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Abstract. This paper presents a method for improving airway tree seg-
mentation using vessel orientation information. We use the fact that an
airway branch is always accompanied by an artery, with both structures
having similar orientations. This work is based on a voxel classification
airway segmentation method proposed previously. The probability of a
voxel belonging to the airway, from the voxel classification method, is
augmented with an orientation similarity measure as a criterion for re-
gion growing. The orientation similarity measure of a voxel indicates how
similar is the orientation of the surroundings of a voxel, estimated based
on a tube model, is to that of a neighboring vessel. The proposed method
is tested on 20 CT images from different subjects selected randomly from
a lung cancer screening study. Results from our experiments showed that
length of the airway branches segmented using the proposed method are
significantly longer (p = 0.0125) as compared to only using probability
from the voxel classification method.

1 Introduction

It has been shown in various studies that analysis of airways in CT, mainly the
measurement of airway wall thickness, plays a significant role in the analysis of
various lung diseases [1]. Airway tree segmentation plays a critical role in these
studies, offering a starting point for conducting measurements on the airways.
Nevertheless, current available airway segmentation methods are still far from
perfect, limiting the measurements obtainable from these airway analysis studies
to the larger airways that are easier to segment.

Most airway segmentation methods are based on the region growing algo-
rithm [2-6]. The main difficulty in using the region growing algorithm lies in
the fact that there often exist regions that have low contrast between airways
and their surroundings, due to noise or pathologies such as emphysema. These
regions often cause the region growing algorithm to leak into surrounding lung
tissues. Currently there are two approaches to address this problem: explosion
control and use of local image descriptors.
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The idea of explosion control is to stop the segmentation in the low contrast
regions where otherwise leakage would occur, while segmentation continues in
other regions. Strategies for explosion control generally involve heuristic rules
based on geometrical properties of the regions labelled. Some examples of these
geometrical properties are: volume of the regions segmented [2], radius of prop-
agation front [3], cross section area [4] and topology of thinned structure [5].

The second approach makes use of local image information to better dif-
ferentiate between airways and their surroundings, for instance using pattern
recognition techniques [7, 6] or local tube detection [8].

Previously, we have proposed a method for airway segmentation based on
voxel classification and region growing [6]. In this paper, we propose to incor-
porate airway and vessel orientation information to further improve the voxel
classification based method. This is done by using an orientation similarity mea-
sure that is computed from the orientation of a candidate airway voxel and the
orientation of a neighboring vessel. The orientation similarity measure is then
used as an additional criterion in the region growing.

The motivation for our work lies in the fact that every airway branch is
accompanied by an artery. Sonka et al [9] decribed an approach that uses vessels
to improve airway segmentation. The differences however is that our method
uses a segmented vessel tree and the orientation computed from it, while the
work described in [9] uses the proximity of the airway to the vessel, which is
assumed to be a bright object nearby.

2 Vessel-guided airway segmentation

We start by first describing the construction of a voxel classification based air-
way appearance model, which is proposed in a previous work. We then proceed
to explain the way the vessels are extracted and the computations of their orien-
tations. After that, we present the way we compute the orientation of an airway
candidate voxel, and how this is used with the orientation from a neighbor-
ing vessel to form an orientation similarity measure. Finally the segmentation
framework is described, where the airway appearance model and the orientation
similarity measure are used to form a decision function for a region growing
algorithm.

2.1 Airway Appearance Model

An appearance model based on voxel classification is used. We based this ap-
pearance model on [6], where a k** nearest neighborhood (KNN) classifier is
used for differentiating between voxels from airway and non-airway classes. A
brief review on how the model is constructed and used is presented here for the
convenience of the reader. Refer to [6] for details.

Ideally, a gold standard provided by hand-tracing by a human expert should
be used to construct or train the appearance model. However, such a ground
truth of the airway trees is not feasible to obtain due to the extreme amount of



FIRST INTERNATIONAL WORKSHOP ON -115-
PULMONARY IMAGE PROCESSING

manual labour involved [5]. Therefore, a surrogate ground truth is used instead,
which is imperfect but easier to obtain. We will refer to this surrogate ground
truth simply as ‘ground truth’ in the following text.

The ground truth is obtained using a simple intensity based interactive re-
gion growing algorithm, where the user is required to provide a seed point and
an intensity threshold. The highest threshold possible without any observable
leakage is selected for each of the images individually. A second segmentation is
produced using a slightly higher threshold. Due to the higher threshold, this ‘ex-
ploded segmentation’ usually has more airway branches and significantly more
leakage. The exploded segmentation is used to exclude potential airways voxels
that were missed by the ground truth from the non-airway class in training the
appearance model.

