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Abstract. In this paper we present one method for segmenting the lungs
and three methods to segment pulmonary lobes from thoracic CT images
and their application to the LOLA11 challenge data. The lung segmenta-
tion procedure is fully automated and uses a sequence of morphological
operations to refine an initial threshold-based segmentation of the pul-
monary airspaces. Based on its results, lobe segmentation is performed.
The three presented lobe segmentation methods differ substantially in
grade of automation. The first lobe segmentation method is a fully au-
tomatic segmentation algorithm that combines information from lobar
fissures, blood vessels and the airway tree by means of a watershed trans-
formation. The second presented method describes an efficient interac-
tive correction mechanism for existing lobe segmentations. The user can
iteratively modify a lobar boundary by drawing its correct course onto re-
gions of insufficient segmentation, getting instant feedback of the results
of his actions. The third presented algorithm is an interactive method
related to the second one, but it allows for segmentation from scratch
based on a lung mask only. Evaluation of the methods was performed as
part of the LOLA11 challenge on 55 CT scans that can be considered
challenging due to a large number of substantially abnormal cases.

Automated lung segmentation took 1minute on average and the mean
overlap with the reference standard was 97.3%.

For the fully automated, interactively corrected, and interactive lobe seg-
mentation, average processing times were below 10minutes each and the
mean overlaps were 88.1%, 91.8%, and 92.3%, respectively.

1 Introduction

We present one fully automatic lung segmentation method [1][2] and three lung
lobe segmentation approaches that differ in their grade of automation:

1. Automatic Lung Lobe Segmentation [1][2][3]

2. Automatic Lung Lobe Segmentation with Interactive Correction [4]

3. Interactive Lung Lobe Segmentation from Scratch [4]
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Fig. 1: Relation of the presented lung segmentation and the three lung lobe
segmentation methods.

All basic methods were previously published and evaluated in the papers
referenced above (the most recent reference comes last), which is also where we
would like to refer the reader for a detailed discussion of prior art. In this paper
in Chapters 2 to 5, we give a brief overview over each of the proposed methods
and provide more detail where the current versions differ from the originally
published ones. Evaluation of the methods is performed as part of the LOLA11
challenge1, the results of which are provided and discussed in Chapters 6 and 7,
respectively.

The three lung lobe segmentation methods are presented in a single paper
for two reasons. First, they complement each other and we use them in a way
that requires minimal interaction time. A lung data set is at first processed us-
ing the fully automatic segmentation algorithm. If the result is satisfactory no
further steps and no interaction at all are needed. In case of local inaccuracies
the user can improve the segmentation with the presented correction method.
If for reasons such as severe pathologies or low resolution data the automatic
lobe segmentation completely failed the user can segment the lobes from scratch
using the third presented method. This combination of the algorithms (see Fig-
ure 1) shall ensure that a satsifactory lobe segmentation is possible for each
and every pulmonary CT dataset. Second, the three segmentation methods are
all based on the same lung segmentation algorithm. In the following, the com-
monly used lung segmentation algorithm as well as the three lobe segmentation
algorithms are describes in more detail. All presented methods are implemented
in the development environment for medical image processing and visualization
MeVisLab [5].

2 Automatic Lung Segmentation

The basic lung segmentation method used in the challenge was described in de-
tail in [1] and [2]. Briefly, the method starts with a low-resolution (voxel size
2× 2× 3mm) analysis of the CT data to first locate and then coarsely segment

