model is a big step toward. But it is still a
significant challenge to put this model into clinical use. Other known issues such as
tumour baseline variation and morphology changes [11] should be accounted for in any
clinical system and we are exploring how our model may be quickly and accurately
updated using interfraction imaging (kV or MV fluoroscopy or cone-beam CT).

References

1. Low, D. A, Nystrom, M, Kalinin E, et al., “A method for the reconstruction of four-
dimensional synchronized CT scans acquired during free breathing,” Med. Phys. 30, 1254-
1263 (2003).



10.

11.

-154- FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

Khamene, A, Warzelhan, J K, Vogt ,S, et al., “Characterization of internal organ motion using
skin marker positions,” MICCAI 2004, 526-533 (2004).

Zhang, Q H., Pevsner, A, Hertanto, A, et al., “A patient-specific respiratory model of
anatomical motion for radiation treatment planning”, Med. Phys. 34, 4772 (2007).

Blackall, J M, Ahmad, S, Miquel, M E, et al., “MRI Based Measurement of Respiratory
Motion Variability and Assessment of Imaging Strategies for Radiotherapy Planning,” Phys.
Med. Biol. 51, 4147-4169 (2006).

Zeng, R, Fessler, J A, and Balter, J] M, “Estimating 3-D respiratory motion from orbiting views
by tomographic image registration,” IEEE Trans. Med. Imaging 26, 153-163 (2007).
McClelland, J R, Chandler, A G, Blackall, ] M, et al., “A Continuous 4D Motion Model from
Multiple Respiratory Cycles for Use in Lung Radiotherapy”, Med. Phy., 33, 3348-3358 (2006)
Hotelling, H., “Relations between two sets of variates”, Biometrika, 28, 321-377 (1936)
Worsley, K., J., Poline, J-B, Friston, K., J., Evans, A., C., “Characterizing the response of PET
and fMRI data using multivariate linear models”, Neuroimage, 6, 305-319 (1997).

Friman, O., Carlsson, J., Lundberg, P., et al., “Detection of neural activity in functional MRI
using canonical correlation analsyis”, Magnetic Resonance Medicine, 45, 323-330 (2001).
Rueckert, D, Sonoda, L I, Hayes, C, et al., “Nonrigid registration using free-form deformations:
application to breast MR images,” IEEE Trans. Med. Imaging 18, 712-721 (1999).

Sonke, J J, Lebesque, J, and van Herk, M, “Variability of four-dimensional computed
tomography patient models,” Int. J. Radiat. Oncol., Biol., Phys. 70, 590-598 (2008).



