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Abstract. Segmenting airway and vascular trees in CT volume images
plays a fundamental role in pulmonary image analysis. However, accurate
assessment of complete tree morphology is difficult due to their complex
nature. In this paper, we extend an optimal graph search based tech-
nique to identifying tree-structured airways and lung vessels with one or
more interrelated surfaces. Based on a pre-segmentation that preserves
the object topologies, our approach utilizes the 3D medial axes to re-
sample the volume image and construct a geometric graph. By designing
appropriate cost functions, the segmentation of both airways and vessels
is performed across tree bifurcations in a single optimization process for
the entire tree. Segmentation results of double surfaces for airways and
single surface for vascular trees are presented.

1 Introduction

The airway and blood vessels are two major components of the human lung.
Quantitative assessment of both the airway and vascular trees provides impor-
tant information for functional understanding of pulmonary anatomy and objec-
tive measures of lung diseases. Due to the large image sizes and highly branching
structure, it is tedious and time-consuming to manually locate individual tree
branches and draw their contours on 2D slices. Furthermore, 2D manual tracing
and image analysis methods may not be as effective and reliable, since they lack
the ability to incorporate 3D information. Hence, developing automated and ac-
curate 3D segmentation methods for lung images is a critical task in pulmonary
image analysis and computer aided diagnosis. Further, airway trees and vessel
trees may have multiple interrelated layers of surfaces for segmentation, some of
which are extremely hard to detect individually. Several techniques have been
proposed to segment the tubular lung objects ([1, 2]), but they cannot guarantee
global optimality.
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Fig. 1. Illustrating 3D airway and vessel segmentation: (a) The original lung CT image;
(b) the rendered airway inner and outer walls with cross bifurcation segmentation;
(c) the rendered vascular tree.

Wu and Chen [3] reported an optimal graph search based algorithm, which
was extended to multiple surface segmentation by Li et al. [4]. These graph
search based schemes transform the image segmentation problem to computing a
minimum-cost closed set in a derived vertex-weighted graph, and obtain optimal
segmentation. The methods have been successfully applied to non-branching
airway segmentation [4] and MR arterial wall segmentation [4], but it did not
directly extend to segmenting objects with a tubular and tree-like topology such
as airways or blood vessels (see Fig. 1). The methods in [3, 4] are only suitable for
the objects that have a relatively simple topology (e.g., cylindrical or spherical).
In these cases, a 3D geometric graph can be built either by unfolding the sought
surfaces to terrain-like surfaces or resampling the image along the normal surface
directions within a narrow band. However, these “simple” methods for building
3D graphs are not directly applicable to objects with complicated structures
since they may cause severe interferences among the resampled vectors and may
fail to intersect (or capture) the sought surfaces.

In this paper, we present a technique for segmenting multiple interrelated
layers of surfaces for airway and vessel trees. Specifically, to address the above-
mentioned drawbacks, we propose a new scheme for building the 3D graphs
for segmenting tubular and tree-structured objects. To overcome the difficulty
of segmenting branching structures, we use medial axes and surface dilation
to guide and produce an effective image resampling. Our graph search on the
resampled images uses task-specific cost functions for airway and vascular trees.
Consequently, we obtain segmentation results of multiple interrelated layers of
surfaces for airway and vessel trees with significantly improved quality.

2 Method

The graph search based algorithms [3,4] solve the segmentation problem by
transforming it to finding a minimum-cost closed set in a directed vertex-weighted
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graph, which is solvable in polynomial time. Our graph search based image seg-
mentation approach consists of the following four major steps:

(1) Pre-segmentation. A pre-segmentation is needed to provide the basic in-
formation about the object’s global structure. It is not necessary for the
pre-segmentation to be locally accurate. However, it is crucial to preserve
the topology of the target object. If the pre-segmentation does not yield a
mesh, we also need to transform the volumetric result into a mesh represen-
tation.

