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Abstract. Computerised emphysema quantification has received a lot
of research attention due to the mass availability of CT. Yet, to our
knowledge, no existing method is able to recognise all common subtypes
of the disease, a diagnosis routinely given by radiologists. In this pa-
per, we present a HRCT-based Computer Assisted Diagnosis system for
emphysema subtype diagnosis. The system first detects low-attenuation
regions using adaptive density mask, a novel refinement to the classic
density mask method. Detected regions are then classified individually
and results combined in a bottom-up manner to achieve per-patient di-
agnosis and quantification. Expert knowledge necessary for classification
decisions was acquired incrementally using a multi-level Ripple Down
Rules system. Evaluation shows that the multi-level approach well re-
flects the pathological characteristics of the subtypes, and RDR knowl-
edge management provided robust diagnosis using very little training
data.

1 Introduction

Emphysema is a chronic obstructive pulmonary disease (COPD) typically caused
by exposure to tobacco smoke. Alveolar walls break down due to inflammatory
responses to the particles inhaled and the affected regions show low attenuation
on high-resolution computed tomography (HRCT) scans. Patients suffer from
limited respiratory capabilities as the disease progresses.

Automated emphysema detection has been researched for almost as long as
CT has existed; Sluimer et al. recently provided an overview and performance
comparison in their survey on computerised CT analysis of the lung [1]. Despite
its age, density mask (DM), a method introduced by Muller et al. in 1988 [2],
is still considered the de-facto standard in computerised quantification [3]. DM
calculates the percentage of the lung showing below-normal attenuation and has
been shown to correlate well with pulmonary function tests, the standard for
emphysema diagnosis in pre-CT times [4, 5]. However, DM and other emphysema
quantification methods are unable to detect disease subtypes, a diagnosis made
routinely by radiologists when diagnosing scans manually.

To build a computer assisted diagnosis (CAD) system capable of compre-
hensive subtype recognition, extensive expert knowledge must be transferred
into the system systematically and in a time-efficient way. Ripple Down Rules
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(RDR), a knowledge engineering technology for expert systems introduced by
Compton and Jansen [6], is suitable for the task. RDR are ordered lists of rules
with exceptions. If a misclassification is detected for an input case while review-
ing classification results, an exception is appended to the firing rule to correct
the conclusion; a new rule is added to the knowledge base if no rules fire at all;
and no change is made for correctly classified cases (review/approve-or-create-
rule cycle). This makes RDR an incremental or per-case knowledge acquisition
method, where knowledge base testing and rule creation merges into a single
working step to make use of every sample reviewed. New rules are validated
against the existing knowledge base to ensure knowledge consistency. For any
new rule or exception created, the human expert is responsible for formulating a
rule condition based on some features of the case investigated. The choice of these
conditions is a trade-off between rule specificity and the desired generalisation
to similar but unseen future cases.

Feature extraction and feature design are crucial for the success of any CAD
system, and often, new features are added as the expert finds that the features
currently available are insufficient. If the diagnosis model was represented using
a machine learning approach, this would require re-training; with RDR being an
incremental learner, the expert would simply incorporate new features into the
newly built rules. Another important property of RDR is that the system is built
while being already in use. RDR can be seamlessly integrated into the day-to-day
workflow of the experts as demonstrated by the commercially successful version
of RDR for pathology domain [7,8]. It is known that RDR produce knowledge
bases (KB) similar in size to those developed by machine learning [9] and the
time taken to add a rule remains roughly constant regardless of the size of the
KB [8]. An enhanced version of RDR known as Multiple Classification RDR
(MCRDR) [10] can provide multiple conclusions to a given case.

In this paper, we present a CAD system for classification and quantification
of centrilobular (centriacinar), panlobular (panacinar) and paraseptal (bullous)
emphysema (Fig. 1). The system design is inspired by the way we observed the
radiologist in our group handle the task manually: raw emphysema regions are
detected (Sect. 2) and classified individually based on a set of region features.
Results are combined to provide input to a higher-level classification step (Sect.
3). Both steps use RDR rule bases for expert knowledge management and reason-
ing, forming a novel multi-level RDR classification system. We discuss evaluation
methods and some results in Sect. 4 and summarise remaining challenges and
ideas for future work in Sect. 5.