The airway class then consists of all voxels labelled in the ground truth, but
excluding the trachea and main bronchus. The non-aiway class consists of voxels
surrounding the airways that are within the lung fields and are not marked by
the exploded segmentation.

To ensure approximately independent training samples, only a small per-
centage (5%) of the voxels belonging to the airway class, selected randomly, are
used as training samples. The same number of training samples are also selected
randomly from the non-airway class. To prevent the samples belonging to air-
way class from having a bias towards the larger airway branches, the random
sampling is done such that more samples will be drawn from the the smaller
branches.

An initial set of local image descriptors is first used to compute the fea-
tures of each training sample. This set of features consists of partial derivatives
up to and including the second order, eigenvalues of the Hessian matrix, de-
terminant and gaussian curvature of the Hessian, as well as combinations of
eigenvalues that measure tube, plate and blob (y/AF + A2 + A2, |A2/A1], A3/,
(1A= 1x2])/(IA1]+1A2]), [As]/4/IA1A2]). The partial derivatives of the image are
computed at multiple scales by convolving the image with the partial derivative
of a Gaussian kernel, based on scale space theory [10].

Sequential forward floating feature selection [11] is used to select an optimal
subset of features from the initial set, which maximizes the area under the re-
ceiver operating characteristic (ROC) curve of the KNN classifier. In the feature
selection process, training samples are randomly separated into two equal parts,
a training set and a validation set. The final KNN classifier used is constructed
using the optimal features of all the training samples.

Given a set of optimal features & computed at a particular position in the
image, the posterior probability of  belonging to the airway class is defined as

P(dla) = K412) )

where A is the airway class, K 4(x) is the number of nearest neighbors around
x belonging to the airway class, obtained from a total of K nearest neighbors.
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Fig. 1. Vessel segmentation with thresholding only on intensities (left) and on both
intensities and tubeness measures (right).

2.2 Vessel Orientation

Extraction of vessel orientation involves three steps: vessel tree segmentation,
centerline extraction and orientation computation.

The segmentation of the vessel tree in CT image starts by first segmenting
the lung fields based on thresholding and morphological smoothing [12]. We
then threshold the image with an intensity of ¢, followed by a second threshold
process based on the eigenvalues of the Hessian matrix to remove other high
intensity structures such as airway walls and fissures.

We obtain two measurements based on the eigenvalues [13], given as

_ [l =1
[A1] + [A2]

_ Al =1l

d =
R DAY W

1

where || > |\2| > |A3| are the eigenvalues of the Hessian matrix. Note that
0 < my,mo < 1. Within a solid bright tube structure, A; and A2 correspond
to the principal curvatures along the direction from inside to the outside of the
tube, and A3 corresponds to the principal curvature along the direction of the
tube. Therefore, the eigenvalues within a tube structure will have a relationship
of |A1| & |Az2] > |3, thus resulting in mq ~ 0 and mgy ~ 1.

The second threshold retains voxels with m; < t,,,, and mg > t,,,. Additional
connected component analysis is used to remove small isolated objects (of less
than 20 voxels in size) to obtain the final segmentation. Fig. 1 shows the result
of vessel segmentation with and without thresholding via m; and ms.

The centerlines are extracted from the segmented vessel tree using a 3D
thinning algorithm [14]. Subsequently, the vessel orientation at the centerline
voxels is measured as the eigenvector corresponding to Az. The reason for using
orientation estimated through the Hessian eigen analysis is because it is less
sensitive to noise and inaccuracies in the vessel segmentation, as compared to
the orientation that would be obtained from the skeleton itself.

2.3 Orientation Similarity Measure

The orientation of the airways is extracted using Hessian eigen analysis in the
airway probability image. Let @ = (as, ay,a;) be the orientation of an airway
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candidate voxel and v = (v, vy,v,) be the orientation of the voxel belonging
to the centerline of the vessel that is nearest to it, we defined the orientation
similarity measure as
| <a,v>|
§= ———
[alllvll

where s will be near to 1 only when the orientation of a is similar to v.

2.4 Segmentation Framework

The airway tree is extracted using a region growing algorithm on the airway
probability as described in [6]. The orientation similarity measure is used along
with the airway probability (1) from the KNN classifier, when deciding whether
a voxel belongs to an airway or not.