(2) Image resampling. Based on the outcome of the pre-segmentation, the
image is resampled on each vertex of the initial surface mesh, resulting in a
set of vectors (called columns) of voxels. In this paper, the medial axes are
applied to determine the directions and lengths of the resampling columns.

(3) Graph construction. Each voxel in the columns is considered as a node in
the graph. There are three types of edges, representing the relations of voxels
within the same surface or between different surfaces. A cost is assigned to
each node which reflects the certain property of the sought surfaces.

(4) Graph search. Finally, we apply a minimum s-¢ cut algorithm [3, 4] to the
resulting graph to simultaneously search for multiple interrelated surfaces.

For segmenting tubular and tree-structured objects, the most nontrivial task
is to build a vertex-weighted geometric graph to model the volumetric image.
When constructing this graph model, we need to carefully resample the vol-
umetric image so that the following two constraints are satisfied: 1) All the
sought surfaces must be captured by the graph; 2) the relations among the
voxel columns should be consistent with the surface topology specified by the
preliminary mesh from the pre-segmentation, meaning that interferences among
different voxel columns cannot be allowed (more on this later).

2.1 Pre-segmentation

The algorithm we use for the pre-segmentation of pulmonary vascular trees is
based on a hybrid method of the tube enhancement filtering and traversal ap-
proaches [5]. First, the tube enhancement based on the cylindrical shape model
using an eigenvalue of the Hessian matrix serves as a filter to extract vessels.
Then, a traversal step detects the change of signs of those eigenvalues to improve
the vessel’s connectivity. Finally, objects with many branch points are selected
to distinguish between vascular trees and noise components. Airway trees are
pre-segmented using commercially available Pulmonary Workstation PW+ soft-
ware (VIDA Diagnostics, Oakdale, IA). Once a labeled image is generated by the
pre-segmentation, it is transformed into a triangulated mesh using the marching
cube algorithm.

2.2 Image resampling based on medial axes

To segment an optimal surface in the image using the corresponding preliminary
meshed surface, our approach needs to perform a resampling of the image for
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Fig. 2. [llustrating the image resampling: (a) The interferences caused by inappropriate
column lengths, (b) a 2D example of image resampling based on medial axes.

every surface vertex along the normal direction of the meshed surface at that
vertex, resulting in a column of voxels for each vertex. In this process, we seek
to avoid two “bad” situations: (1) The length of a column is too long, so that it
interferes with (intersects) other columns; (2) the length of a column is too short,
so that it fails to capture enough information about the real surface. To avoid
possible interferences among the resampled columns, we need to determine the
proper directions and lengths for the columns. Intuitively, the normal direction
at each mesh vertex is the direction without any bias or prior information about
the location of the real surface.

A medial axis of the preliminary surface is a set of points each of which has
at least two nearest points on the surface [6]. At each mesh vertex, the medial
axis determines the maximum distance that a column can be extended along
the normal direction without any interference with other columns. Although the
exact computation of the medial axis is possible in principle, it is complicated
to implement due to significant algebraic difficulties [6] — approximate solution
can be obtained using computational geometry. Suppose the vertices of the mesh
form a point set .S. We can compute the Voronoi diagram and the dual Delaunay
triangulation of S in 3D [7]. The medial axis is computed by using the poles in the
Delaunay triangulation, which are selected from the centers of the big Delaunay
balls adjacent to vertices. Then we assign a pole to each of the mesh vertices
by selecting the largest pole among the vertex’s k-nearest neighbors, in order
to reduce the impact of possible noise on the surface [7]. Next, the lengths of
the columns are obtained by computing the distances from the mesh vertices to
their corresponding medial axis points (on both the inner and outer medial axes
of the preliminary surface, Fig. 2).