1 www.lola11.com
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the pulmonary airspace with a fixed-threshold region growing. Using the low-
resolution lung mask, an approximate lung bounding box is extracted and an ap-
propriate lung segmentation threshold is computed by histogram analysis. Based
on this information, the pulmonary airspace is segmented in the full resolution
image using a threshold-based 3D region growing (Figure 2b). For separation
of the left and right lung area a coarse airway segmentation is performed (Fig-
ure 2c). A 2D shape and size analysis is performed on the low-resolution mask
to find trachea candidates, which are then grouped in 3D to identify the most
likely trachea candidate. After prefiltering the original CT data using the out-
put of minimum and maximum kernel filters (kernel size 5x5x5) at equal weight,
an adaptive threshold-based 3D region growing is used to segment at least the
trachea and main stem bronchi. After the segmentation, a morphological leak
removal step is applied to detect and possibly remove large airway mask leaks
that could disturb lung segmentation. For lung separation and mask closing, the
original data is first downsampled trilinearly to isotropic 1.5 mm voxels to speed
up processing and reduce image noise. Using the dilated airway mask to block
passage through the main stem bronchi, the left and right lung are separated
using a 3D watershed segmentation (Figure 2d). Subsequently, a morphological
closing step is performed to include larger pulmonary blood vessels and high-
density lung pathologies (Figure 2e). This is done by applying a 3D rolling ball
algorithm. A first application uses a 13 mm radius to close major interior holes,
resulting in a pre-closed mask. In a second closing step, another rolling ball al-
gorithm with a 5mm radius is applied to the union of the unclosed mask and
the core of the pre-closed mask (defined as the regions being further away than
5mm from its boundaries). In order to obtain highly accurate lung boundaries
after upsampling to the original resolution, the lung boundaries are refined using
the high-resolution airspace mask.

3 Automatic Lung Lobe Segmentation

The basic idea of the presented automatic lung lobe segmentation method is the
combination of several features to avoid a strong dependency of the existence and
visibility of pulmonary fissures. Initially[1][2] the original CT data was combined
with information from pulmonary vessels and the bronchial tree into a single
cost image for a watershed transformation that ultimately performed the lobar
partitioning and classification using lobe markers derived from the lobar bronchi.
More recently[3], fissure information was extracted and additionally introduced
into the watershed cost image to improve robustness and accuracy where the
lobar fissures were visible. In the following, the segmentation and processing of
the relevant structures and the generation of markers for each of the lobes is
described.

3.1 Pulmonary vasculature

Due to the high contrast between blood vessels and lung parenchyma a 3D region
growing algorithm can perform a coarse segmentation of the pulmonary blood
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a. Chest dataset:
Unsegmented CT data.

b. Airspace Segmentation:
Airspace extraction by
fixed-threshold region
growing.

c. Bronchi Segmentation:
Optimal threshold region
growing using seeds derived
from the airspace mask b.

d. Lung Separation:
Subdivision of the remaining
airspaces into left and right
parenchyma regions.

e. Lung Closing:
Inclusion of the pulmonary
blood vessels previously
excluded due to their high
attenuation.

Fig. 2: The essential processing steps of the automated lung segmentation pro-
cedure visualized on a single slice overlaying the original data (left), isolated
(center), and as 3D volume rendering (right).

vessels (see Figure 4b). The seed points for this procedure are found automati-
cally by locating a high density area in the region where the hilus is expected.
On the assumption that there are few larger vessels close to the lobe boundaries,
a Euclidean distance transformation from each voxel inside the lung region to
the closest vessel voxel is calculated. The result distance transformation image
shows high intensity values at the lobar boundaries (see Figure 4e).

3.2 Bronchial tree

The airway lumen is separated from the parenchymal tissue with similar CT den-
sity mainly by thin airway wall structures, making its segmentation challenging
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due to partial volume effects and image noise. We apply two preprocessing steps
to mitigate these problems. First, a Gaussian smoothing with fixed kernel width
(σ = 0.75mm) is applied to the image although the blurring increases the partial
volume related problems. Then, a bronchi enhancement filter is used to remove
influence of partial volume effects and Gaussian blurring on the airway lumen.
For each voxel, this filter casts 26 star-shaped rays into the neighbourhood and
analyzes voxel values along the rays, grouped by all of the 9 main cut planes
passing through the voxel. If the voxel is surrounded by bright voxels in at least
three of the cut planes, an amount relative to the brightness of the surrounding
structure is removed from the central voxels intensity.