In region growing on the airway probability, it was often observed that a
whole subtree of the airway is not segmented due to a small amount of voxels
with low airway probability ‘blocking’ the way. This is especially pronounced for
the smaller high generation branches, where 1 or 2 low probability voxels are
sufficient enough to block the entire subtree after them.

We propose to solve this problem by reducing the threshold of the airway
probability in cases of high orientation similarity. To accomplish this, we intro-
duced 3 thresholds: an upper airway probability threshold T, a lower airway
probability threshold 7; and an orientation similarity measure threshold 7. The
decision function for airway is then defined as

17 p('r7y7z) ZT'U/7
. Tu>p(x,y,2z) > T and s(x,y,2) > T, (2)

0, otherwise.

—_

D(p(z,y,2),8(x,y,2)) =

where p(x,y, z) is the airway probability and s(z,y, z) is the orientation similar-
ity measure of the voxel located at (z,y, z). The voxel is labelled as an airway
if D(p(z,y,z),s(z,y,z)) = 1. Suitable values for these thresholds can be found
for instance using cross validation.

2.5 Optimal Threshold Selection

Our method requires the selection of 3 threshold values, T, T} and Ts. Due to the
conservative nature of our ground truth, threshold selection based on measure-
ments such as accuracy or segment overlap would result in an over conservative
segmentation. Instead, we will aim to maximize the total length of branches
segmented, while minimizing the chances of explosion.

A modified fast marching algorithm based on [3] is used to detect possible
explosion and measure the branch length. This algorithm works by constantly
monitoring the propagating front of the fast marching algorithm in a particular
airway branch. The fast marching algorithm is initialized at each branch at
bifurcations, which is detected when there is a discontinuity in the front.
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Different from [3], which uses the minimum radius of the branches from pre-
vious generation for explosion detection, our approach uses the radius of the
current branch after the first N step as reference instead. Explosion is detected
when the ratio between the radius of the current front and the reference radius
exceeded . The number of branches at bifurcations is also monitored, where ex-
plosion is said to occur when the number of branches at a bifurcation exceededed
.

The centroids of all the fronts at each time step of a particular branch are
stored. The branch length can then be computed by summing up all the distances
between the centroids from neighboring time steps. The total branch length is
computed by summing up the length of all branches, excluding the trachea.

3 Results on 20 Low-dose CT Images

Experiments were conducted on 20 low-dose CT images from 20 different sub-
jects enrolled in the Danish Lung Cancer Screening Trial (DLCST), with a voxel
size of 0.78125x0.78125x 1mm (except for one image that has a voxel size of
0.75x0.75x 1mm). The 20 subjects were selected randomly from the screening
study. A two-fold cross validation experiment was conducted, where the 20 sub-
jects were randomly separated into two groups: A and B. Group A was then
used as training set for constructing the classifier that was to be tested on group
B and vice-versa.

3.1 Parameter Settings

A fast implementation of KNN based on approximate nearest neighbor (ANN)
searching [15] is used as the classifier for the appearance model. The error eps is
set to zero to turn off the approximation part of the ANN searching algorithm.
A K of 21 was used for the KNN classifier of the appearance model. The features
are calculated at 7 scales exponentially distributed within a range from 0.5mm
to 3.5mm.

For vessel tree segmentation, t, was set to -600HU, o of lmm was used for
the computation of the Hessian matrix, with both ¢,,, and ¢,,, set to 0.5. In
our experiments, the orientations of the vessels and airways were computed at
a scale of 2mm for the orientation similarity measure. There are two reasons for
this higher scale, as compared to the Imm used in vessel tree segmentation: to
compensate for the noise in the probability image and to make sure that the
scale is large enough such that orientation in the centerline of the vessels can be
estimated reliably.

For threshold selection, the N is set to 2, 5 to 3 and 7 to 5. The airway proba-
bility thresholds T, and T; were varied over 21 different values (with 0 excluded),
which was equivalent to the K used for the KNN classifier. The threshold T
was varied over 21 different values ranging from 0 to 1. A total of 4011 different
combinations of thresholds were tested.
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The thresholds were optimized within the two-fold cross validation experi-
ment, where only images from the training set were involved. Airway probability
for each image was produced by a KNN classifier that was constructed in a leave-
one-out manner. The threshold combination selected was the one that had the
highest total branch length without any explosion detected for all cases.