2 Emphysema Detection and Feature Extraction

Raw emphysema region detection is based on density mask, as this method
is widely accepted by radiologists and studies have been carried out to select
good threshold values [4,5]. However, a pure DM approach fails in our case for
later stage emphysema cases (confluent emphysema), where large regions of very
serrated appearance are detected that provide no meaningful shape information
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Fig. 1. CAD System overview

(see Fig. 2). To compensate, we have developed a DM variant called Adaptive
Density Mask (ADM), somewhat similar to but computationally more efficient
than the standard Watershed transform [11]. ADM was designed to give results
similar to standard DM except for confluent cases, where it creates more and
smaller unconnected regions more suitable for subsequent region analysis.

2.1 Adaptive Density Mask

The idea behind ADM is to select a binarisation threshold for each emphy-
sema region automatically to maximise the number of distinct regions while
simultaneously maximising their area, both within the limits imposed by mini-
mum/maximum density masks. Traditional minima detection methods capable
of achieving this [11,12] are expensive, over-segment the image and require ad-
vanced de-noising beforehand. ADM provides a simple, fast and robust tradeoff
between sensitivity and simplicity for the drawback of having to select a number
of additional parameters.

It is worth pointing out that, by definition, DM (and any method based
on it such as ADM) does not produce false positives in the traditional sense;
every detected image pixel/voxel is considered as indication of the presence of
emphysema and thus clinically relevant. Fig. 3 illustrates ADM schematically
for a real-valued signal; in particular, the method works as follows:

Given a set of thresholds t1,...,t,, a DM is calculated on the input image
for each threshold (for e.g. -965 HU to -945 HU using 5 HU steps in Fig. 3).
For each resulting distinct region (solid horizontal black lines), the minimum
attenuation is determined and the corresponding x/y position is associated as
an unique index to the region (squares and vertical lines). We can think of the
different density mask outputs as an ordered stack of layers as indicated by the
solid horizontal lines (binary one) and the dotted horizontal lines (binary zero)
in Fig. 3. Each region is recursively visited by the following procedure, starting
on the topmost layer:
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(a) (c) (d)

Fig. 2. Standard density mask (DM) compared to the adaptive density mask (ADM)
method for raw emphysema segmentation. (a) Original image region, a late case of
centrilobular emphysema. (b) DM output using a threshold of -950 HU (yellow). (c)
ADM output using -975 HU, -970 HU, ..., -945 HU thresholds (red). (d) Overlay of the
DM (yellow) and ADM (red) segmentations from (b) and (c). For large segments of late
panlobular and centrilobular emphysema, ADM creates more and smaller unconnected
regions as compared to DM that results in large, serrated regions.
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Fig. 3. Adaptive Density Mask: schema for a real-valued signal. The density mask
outputs for the different thresholds are depicted in solid (binary one) and dotted (binary
zero) lines, resulting emphysema regions are highlighted in bold red. For some regions,
the number of regions below the current layer n. is given.

— Find the number n,. of regions below the current layer covered by the current
region. For the rightmost region in Fig. 3 on the -945 HU density mask,
ne = 3.

— If n. < 1, the current region on the current layer will cover a maximum
area while simultaneously maximising the number of regions: recursing to
a lower layer will not increase the number of regions but will decrease the
region area. Mark the current region in the result mask as binary one and
stop recursion.

— If n, > 1, visit the covered region in the layer below.

We observe the following two properties of ADM:

1. Local minima detection: The image is re-quantised using ¢4, ..., t,, and every
local minimum detectable in the re-quantised image creates a distinct region



FIRST INTERNATIONAL WORKSHOP ON -139-
PULMONARY IMAGE PROCESSING

in the binary result image. This ensures that even for late confluent cases,
shape information is retained.

2. Mazimum region area: While the number of regions in the binary result im-
age is determined by the number of detected local minima, each such region
has maximum area. This makes ADM behave similarly to DM where the
emphysema regions are generally well formed and isolated (non-confluent).

2.2 Region Feature Extraction

We extract multiple features for each low-attenuation region: Shape (compact-
ness and elongation using image moments), first-order statistics (mean HU, HU
standard deviation and uniformity using min/max normalised standard devia-
tion), connectivity to the lung boundary (pleura), edge-radius-symmetry trans-
form [13] for wall detection and a morphological wall detection approach in which
the region is dilated and first order statistics are calculated for the new region
pixels, resulting in a total of 12 features per region.

