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Abstract. In this paper we propose to use texture based pixel classi-
fication in lung computed tomography (CT) for measuring emphysema.
Two quantitative parameters for emphysema, based on the pixel classi-
fication, are suggested; relative class area and mean class posterior.
The approach is evaluated on a group of 39 patients, of whom 20 have
been diagnosed with chronic obstructive pulmonary disease, using two
different feature groups, local binary patterns and a filter bank based
on Gaussian derivatives. The pixel classification based quantitative pa-
rameters correlate well with lung function (r = 0.80, p < 10~° for the
parameter with the highest correlation) and correlate significantly bet-
ter than the most commonly used CT based emphysema quantification
method, namely relative area of low attenuation.

1 Introduction

Chronic obstructive pulmonary disease (COPD) is a major cause of death and
a growing health problem worldwide. In the United States it is the fourth lead-
ing cause of morbidity and mortality and it is estimated to be ranked the fifth
most burdening disease worldwide by 2020 [1]. COPD is a chronic lung disease
characterized by limitation of airflow in the airway and it comprises two com-
ponents: Chronic bronchitis, which is an inflammation of the small airways, and
emphysema, which is characterized by gradual loss of lung tissue.

The primary diagnostic tools for COPD are lung function tests (LFT). An-
other diagnostic tool that is gaining more and more attention is computed to-
mography (CT) imaging. CT is a sensitive method for diagnosing emphysema
and both visual and quantitative CT are closely correlated with the pathological
extent of emphysema [2]. This makes CT suitable for both early detection and
study of COPD as well as for monitoring the effect of different treatments.

We focus on the assessment of emphysema, which is thought to be the main
cause of shortness of breath and disability in COPD. Emphysema is usually
classified into three subtypes, or patterns, and we will adopt the naming and
definitions from Webb et al. [3]. These subtypes are: Centrilobular emphysema
(CLE) defined as multiple, small, spotty lucencies, that may have thin walls,
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paraseptal emphysema (PSE) defined as multiple, lucencies in a single layer
along the pleura, commonly with thin walls visible, and panlobular emphysema
(PLE) defined as a lucent lung with small pulmonary vessels.

In CT emphysema lesions, or bullae, are visible as areas of abnormally low
attenuation values, close to that of air. Different objective quantitative mea-
sures of emphysema can be derived from the histogram of CT attenuation val-
ues. The most common measure is the emphysema index or relative area of low
attenuation (RA) [2], which measures the amount of lung parenchyma pixels
that have values below a certain threshold relative to the total amount of lung
parenchyma pixels. Common for the quantitative methods based on the attenu-
ation histogram is that they ignore the possibly valuable information inherent in
the emphysema disease patterns, such as subtype, shape, and size distribution.

One way to objectively analyze the properties of the disease patterns is to
use texture analysis [4]. Several publications exist on characterizing emphysema
and other disease patterns in regions of interest (ROI) in lung CT images using
texture features [5-9]. In [5,7, 8] the entire lung is labelled by subdividing the
lung into adjacent ROIs followed by a classification step that assigns the same
label to all pixels within a ROL In [5,7] the labelled result is evaluated by
comparing the agreement between the output of the classification and that of
human expert readings of the same ROIs. [8] Reports the percentage of different
disease patterns present.

In this paper we propose a quantitative measure for emphysema, based on a
pattern classification approach that utilizes local texture information. Compared
to RA, a pattern classification approach allows for more than the two classes
healthy and emphysematous, making it possible to quantify different subtypes
of emphysema, which may be related to prognosis of the patient. Further, texture
may be less influenced by inspiration level, compared to using intensity alone.
We perform full lung classification by computing the posterior class probability
for each pixel in the lung based on the local neighborhood around the pixel. Two
ways of deriving a quantitative measure for emphysema, from the posterior, are
investigated and evaluated. The first approach is to perform a hard classification
and compute the relative area of the classes, the second approach is to compute
the average posterior probability of each class in the lung. Thus, we obtain
two measures per class. To our knowledge the use of the mean class posterior
probability for quantifying emphysema is novel. We experiment with using two
different kinds of features for this purpose, local binary patterns [10] and a filter
bank based on Gaussian derivatives. These two feature groups were previously
tested and evaluated on a set of hand picked ROIs, achieving an accuracy of
95.2% and 94.0% respectively in discriminating between normal tissue (NT),
CLE, and PSE [9]. The experimental results reported in [9] are based on a
subset of the CT images used in the experiments in this paper.
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2 Methods