After this preprocessing, a 3D region growing algorithm can be used to ex-
tract the airway lumen from the CT scan. The region growing is initialized with
the result of the coarse airway segmentation used in the automatic lung seg-
mentation (see Sec. 3) and region growing is executed iteratively with increasing
thresholds until a critical raise in the segmented volume is detected, indicating
leakage into the parenchymal tissue. Furthermore, the same leak removal as in
Section 2 is applied, this time with a higher sensitivity to remove also smaller
leaks that could impair airway analysis required for lobar cone computation (Fig-
ure 5). As for the pulmonary vasculature, a Euclidean distance transformation
is calculated to receive high intensities at the lobar boundaries.

3.3 Pulmonary fissures

The pulmonary fissures are often only incompletely or not clearly visible in CT
data because of severe lung diseases, low image resolution, or absence of a fissure.
However, in regions of a visible fissure this information is beneficial for a precise
lobe segmentation. A common method to enhance characteristic structures is a
feature analysis of the Hessian matrix.

Considering the Eigenvalues |λ1| ≤ |λ2| ≤ |λ3| of the Hessian matrix fissures
can locally be modeled as sheets. Voxels belonging to the fissure have one large
negative Eigenvalue that results from the large intensity gradient orthogonal to
the fissure plane and two small Eigenvalues that reflect the homogeneity along
the fissure: |λ1| ≈ |λ2| ≈ 0 and λ3 � 0. Based on these characteristic features a
fissure enhancement can be calculated.

In the next step a 3D vector-based connected component analysis (closely
related to the approach by Rikxoort et al. [6]) is performed on a voxel set of
fissure candidates estimated by the fissure enhancement. Since the curvature of
fissures is locally low neighboring fissure voxels have a similar direction of the
largest eigenvector. All adjacent voxels with an absolute inner product of the
largest normalized eigenvectors ≥ 0.98 are clustered to a connected component.
Components ≥ 0.1ml are kept and small gaps are closed by a morphological
closing. Figure 3 shows an example of fissure enhancement and following fissure
segmentation. To introduce the fissure information into the cost image a Eu-
clidean distance transformation is calculated in a distance of 2 cm around the
fissures. The result is inverted and the square is calculated to get high values at
the fissures (see Figure 4g).
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Original CT Fissure Enhancement Fissure Segmentation

Fig. 3: A sagittal CT image with fissure enhancement and fissure segmentation
after a vector-based connected component analysis.

3.4 Lobe marker generation

Nicely reflecting the lung lobes in its branching structure, the bronchial tree
(3.2) suggests itself as a source of lobe markers for the watershed segmentation
used in our automatic lobe segmentation.

First, we generate a directed, acyclic graph representing the bronchial tree
structure by applying a thinning algorithm [7] to the bronchial tree segmentation.
The nodes of this graph represent branching points of the bronchi whereas each
edge represents the centerline of a bronchus section between two consecutive
branching points and is directed from its proximal to the distal point. For each
edge in this graph, we calculate the subtree mask volume and its center of gravity.
We then separate the graph into pairs of disjoint subtrees representing different
anatomical units (left and right lungs, upper and middle/ lower lobes, middle and
lower lobe) by iteratively searching for sibling edges with maximally large and
well separated subtrees. The subtree separation score is calculated as the squared
distance of both subtrees’ centers of gravity along an appropriate separation axis,
multiplied by the smaller subtrees mask volume.

In contrast to previous publications, where markers were directly computed
from the lobar bronchi (Figure 5a), we now additionally compute lobar cones
extending until the lung borders based on each lobe’s root node and a PCA of
the terminal nodes (Figure 5b). This increases segmentation accuracy when only
few or no distal bronchi were detected by the bronchial tree segmentation for
one or more lobes. Wherever cones of different lobes intersect they are cropped
with an additional safety margin.