A sought surface may contain very sharp angles at its branches. In such
situations, a medial axis could be very close to the branching portions of the
surface and consequently the columns computed based on the medial axis could
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be quite short, giving very little flexibility to the graph search algorithm. To
avoid this problem, we first grow (dilate) the preliminary surface by a certain
distance, and then compute the columns based on the grown surface and its
medial axes. The distance we used in the experiments is 3 voxels, which should
be depending on the size of the object. With an appropriate value for the growth
distance, we can obtain a set of columns that extend across the sought surfaces.

2.3 Graph search based segmentation

A graph G = (V,E) has a set V of nodes (or vertices) that are connected by
edges in E. In this paper, the nodes in V of G are voxels in the resampled
volumetric image, which are organized by the columns. Each column of nodes
is associated with a vertex of the preliminary mesh, and is sampled along the
normal direction at that vertex. We assign edges to connect neighboring nodes
in G and to ensure the geometric constraints (e.g., the smoothness constraint
and the separation constraints of the surfaces [4]). Generally, the graph G is
constructed in a similar manner as in [4].

Airway tree segmentation The detection of airway outer wall is difficult
since the outer surface is often surrounded by other adjacent tissue with similar
gray scale intensities in CT images. Instead of segmenting the airways section by
section and gluing the branches together afterwards, we consider the airway tree
as a whole and search for both the optimal inner and outer walls simultaneously.

For each sought surface, we construct a graph that is designed to contain that
surface. At each mesh vertex v, there are two columns, corresponding to the in-
ner and outer surfaces, respectively. Denote these two columns at vertex v by
Col;(v) = {n;(v,0),...,n;(v, K — 1)} and Col,(v) = {ny(v,0),...,n,(v, K —1)}.
Within every column, say, C'ol;(v), each node n;(v, k) is connected by a directed
edge to n;(v,k — 1) for k > 1. Between each pair of adjacent columns, a set of
edges is assigned to ensure the smoothness constraint [4] within the surface. Let
v1 and vy be two adjacent vertices on the mesh, and suppose n;(vi, k1) is con-
nected to n;(va, k2) by an inter-column edge. Then the smoothness constraint A
enforces that:

SA<k -k <A (1)

With the smoothness constraint, we avoid any dramatic change of the neigh-
boring voxels on the same surface, which consequently results in smooth surfaces
of the sought medical objects. In the case of double surface detection, another
set of edges, called inter-surface edges, is added to impose the surface separa-
tion constraint [4] between the two surfaces. The inter-surface edges are assigned
between vertices n;(v, k;) and n,(v, ko) for all v € V so that the following sepa-
ration constraint is satisfied:

O <ki—k, <o (2)
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Fig. 3. Illustrating the cost function constructed at each node of the graph.

where ' (resp., 6*) specifies the smallest (resp., largest) allowed distance between
the two sought surfaces. (Assume that &',6% > 0.) The separation constraint
ensures that two sought surfaces are not too far away and also not too close to
each other (e.g., they may not be allowed to intersect).

After the graph is constructed with the above three types of edges between
the nodes in the columns, we need to assign a cost function to each of these
nodes. The cost function must reflect the possibility for a voxel (node) to belong
to a certain surface. For airway wall detection, the two surfaces differ from each
other in the direction of intensity change. Since the airway lumen is darker than
the airway wall, the intensity increases from low to high at the inner border.
Conversely, the intensity decreases from high to low at the outer border when
only parenchymal tissue is adjacent. However, this intensity change for the outer
border shall also hold when non-parenchymal surrounding tissue is present. Since
the airway wall is not completely connected to the surrounding tissue, there
ought to be a little gap outside the wall that represents a “lower” intensity.