In the following the lung pixel classification system is described. Sections 2.1
and 2.2 describe the features we use for characterizing the lung texture, namely
local binary patterns and a filter bank based on Gaussian derivatives, Section
2.3 describes the classification framework, and Section 2.4 describes how the
classification framework is used for pixel classification and how the classification
result is turned into a quantitative measure for emphysema.

2.1 Local Binary Patterns

The first group of features is based on the local binary patterns (LBP) proposed
by Ojala et al. [10]. LBP measures the local structure at a given pixel by thresh-
olding P samples on a circle of radius R around the pixel using the intensity
in the pixel as threshold. The resulting thresholded samples are interpreted as
a binary number, that provides a unique code for each kind of local structure
or pattern. The operator is highly non-linear and detects microstructures in the
image at different resolutions governed by the parameter R, for example spots,
edges, corners, etc. Applying the LBP operator to an ROI results in an LBP
code image. Based on this an LBP histogram is formed by accumulating the
LBP codes directly into a histogram. We use the rotation invariant formulation
of LBP, see [9, 10] for more details. LBP are by design gray-scale invariant, and
this is not a desired property when dealing with CT images, where values are
measurements of a physical property of the tissue displayed. Therefore the dis-
tribution of the intensities is included, by forming the joint histogram between
the LBP and the intensities in the center pixels.

2.2 Gaussian function and its derivatives

The second group of features is based on the Gaussian function G(x;0) and
combinations of derivatives of G(x;0). We use x = [z,y]7 to denote the pixel
position. By varying the standard deviation ¢ of the function in a discrete man-
ner we obtain a whole bank of filters that can be applied to the image by
convolution. The Gaussian function itself is included to make the filter bank
sensitive to offsets in absolute intensity. The filters that we use are similar to
those used in [7], except that the filters we use are all rotation invariant. The
filter bank comprise the following filters: G(x;0); the Laplacian of the Gaus-
sian V2G(x;0); the gradient magnitude |VG(x;0)|2; the Gaussian curvature
K(x;0) = 0°G(x,0) /02> +0°G(x, 0) | 0y? —20°G(x, 0) /| Oxy. Feature histograms
are obtained by convolving the ROIs with each filter and making histograms of
each filter response.

2.3 Classification framework

Classification is done using the kNN classifier [11] with combined histogram
similarities as distance measure. We use histogram intersection as the similarity
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Model k Window size Features Feature specific
. . Joint LBP and intensity histogram, One resolution:
Model 1 1 31 x 31 pixels see Section 2.1 R=1P=8

Histograms of filter responses of the Two filters:
Model 2 1 31 x 31 pixels Gaussian derivative based filters, G(x,0 =0.5)

see Section 2.2 [VG(x,0 =1)|2
Table 1. Parameter settings for the two models used in the pixel classification exper-
iments. k is the number of neighbors used in the kNN classifier. The unit of R and o
is pixels and the unit of P is samples.

measure between histogram H and histogram K

Ny
Lyist(H, K) =1 =" " min(H), K,,), 1)
b=1

where H}, denotes bin b of histogram H, N, is the number of histogram bins and
the histograms are assumed normalized to sum to one. In the case of measur-
ing combined histogram similarity based on different histograms, e.g. different
Gaussian based filters, the similarities are computed individually for each feature
histogram using (1) and summed afterwards

Ny
L(x.wi,m) = Y Lnist(fa(x), MS,), (2)

where M}%i,, is the n’th feature histogram of prototype m from class w;, f,(x)
denotes some function that extracts the local neighborhood around pixel x in the
current image and computes the n’th feature histogram, and Ny is the number
of feature histograms used in the combination. The histograms of the intensities
and the filter responses are constructed using non-linear binning, where the
binning is found by employing two rules on the total distribution of the ROIs
in the training set: The total distribution should be approximately uniform and
the number of bins is | {/N,], where N,, is the number of pixels in the ROL

In [9] the accuracy of both feature groups is estimated as an average of a
number of leave-one-patient-out experiments, in which the optimal filters and
parameters are selected on the training set and can vary in between the exper-
iments. Table 1 summarizes the parameter settings for the two feature groups
that we will be using in this paper, which are those that were most often selected
in the experiments in [9].