3.2 Results

Maximum (Max), minimum (Min) and average (Avg) total branch length (mea-
sured in cm), along with true positive rate (TPR = TP/(TP+FN)) and false
discovery rate (FDR = FP/(FP+TP)) of the segmentation results are presented
in Table 1. Results from the best setting, obtained using the threshold selection
process described previously, with airway probability alone and on image inten-
sity alone are also included for comparison purpose. Computation for TPR and
FDR was done with respect to the ground truth described in Sect. 2.1. Note that
FDR does not only indicates false positives (leakage), but also newly discovered
actual airway branches that were missed in the conservative ground truth.

Results from region growing on the image intensity were significantly worse
than the ones that use the airway probability, be it with or without the orienta-
tion similarity criterion. Also during the optimization process, the criterion for
the number of cases with explosion detected needed to be increased to 1. This
was because there were a few images where leakage occurs no matter what inten-
sity threshold was used. In the test results in Table 1, one of the test image was
excluded due to explosion, as shown in Fig. 2(a). Fig. 2(b) shows the best result,
while Fig. 2(c) and Fig. 2(d) shows representative results of region growing with
intensity.

Both segmentation using the airway probability are better than the ground
truth, with more new branches found than missed. Results with orientation sim-
ilarity measure are in general more complete, with more and longer branches,
as indicated in the results in Table 1. A paired t-test performed on the total
branch length calculated from the segmentation results showed that the increase
was significant (p = 0.0125). Examples are shown in Fig. 2(e) and Fig. 2(f).
Fig. 2(g) and Fig. 2(h) show 2 examples where orientation similarity measure
shows obvious improvements visually than the ones without it, with the former
comparable and the later clearly worse than the surrogate ground truth. Exam-
ples where orientation similarity measure performed slightly worse, with either
more obvious leakage or less branches, as compared to using airway probability
alone are also shown in Fig. 2(i) and Fig. 2(j).

4 Discussion and Conclusions

An airway tree segmentation method that augments an airway appearance model
with vessel orientation information is presented. The use of the airway probabil-
ity image makes it possible to determine the orientation of an airway candidate
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Table 1. Results with airway probability and orientation similarity measure (P+S),
with only airway probability (P) and with image intensity (I). The values in brackets
are those with a case excluded due to explosion from region growing on intensity.

[Max(cm) Min(em) Avg(em) TPR(%)  FDR(%)
P+S[381(331) 103(103) 213(209) 97.58(97.62) 19.40(19.17)
P [299(209) 90(90) 186(186) 93.25(93.78) 14.01(14.05)
I | -(366) -(94) -(136) -(36.82)  -(0.37)

voxel using Hessian matrix eigen analysis. The airway orientation of the can-
didate voxel is then compared with the orientation from a vessel nearest to it
to form an orientation similarity measure. This orientation similarity measure
is used to lower the threshold for airway probability during the region growing
process, resulting in a more complete segmentation with longer airway branches.
Results from our experiments showed that augmenting the airway appearance
model with our orientation similarity measure gives better segmentations than
with only the airway appearance model.

The explosion detection based on [3] that was used in our experiments worked
well in general, but was not without problems. There were cases where it was
either too sensitive or failed to detect leakage. Due to this reason, the thresh-
olds obtained and used in our experiments were not really optimal. Tuning the
thresholds manually or employing another explosion criterion may still improve
the results.

It should be noted that we employed explosion detection only in the opti-
mization process. Airway tree segmentations were subsequently generated using
standard region growing on airway probability and orientation similarity. Em-
ploying a smarter region growing algorithm would likely improves the results as
well.

We have showed a way to incorporate vessel orientation information into voxel
classification based segmentation methods. However, the idea of using vessel
orientation can also be useful when applied in combination with other methods,
such as intensity region growing. In this work, we focused on improving the
detection of small airway branches using orientation information extracted at a
single, small scale. A natural extension of this work would be to use automatic
scale selection for computing airway and vessel orientations, which we believe
would further improve the accuracy and sensitivity of the orientation similarity
measure, thus further improve the segmentation results.
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Fig. 2. Surface renderings of the segmentation results. Results from region growing
with intensity are given in (a)-(d). Comparison of segmentation results using airway
probability with (left) and without (right) orientation similarity measure are given in
(e)-(j)- Results from the following pairs of figures are from the same test image: (a) and
(i), (b) and (j), (c) and (f), (d) and (h). The pre-segmented trachea and main bronchus
are shown in white, true positives are show in green, false positives are shown in blue
and false negatives in yellow, all with respect to the surrogate ground truth. (Refer to
the electronic version for colours.)