3 RDR Based Multi-level Classification

Our multi-level RDR system design is motivated by the finding that presence and
distribution of the different emphysema region classes in a patient are commonly
used by radiologists for subtype diagnosis [3]. Emphysema region identification
and classification is a task on its own and must not be confused with the higher-
level per-patient subtype classification.

Each disease subtype is dominated by a special type of low attenuation region
[3] (see Table 1 for a brief characterisation). Accordingly, the extracted region
feature vectors are used to classify regions into one of these region classes using
a region level RDR layer. In a second step, a diagnosis level RDR layer builds on
the region level results and produces the desired subtype diagnosis as outlined
in the schema in Figure 1.

Table 1. Region class characterisation and relation to emphysema subtypes (charac-
terisation extracted from [3])

Predominant
Region class Appearance in subtype
Bullous Round, compact, any size. Very low density, Paraseptal
typically touching the pleura, visible walls
Centrilobular Small/medium size; typically rounded shape Centrilobular
Diffuse Large, often smoothly outlined by interlobular ~ Panlobular

fissures and pleura; uniform density with smaller
vessels within

Expertise for the region classification decision was transferred into the system
using the common RDR cycle: new rules or exceptions to existing rules are added
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by the expert either to correct a misclassified sample or to remove false positives.
The radiologist in our group, a specialist on lung CT with more than 30 years
of experience, created a total of 22 rules for the region classification rule base.
Effectively, 22 regions from a number of typical cases were thus used as the gold
standard (see Figure 4 for a sample rule created).

— TouchingPleura = 1, Area > 6.95 mm?, Compactness > 40%, MeanDensity <
—974 HU — Bullous
except
o WallsMorphMean < —890 HU — Centrilobular
except
* WallsMorphStddev < 100 HU, Uniformity > 85% — Bullous

— EmphysemaDistribution={Diffuse,Bilateral}, EmphysemaTotalLungPct > 30%
— Moderate panlobular emphysema

Fig.4. Two sample RDR rules created during system development: a region level
rule with an exception that in turn has an exception (top) and a diagnosis level rule
(bottom).

Percentage involvement of all the three region types detected in the previous
step are calculated for various lung regions. These percentages as well as distribu-
tion and predominance attributes (such as e.g. diffuse/focal, unilateral /bilateral
distributions or apical/middle/basal predominance, calculated for each region
class separately using [14]) are presented as features at the diagnosis level RDR.
We use multi-classification RDR [10] to allow for co-existence of different em-
physema subtypes, and each subtype is individually quantified as either absent,
mild, moderate or severe. Figure 4 shows a sample diagnosis level rule based on
these features.

4 Classifier Performance Evaluation

Evaluations were carried out separately for the region level and the diagnosis
level layers. In addition, in order to examine whether our region features are
powerful enough for a clear discrimination between the three region classes, we
compared region classification results obtained using standard machine learning
methods to expert opinion, where high agreement would indicate sufficiently
powerful region features.

A dataset consisting of 4,514 manually labelled regions (176 bullous, 4,193
centrilobular and 145 diffuse) from 9 scans of different patients was created
using a designated labelling tool to train and evaluate the following classifiers:
a decision tree (C4.5), a naive Bayesian, decision tables using the Inducer of
Decision Table Majority (IDTM) induction algorithm [15] and a fully connected
single hidden layer perceptron classifier, all through the WEKA data mining
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suite for Java [16]. Sample sizes for each class were chosen to roughly reflect
the frequency distribution of the different region classes. Classifiers were trained
using 10-fold stratified cross validation using 10 repetitions. Table 2 shows high
agreement for all classifiers tested and proves that the proposed region features
are sufficiently powerful for region discrimination.

For comparison, Table 3 displays the confusion matrix for the region-level
RDR classifier after the creation of the 22 rules mentioned above for the same
dataset. Very good performance is observed for the centrilobular and the diffuse
region classes, while almost 33% of the bullous class are missed. Apparently,
an insufficient number of samples were reviewed to trigger rule creation and
knowledge transfer necessary for reliable classification of this region type. Also,
since the same expert hand-labelled the region dataset and created the RDR
rules, we cannot eliminate the possibility of some bias and thus over-estimation
of the RDR classifier performance.

Table 2. Class-specific and overall classification results for standard machine learning
region level classifiers using 4514 training regions. F-Measure is defined as the harmonic
mean between classifier precision and recall; the Total F-Measure column contains a
weighted sum of the class-specific F-Measures (weights proportional to class sample
size).

