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Abstract. This study investigates an unsupervised machine learning approach
for quantitative analysis of pulmonary fissure completeness. The analysis of
pulmonary fissures has traditionally been a subjective task, relying on visual
assessment. Fissure analysis is becoming an important consideration as clinical
studies suggest that fissural completeness significantly correlates with success
of new endobronchial valve therapies for emphysema. Using an unsupervised
clustering approach and 600 fissure samples, three clusters emerged: fissure,
non-fissure, and bronchovascular bundle. The performance of the system was
then evaluated using 84 randomly selected fissure images. The test cases were
also independently contoured by two observers to form a reference standard for
fissural completeness. Analysis of the results showed that there was no
statistically significant difference between the CAD system and the human
observers in calculating fissure percentage completeness (T-Test P > 0.05).
Pair-wise comparisons of CAD-reader and reader-reader assessment of fissure
completeness showed comparable levels of agreement >77%.
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1 Introduction

Quantitative Image Analysis (QIA) is an important component in the process of
patient selection and treatment targeting in new emphysema treatments involving
minimally invasive lung volume reduction. One of the new treatments utilizes one-
way endobronchial valves placed in the segmental airways to exclude and deflate an
emphysematous lobe without the need for surgery, thereby allowing other (healthier)
lobes to further expand and improve lung function [1].

The degree of fissure integrity (i.e., completeness) is emerging as a potential
predictor of treatment efficacy (deflation of emphysematous lobe) [2]. An incomplete
pulmonary fissure, as shown in Figure 1, indicates the potential for collateral
ventilation between adjacent lobes, circumventing complete lobar occlusion and lobar
collapse [3,4]. Thus analysis of fissure completeness may play a key role in
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identifying patients who would benefit from the therapy and determining the target
lobe for the endobronchial valve treatment.

Determination of fissural completeness using HRCT imaging has previously been
carried out by visual inspection and subjective grading into three categories:
complete, incomplete, and absent [2,5,6]. This is a tedious and difficult task requiring
review of a large number of images under multi-planar reformats, which has
motivated the development of an automated quantitative system to assess fissure
integrity. A variety of methods have been introduced for fissure detection [7-13], but
none have been used to quantify fissural completeness or proven successful in an
emphysematous lung [14]. In emphysema patients, the lung parenchyma is
inconsistent in structure due to the presence of enlarged air-sacs known as bullae
which lead to fissures that are irregular and indistinct on imaging.

An automated quantitative system could be of tremendous benefit in making
assessment of fissure integrity more discriminative, reproducible, and broadly
applicable. The aim of this pilot study is to demonstrate the feasibility of automated
quantitative assessment of fissure integrity from thin-section CT in emphysema
subjects with abnormal and incomplete pulmonary fissures.

2  Methods

2.1 Image Data Collection

The CT images used in this study were selected at random from a cohort of 486
emphysema subjects from a research database (see cohort demographics in Table 1).
Images were acquired with the following imaging parameters: 120 kVp, 140 to 300
mAs, and a pitch ranging from 0.984 to 1.5. Images were reconstructed with slice
thicknesses ranging from 1 to 3 mm and using standard reconstruction algorithms
(e.g., GE STD, Siemens B30f, Philips B, and Toshiba FC10 filters).

For this pilot study we focused our initial analyses on the left major fissure. The
research database contains 12,391 technologist-drawn and radiologist approved 2D
left major fissure contours from 486 subjects. From these contours samples were
randomly selected to form independent training and test sets.

Table 1. Demographics of 486 emphysema subjects in a research database.

Absolute (Mean + SD) Range
Age (y) 63+7 41-176
PFT TLC (L) 7.62+1.48 34 -12.14
PFT RV (L) 4.83+£1.21 0.86-9.22
CT TLC (L) 6.99 +1.38 3.98 —10.45
CT RV (L) 5.12+1.26 2.29-8.99

Voxels below -910 HU (%) 56.53+ 10.30 30.45 -81.27
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2.2 Image Features

The Hessian matrix of second order partial derivatives (Eq. 1) was used to
characterize the variations in intensity about a point. In our initial implementation the
Hessian matrix was computed in two-dimensions, however, the technique can be
generalized to three-dimensions [13]. The computation has been described in greater
detail by other authors [7,15]. The eigenvalues of the Hessian matrix, &;, k,, are

computed and ranked according to their absolute value |x;| > |x,|. Prior to

computation of the Hessian, Gaussian smoothing was applied to the image with a
kernel with standard deviation ¢ = 1.0 mm.
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Fissures are modeled as faint, plate-like structures (or lines in 2D images) due to
their thin surface and partial volume averaging. &; should correspond to the gradient
change normal to the fissural line (along the first eigenvector). The other orthogonal
eigenvalue ( &, ) should correspond to the second eigenvector in the direction of the

fissure and should be closer to zero. Based on this assumption we compute a
“plateness image” using Equation 2 (see Figure 1).
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I=1- , where the ratio &,/ k; is expected to be high for fissures. ¥))