2.4 Quantification by pixel classification

Prior to classification, the lung parenchyma is extracted using a combination of
thresholding, connected component analysis, and manual editing. The posterior
probability of class w; given pixel x is computed based on the combined his-
togram similarity (2) with the closest prototype histograms of each class and is
given by

min,, L(x, w;, m)

Plwilx) = 3)

Z?Zl min,, L(x,w;, m)’
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The size of the local neighborhood is the same as the window size used in the
model, i.e. 31 x 31 pixels, see Table 1, and the pixel being classified is in the
center of this window. The classification result is a posterior class probability
for each pixel in the lung.

A hard classification can be obtained by using the maximum a posteriori
(MAP) rule in each pixel [11]. It should be noted that pixels that are not part
of the lung segmentations are not classified, but they can still contribute to the
classification, e.g. part of the exterior of the lung is in the local neighborhood
when classifying a pixel at the border of the lung. In this way all potential
relevant structural information is included, like being at the border of the lung
or near large vessels and airways.

The quantitative measures for emphysema that we propose are the relative
class area (RCA) and the mean class posterior (MCP). RCA is defined by the
relative amount of pixels with a given class label, obtained using the MAP rule,
divided by the total number of lung pixels N;

N
1 .
RCA,, = ﬁl Ej d(arg m?*XP(“—)a‘Xj) — 1), (4)

where § denotes the Kronecker delta function. MCP is given by averaging the
posterior class probability of a given class, obtained using (3), across all pixels

in the lung
N;

1
MCP., = & 2]: P(wilx;). (5)

3 Experiments and Results

3.1 Data

The data used for the experiments consists of a set of thin-slice CT images of the
thorax. CT was performed using GE equipment (LightSpeed QX/i; GE Medi-
cal Systems, Milwaukee, WI, USA) with four detector rows, using the following
parameters: In-plane resolution 0.78 x 0.78 mm, 1.25 mm slice thickness, tube
voltage 140 kV, and tube current 200 milliampere (mA). The slices were recon-
structed using a high spatial resolution (bone) algorithm. A population of 39
individuals, 9 healthy non-smokers, 10 smokers without COPD, and 20 smokers
diagnosed with moderate or severe COPD according to LFT [1] were scanned in
the upper, middle, and lower lung, resulting in a total of 117 CT slices. Visual
assessment of the leading pattern, either NT, CLE, PSE, or PLE, and sever-
ity, ranging from 0 to 5, in each of these slices was done individually by an
experienced chest radiologist and a CT experienced pulmonologist. In cases of
disagreement, consensus readings were obtained. 216 non-overlapping ROIs were
annotated in the slices representing the three classes: NT (107 observations, of
which 48 were near the lung border or hilum area), CLE (50 observations), and
PSE (59 observations). PLE was excluded due to underrepresentation in the data
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Model 2 NT Model 2 CLE Model 2 PSE
Model 1 NT 49.6 2.1 3.9
Model 1 CLE 2.4 18.8 3.5
Model 1 PSE 2.3 0.9 16.6

Table 2. Confusion matrix showing the percentage of pixel labels that the two models
agree/disagree on.

set as only 2 out of the 20 individuals diagnosed with COPD had PLE as the
leading pattern. These 216 ROIs were used as prototypes in the kNN classifier.

The 39 individuals also underwent LFT, performed according to the Euro-
pean Respiratory Society recommendations, prior to the CT scanning of the
lungs. One widely used LFT is forced vital capacity in one second (FEV;) which
is the amount of air in liters that you can forcibly blow out in one second. FEV;
can be adjusted for age, sex, and height by dividing by a predicted value ac-
cording to these three parameters, thereby obtaining FEV;%pred, and it is this
LFT that we will use in the evaluation.