Class-specific F-Measure (%)

Bullous Centrilobular Diffuse Total
Classifier (176 inst.) (4,193 inst.) (145 inst) F-Measure

C4.5 67.50 98.50 89.80 97.01
Naive Bayes 50.40 94.80 64.20 92.09
Decision Tables  63.70 98.40 89.10 96.75
Perceptron 65.20 98.20 85.00 96.49

Table 3. Confusion matrix for RDR region level classifier using 22 training regions.
The value at the bottom right shows the combined F-Measure for the RDR classifier as
a result of a weighted average of the class-specific F-Measures (class weight proportional
to class sample size).

| Label/classified — Bullous Centrilobular Diffuse  F-Measure (%)

Bullous 119 55 2 66.48
Centrilobular 57 4,133 3 98.49
Diffuse 6 12 127 91.70

Combined 97.02
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For the diagnosis level layer, the radiologist in our team reviewed an ad-
ditional 25 scans (different from the ones used to create the region dataset)
manually. Since raw emphysema detection is out of scope for this work, we only
used scans that appeared to contain emphysema through their relatively high
DM coverage (31.3% =+ 8.4% for the selected scans using a standard -950 HU
threshold). Emphysema subtypes present were identified and a severity diagno-
sis was given for each case. 5 scans were diagnosed not to show any emphysema.
Among the others, 1 showed mild paraseptal (bullous) emphysema, 7 centrilob-
ular (mild: 1, moderate: 2, severe: 4) and 14 panlobular (mild: 10, moderate:
2, severe: 2) emphysema. The diagnosis level RDR knowledge base was initially
empty, and during the course of the review, the radiologist added new rules
whenever the system came to a wrong or no conclusion.

Altogether, 12 rules were created this way; we recorded the order in which
scans were reviewed and whether one or more rules were created to adjust the
system behaviour. Two different visualisations of the process can be seen in Fig.
5. Figure 5 (a) shows that 12 rules were needed on the whole to classify the 25
scans correctly. Figure 5 (b) clearly highlights a plateau effect (solid line) and a
decay (dotted line) as the number of scans reviewed increases: 10 out of the 12
rules (83.3%) were added for the first 17 scans (68%), confirming the well-known
RDR benefit of robust classification results after using only a small number of
training samples. Rather than testing on unseen cases, every new case is used
for training in the RDR tradition.
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Fig. 5. Results of diagnosis level RDR evaluation. (a) Number of rules in the knowledge
base and overall classifier performance on the 25 scan test set. (b) Scans reviewed and
number of rules in diagnosis level RDR KB for the 25 scan test set used for evaluation
(left axis)/average number of rules per scan (right axis).

5 Conclusion and Outlook

We have presented the first CAD system capable of a comprehensive emphysema
diagnosis including disease subtypes. The RDR subtype diagnosis is parameter-
less and only influenced by the knowledge transferred into the system by the
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radiologist(s), suggesting a scenario for a routine clinical use: a fraction of the
scans passing through the CAD system in daily use can be reviewed manually
and inappropriate classification behaviour can be adjusted. Evaluation of the
RDR region classification showed results comparable to state-of-the-art machine
learning techniques using only a fraction of training samples.

Longer-term clinical application is one of our goals and still the only way
to demonstrate the system’s practicability. However, for an incremental system
such as the proposed one, results can be expected to improve as more knowledge
is gradually added to the adapting system. The presented region detection and
multi-level RDR classification may also be used as a generalised framework for
subtype classification of other lung diseases (e.g. asbestos-related diseases using
pleural plaque, diffuse thickening and pleural rind regions).

For the raw emphysema detection step, we have presented a refined version
of density mask called Adaptive Density Mask (ADM) as an extension to the
standard density mask method. Only ADM makes it possible to analyse the
shape of low-attenuation regions even with late cases of emphysema.

Data for this work was recorded using scan intervals of 10-15 mm, preventing
accurate 3D processing. However, extending the proposed system to 3D should be
a straight forward task and can be expected to increase robustness and accuracy.

Throughout this paper, we assume that the CT scans under investigation
contain emphysema and no other lung disease characterised by low-attenuation
regions. This assumption might not hold in practice, for e.g. fibrosis often co-
occurs with emphysema and might influence ADM detection results. In addition
to that, non-emphysema low attenuation regions (such as e.g. the bronchial tree)
should be segmented beforehand and excluded to improve the reliability of the
computed volumes.
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