Figure 1. Original (on left) and plateness (on right) images with an incomplete left major
fissure indicated by arrows. The fissures appear as faint white lines in the original image and
solid lines in the plateness image. Since there are blood vessels with similar appearance the left
major fissure is marked with an arrow.

Three features are computed for each voxel along the fissure path within a 32 x 32
patch around the voxel from the original CT and plateness images as shown in Table
2. The fissure path is based on a manually drawn contour as described in section 2.1.
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Table 2. Features computed along fissure path in a 32 x 32 patch around the voxel of interest in
the original CT and plateness (gradient-based) images.

Image Feature Range Expected values

Original CT ~ Median gray level 0-255 higher if voxel is a fissure
Plateness 20th centile of histogram 0 -255  higher if voxel is a fissure
Plateness Max run length of voxels 0-32  longer if voxel is a fissure

with intensity > 100

2.3 Classification Model

The classification model was machine-learned using unsupervised k-means clustering.
The number of clusters was set as K=3 based on the premise that three classes are
expected: fissure, non-fissure, bronchovascular bundle (near the hilum).

The classifier was trained using 600 feature samples from among the 12,391
fissure contours in our research database. Each sample (computed from a 32x32
patch) was taken from a different fissure contour (i.e., different CT image) to
minimize dependence between the samples and bias in the classifier. Sample patches
surrounding the learned cluster centers are shown in Figure 2.

Using the cluster centers, a minimum-distance classifier was implemented to
classify each voxel along the fissural path. For each voxel along the path, the three
features are computed in the 32x32 neighborhood and input to the classifier. The
fissural completeness is then calculated as the percentage of pixels along the path

classified as fissure.
- ':! m | a
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Figure 2. Nine training samples nearest to the learned cluster centers for (a) fissures, (b) non-
fissures, and (c) bronchovascular bundles.

2.4 Experimental Testing

100 HRCT slices were selected at random from our research database. Two human
observers independently reviewed all 100 slices. They were shown the endpoints of
the fissure marked initially by the technologist (which was also used as the input
fissure path to the CAD system). If either one of the observers in the current
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experiment disagreed with the endpoints of these previous contours the case was
rejected. 16 cases were rejected during this process, resulting in 84 CT images which
the observers and CAD system independently analyzed.

The human observers were trained on lung anatomy, software application, and
sensitivity calibration. We did not use radiologists for this pilot study due to the
previous determination that well-trained observers produce similar inter-observer
variability as licensed radiologists [16].

The observers assessed the entire fissural path within each CT image, they marked
portions of the fissure they considered to be intact and left blank the parts of the
fissure they considered to be absent. They also marked portions of the path passing
through vessel bundles (near the hilum) which were excluded from completeness
calculations. The CAD system was also applied to each case and automatically
classified voxels along the fissural path into the same three categories. For each
observer the fissure integrity was then assessed by calculating the percent-
completeness of the fissure:

NFiss

Completeness =
Fiss T N NonFiss

x100 . 3)

where N, = number of voxels classified as fissure and Ny,,ri;s = number of voxels
classified as non-fissure.

The completeness percentage values were then compared pair-wise between
Reader 1, Reader 2, and CAD. The percentages were also converted into a binary
decision of complete or incomplete for each observation. Based on previous studies
involving visual assessment, a completeness percentage of = 90% was considered as a
complete fissure for potential treatment planning [16]. Bland-Altman plots (Figure 5)
were used to quantify statistically significant agreements between treatments. Paired
T tests were also performed to further analyze the agreement between treatments (See
Section 3).