3.2 Lung pixel classification

Each of the 39 individuals were in turn measured using our proposed approach
by classifying the pixels in each of the three CT slices using either Model 1 or
Model 2, while leaving the prototypes coming from that individual out of the
ENN classifier. The classification result is then used as a quantitative measure
for emphysema by applying (4) or (5) to the posterior. Figure 3.2 shows the CT
slices from two different patients, along with obtained pixel classifications and
NT pixel posterior, when using Model 1. For comparison the RA below -910 HU
(RA910) is shown in Figure 3.2 bottom-left.

3.3 Comparison of Model 1 and Model 2

The confusion matrix in Table 2 reveals that the two models generally are in
good agreement; in 85% of the pixels, the two models agree on the class label.
The highest level of disagreement is in the cases where Model 1 labels a pixel as
NT or CLE whereas Model 2 labels that pixel as PSE, which happens in 3.9%
and 3.5% of the cases. Correlating the class posteriors also shows a high degree
of agreement between the two models, with » = 0.93 for NT, » = 0.93 for CLE,
and r = 0.91 for PSE.

Two specific cases of disagreement are shown in Figure 2. In the first case
Model 1 labelled half the pixels as CLE whereas Model 2 labelled these pixels
mostly NT and partly CLE. Interestingly RA910 does not label one single pixel
as emphysematous. Perhaps the models have picked up on a texture pattern and
really found some emphysema, which was not possible using a simple threshold
of -910 HU. Increasing the threshold to -860 HU reveals some low attenuation
pixels partly in the areas labelled CLE by Model 1. Thus it seems that there is



FIRST INTERNATIONAL WORKSHOP ON -11-
PULMONARY IMAGE PROCESSING

&9 P O 6@

€X€Y €D
6269638

Fig. 1. Example images from two patients. The images are organized as follows: First column of
each sub-box is a healthy non-smoker and second column is a patient diagnosed with moderate
COPD according to LFT [1]. First row of each sub-box corresponds to the upper scan, second row
to the middle scan, and third row to the bottom scan. Top-left: The segmented images used in the
classification. The images are shown with the window setting -600/1500 HU. Top-right: The pixel
classification result obtained when applying Model 1 to the lung segmentations shown top-left. Green
corresponds to NT, blue to CLE, and red to PSE. Bottom-left: A threshold of -910 HU applied
to the lung segmentation shown top-left. The areas below the threshold are indicated in black and
the lung segmentations are indicated in light gray. Bottom-right: Posteriori NT probabilities. Dark
red means that a NT prototype ROI is very similar to the given pixel’s neighborhood in histogram
feature space and corresponds to a NT probability of 0.48 when using (3). Dark blue means that
all NT prototype ROIs are dissimilar and corresponds to a NT probability of 0.16. Refer to the
electronic version for colors.
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Fig. 2. Visual inspection of the classification results obtained using the two models
in Table 1. Left: A non-smoker. Right: A smoker diagnosed with COPD. Top: The
CT slice overlayed with a square indicating where the particular case is taken from.
Bottom: Zoom in on the cases, from left to right; the original image, a threshold of
-910 HU applied to the image with the areas below the threshold indicated in black
and the lung segmentations indicated in light gray, the classification result obtained
using Model 1, and the classification result obtained using Model 2. Green corresponds
to N'T, blue to CLE, and red to PSE. Refer to the electronic version for colors.

some emphysematous pattern present that Model 1 picks up. In the second case
in the right part of Figure 2 Model 1 has labelled all lung pixels as CLE whereas
Model 2 has labelled some CLE and some PSE. The ROI in the second case is
from within the lung and thus by definition it should not be PSE. An explanation
of why Model 2 labels many of the pixels PSE could be the large vessels seen
within the ROI. Since we are using histograms, the spatial information in the
ROI is ignored, and thus emphysematous regions with large vessels can share
similarities with emphysema at the boundary in histogram feature space.

3.4 Relation to lung function

We evaluate the quantitative measures obtained from the pixel classification by
correlating them with two other measures for emphysema, namely FEV; %pred,
representing the classical objective way of measuring COPD by LFT, and an
emphysema score (ES) computed by summing the visually assessed emphysema
severity across the three slices. ES represents the subjective way of measuring
emphysema by human visual assessment. For reference, we also compute RA910
for each of the patients and correlate that with FEV;%pred and ES. The Corre-
lation results are reported in Table 3, where the correlations with FEV;%pred
are computed using the Pearson correlation coefficient r and the correlations
with ES are computed using the Kendall tau correlation coefficient 7.