The cost function we use for airway segmentation is a combination of the first
and second derivative edge detectors and is based on the cost function proposed
in [8]. This is due to the property that the two edge detectors tend to yield the
maximum magnitude on one or the other side of the true edge, causing certain
over-estimate or under-estimate of the airway wall position. Thus, a weighted
sum of the first and second derivatives works better for the accurate border
location. Ideally, a 3D edge detector should be applied in our situation because
of the 3D nature of the image. However, a test of these two edge detectors shows
that the 3D edge detector performs similarly as the 2D one but with a significant
increase of the computational overhead. In order to achieve a higher efficiency,
the 2D edge detector is adopted to build the cost function at each node v

Costoyter (V) = w - I (v) * Mgoper, + (1 — w) - I (v) * Mpgarr (3)

COStinneT ('U) =Ww- It (’U) * MSobelz + (1 — w) . It (1}) * ]V[Mm"r (4)
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where Mgoper, and Mgoper, represent two inversely oriented 2D Sobel templates,
and Mpyqrr represents the 2D Marr template (all in 5 x 5 size). I; (v) isa 5 x 5
gray-scale image template resampled from the 3D image around the node v. As
we did for the resampling of columns, the template is also sampled along the
corresponding vertex’s normal direction (as illustrated in Fig. 3). Thus, the 2D
image template is centered at the node v and is on a plane perpendicular to the
surface. The voxels are sampled at the interval size d; such that

dt = dcol/2 (5)

where d.; is the interval between neighboring voxels in a resampled column.

Vascular trees segmentation For the vascular tree segmentation, the graph
is constructed in the similar manner although there is only one surface to be
detected (the only one visible on CT image). Hence, only the intra-column and
inter-column edges are needed to build the graph. The cost function used for
vascular tree segmentation is the magnitude of gradient computed from the
Gaussian smoothed images.

3 Validation of Pulmonary Image Segmentation

The validation of airway and vascular tree segmentation has been performed
on a set of 6 CT scans of lung CT images. The sizes of the images vary from
512 x 512 x 562 to 512 x 512 x 671, voxel size 0.68 x 0.68 x 0.6mm3, Siemens
Sensation 64-slice MDCT. After an initial surface of the airway inner wall is
extracted (Section 2.1), our graph search approach succeeded in extracting the
outer wall as well as optimizing the location of the inner wall in all 6 cases. An
example of the cross bifurcation segmentation is shown in Fig. 4. To segment
the vascular trees, each connected blood vessel component is filtered out and
labeled with a different number. In comparison with the pre-segmentation results
(which were considered final till now), the graph search captures the wall surfaces
more accurately especially across bifurcations. (See Fig. 5.) While the initial
results show the approach is promising for simultaneously segmenting single-
and multiple-surfaces of pulmonary airway and vascular trees, we understand
that more quantitative evaluation needs to be done in our following work.

4 Discussion and conclusion

In this paper, we extended the optimal graph search based approaches introduced
in [3,4] to segmenting airway and vascular trees in 3D pulmonary CT images.
By using medial axes to guide the resampling, the 3D image is sampled prop-
erly based on the preliminary segmentation. Even though both the airways and
vessels have complicated tree structures (airways with multiple interrelated sur-
faces), our proposed resampling scheme is able to extract sufficient information
from the image data and provide it to the graph search algorithm to identify the
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Fig. 4. Airway segmentation: (a) The inner wall (result of pre-segmentation); (b) dou-
ble surfaces after graph search; (c) the comparison of preliminary result and graph
search result in 2D slices. Note that the inner as well as outer surfaces are smooth and
three-dimensionally accurate across the airway branching.

Fig.5. Vascular tree segmentation results: (a) The original image; (b) the pre-
segmentation; (c) the graph search result showing improved delineation (red arrows).
Note the ability to correctly detect the surface even if the preliminary segmentation
fails locally — as long as the preliminary segmentation is in the vicinity of the desired
surface (white arrow).

optimal surfaces. By applying cost functions with directional information, our
algorithm succeeds in detecting both the inner and outer surfaces of the airway
walls as well as the vascular wall surfaces across bifurcations. As shown by the
examples, the segmentation considerably improved the results of the preliminary
segmentation.
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