3. Results

Figures 4a-c are scatter plots showing the pair-wise comparisons between Reader 1,
Reader 2, and CAD. Figure 4a compares the two readers, and Figures 4b and 4c
compare CAD against each of the readers. Dashed lines indicate 90% fissural
completeness. Points above/right of these lines (in the upper right quadrant) represent
agreement on complete fissures, while points in the lower left represent agreement on
incomplete fissures. The upper left and lower right quadrants represent disagreement
between the observers. The numbers, N, shown in each quadrant are the number of
pair-wise observations in each category. For example, in Figure 4a there were 55
fissures where both readers agreed that the fissure was complete, 18 where they
agreed it was incomplete and 6+5=11 where they disagreed. Similar
agreement/disagreement counts are shown for Figures 4b and 4c involving CAD vs
Reader.
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Bland-Altman plots were also used to determine the pair-wise agreement between
fissure completeness scores. All three plots contain a cluster of points with zero
difference at 100% completeness. In each of the Bland-Altman plots, 6 readings were
significantly different (with 95% confidence), leaving a 78-reading agreement for
each comparison. The paired T tests resulted in p values of 0.3401, 0.0863, and
0.3876 for the comparisons between Reader 1 and Reader 2, Reader 1 and CAD, and
Reader 2 and CAD respectively.

Table 3 summarizes the agreement between the three observers. The first row
indicates that all three agree on completeness/incompleteness in 72.6% of the fissures.
In 14.3% of the fissure the two readers agree but CAD does not. In the remaining
cases CAD agrees with one of the readers. Figure 3 shows examples of fissures with
different levels of fissure completeness and observer agreement.

Table 3. Agreement counts between Reader 1, Reader 2, and the CAD system.

Agreement On Fissural Completeness

Readers that agree 290% <90% Total
R1, R2, and CAD 49 12 61 (72.6%)
Only R1 and R2 6 6 12 (14.3%)
Only R1 and CAD 5 2 7 (8.3%)
Only R2 and CAD 3 1 4 (4.8%)
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Figure 3. Original CT images and CAD detected fissures for cases where (a) both readers and
CAD classified the fissure as complete, (b) both readers and CAD classified the fissure as
incomplete, and (c) one reader and CAD classified the fissure as incomplete and the other
reader classified it as complete.

©
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Figure 4. Scatter plot of fissure percentage completeness for (a) Reader 2 vs Reader
1, (b) CAD vs Reader 1, and (c) CAD vs Reader 2.
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Figure 5. Bland-Altman plot of fissure completeness percentages for (a) Readers 1
and 2, (b) CAD and Reader 1, and (c) CAD and Reader 2.
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4 Discussion

There was good pair-wise agreement for the percentage of fissural completeness, with
no statistically significant differences within any of the three comparisons. When
applying the 90% threshold for completeness CAD had good agreement with each of
the readers (81% and 77% respectively - see Figures 4b,c), although the agreement
between the readers themselves was higher (88% - see Figure 4a). This performance
is particularly encouraging since it involved subjects with emphysema and incomplete
fissures, rather than clearly defined normal fissures as has typically been the case in
previous work on fissure detection. The difficultly of the fissure classification
problem in emphysema subjects is indicated by the agreement levels between the
readers. The scatter plot in Figure 4a shows that even trained readers have quite
different completeness scores in some (difficult) cases.

We developed our prototype system for the left major fissure since its appearance
seems more consistent than the right major or minor fissures. The completed system
will include fissures from the right lung which may necessitate a larger sample size
for classifier training. In this pilot study we used images with a range of CT technical
factors, and further systematic investigation on their influence on features is needed.
We will also continue investigation of supervised machine-learning approaches with
expert-labeled voxels [13].

In future studies we expect improved agreement. For this pilot study we
intentionally focused on a small number of features that were selected a priori and a
simple classification method. Thus we find the results to be very encouraging and
expect the approach to generalize well to larger data sets. Also, we were using only
one CT image per assessment, both in terms of CAD feature calculation and for
reader review. This was done for speed/simplicity of calculation and observer review
in this initial investigation of the feasibility of using CAD to assess abnormal fissures.
Previous fissure detection approaches have used multiple slices (three dimensions)
and lung vasculature data [7-13] to guide fissure detection. We will extend the
features to 3D and the reader evaluation to multiple slices and expect to achieve better
performance and greater agreement. We will also investigate the feature space further
with a labeled training set to determine whether a non-linear classifier is appropriate.

By maintaining a high accuracy for detection of complete and almost complete
fissures we aim to maximize the number of successful outcomes for the
endobronchial valve treatment [1,2].

5 Conclusion

The CAD prototype system showed good agreement with human observers in
computing the percentage of fissure completeness and in classifying the fissures as
complete or incomplete. The pair-wise agreement between CAD and each reader was
comparable to that between the readers themselves. This work is one of the first
efforts to specifically detect abnormal/incomplete fissures in subjects with
emphysema and has important clinical applications in targeting of endobronchial
valve treatments. The results are very encouraging for a challenging problem and we
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expect the extension of the features to three-dimensions will yield further
improvements in performance.
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