RCA correlate well with FEV;%pred and generally also MCP. All texture
based quantitative parameters for emphysema show significant correlation with



FIRST INTERNATIONAL WORKSHOP ON -13-
PULMONARY IMAGE PROCESSING

Measure FEV,%pred ES Separation
Model 1 RCAnT 0.80 (< 107°) -0.56 (0.006) <107°
Model 1 RCAcrr -0.77 (< 107%) 0.55 (0.006) <107°
Model 1 RCApse -0.77 (< 107%) 0.49 (0.067) <107°
Model 1 MCPnr 0.73 (< 107°) -0.56 (< 107°) <107
Model 1 MCPcrg -0.58 (0.0001) 0.48 (0.0001) 0.0005
Model 1 MCPpsp -0.73 (< 1077) 0.50 (< 107°) <107°
Model 2 RCAnT 0.79 (< 1077) -0.56 (0.004) <107°
Model 2 RCAcrr -0.76 (< 107°) 0.53 (0.013) <107®
Model 2 RCApsp -0.74 (< 107%) 0.46 (0.158) <107°
Model 2 MCP n7 0.73 (< 107°) -0.54 (< 107%) <107°
Model 2 MCPcrr -0.63 (< 107°) 0.48 (0.0001) 0.0001
Model 2 MCPpsg -0.69 (< 107°) 0.49 (0.0001) <107°
RA910 -0.62 (< 107°) 0.61 (< 107°) <107°
FEV;%pred - -0.44 (< 107%) <107°

Table 3. Correlations with FEV;%pred and ES as well as ability to separate patient
groups according the a rank sum test. p-values of the correlations are shown in paren-
thesis next to the correlation coefficients.

FEV;%pred and all except one, MCPcpg of Model 1, have a higher correlation
with FEV;%pred than RA910. RCA 1 measured using Model 1 achieves the
highest correlation of » = 0.80, which is significantly better than the correlation
of r = —0.62 for RA910 (p = 0.006) according to a Hotelling/Williams test [12].
Note that we in the Hotelling/Williams test inverted the signs of the RA910 mea-
sures so that the two correlations being compared have the same sign. Looking
at the correlations with ES, RA910 achieves the highest correlation coefficient
(7 = 0.61). Only two correlation coefficients are not significantly different from
zero, and that is RCA pgsg using both models. All the texture based quantitative
parameters for emphysema, as well as FEV;%pred and RA910, can separate
non-smokers/healthy smokers from smokers diagnosed with COPD according to
a rank sum test (p < 1074).

4 Discussion and Conclusion

It is not surprising that the texture based emphysema parameters perform dif-
ferently than RA910, since the two approaches are very different in the amount
of information they utilize. RA910 is based on a single threshold, -910 HU, and
makes a decision for each pixel based only on the information in that particular
pixel. The texture based emphysema parameters on the other hand, base the
decision on all pixels in a local neighborhood and thus incorporate much more
information. Further, the decision is not based on a specific threshold parameter,
but is based on the distribution of the attenuation values as well as measure-
ments of local structure. A consequence of this is that the proposed texture based
approaches are expected to be less sensitive to differences in inspiration level. It
is known that RA is sensitive to changes in inspiration level, since inspiration
level influences the lung density, and thereby the CT attenuation values [13].
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The insensitivity to inspiration level is something that is not investigated in this
paper, but could be interesting to evaluate in the future on longitudinal data.

There is a tendency that RCA correlate better with FEV;%pred than MCP,
however the difference is not significant in all cases. This tendency could be due
to uncertainty at the boundaries, evident in the bottom-right part of Figure 3.2,
causing boundary effects as seen in the top-right part of Figure 3.2.

To conclude, we have proposed new parameters for quantifying emphysema
in lung CT using texture based pixel classification. The proposed measures gen-
erally correlate well with lung function and the highest correlation, r = 0.80, is
achieved by the relative normal tissue area.
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