3.5 Marker-based watershed transformation

The four calculated feature images based on the bronchial tree, vessels, fissures,
and original image with vessels masked out are combined with equal weight to
a cost image. The original image is regarded to enhance the fissures that are
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Fig. 4: Schematic diagram of the automatic lobe segmentation algorithm. From
the original chest CT scan four features are extracted to calculate the cost im-
age for the watershed transformation: a) the original data with the blood vessels
masked out b) the pulmonary vasculature c) the bronchial tree and d) the pul-
monary fissures. A distance transformation is calculated from e) the vasculature,
f) the bronchial tree and g) the fissures (inverted) to get high intensity values
at the lobar boundaries. All four inputs are equally weighted to obtain the cost
image for the watershed transform. Markers for the lobes are calculated auto-
matically from the bronchial tree.

possibly not found by the fissure segmentation method due to pathological thick
fissures and corresponding high intensity values.

The 3D watershed transformation is performed to segment the lung lobes
based on the cost image and the lobe markers. Figure 4 shows all four inputs of
the cost image with the resulting final cost image and the lung lobe segmentation.
The method was evaluated on 42 CT data sets against a reference segmentation
manually segmented by a human expert. For details see [3].

4 Interactive Lung Lobe Correction

The interactive correction method described in the following was initially pro-
posed in [4]. The approach offers intuitive correction of inadequate lung lobe
segmentations by the user. Besides an existing lobe segmentation, no further
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(a) Analyzed airway tree (b) Lobar cones

Fig. 5: Result of the advanced bronchi segmentation after lobar bronchi analysis
(a) and the resulting lobar cones (b) that are used for lobe marker generation.

input is needed. Thus, the correction can be applied to segmentations from ar-
bitrary origin and modality. The processing of the fissures occurs successively:
right major fissure, right minor fissure, and left major fissure. When regarding
the right minor fissure only the upper and middle lobe are visible to avoid inter-
section with the major fissure. The user can simply skip a fissure if no changes
are needed.

To correct an existing segmentation, the user simply traces the lobar bound-
ary on a slice of arbitrary orientation. The fissure is immediately adapted on
the current slice and on neighboring slices. Thus the user gets a fast feedback
and can continue correcting until the result is satisfying. The crucial point is to
define the 3D influence range of such a 2D user interaction. Therefore, the depth
of the 3D influence region depends highly on the amount of difference between
initial and corrected boundary in the current plane. In the following, initializing
with a given existing segmentation and the handling of user input are described.

4.1 Initialization with a given segmentation

In order to import a given segmentation a rank-based boundary filter is applied
to find the requested fissure. The filter is limited to the boundaries inside the
lung and to the appropriate lobes to distinguish between major and minor fis-
sure. All voxels under a 3x3x1 kernel are sorted in ascending manner and the
result value is the index of the position of the current voxel. In the next step
a thresholding thins out the fissure surface to get only voxel of high curvature
and only the voxels on each forth axial slice are regarded. The resulting subset
of fissure voxels is converted to a set of 3D sampling points (see Figure 6). From
these sampling points the center of gravity and the orientated bounding box are
calculated. Based on this spatial orientation a regular mesh is generated and
the sampling points are projected onto the mesh. To adapt the mesh to the fis-
sure, the grid points of the mesh are translated according to the offset between
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(a) Fissure (yel-
low curve) before
correction.

(b) 3D rendering
of the surface
sampling points
before interactive
correction.

(c) Manually
sketched user
curve (red curve)
and fissure (yel-
low curve) after
correction.

(d) 3D rendering
of the surface
sampling points
after interactive
correction.

Fig. 6: Interactive correction of a pulmonary fissure in sagittal view. The user
interaction leads to a thinning of the original sampling points.

the closest projected sampling point and its original location. A smoothing fol-
lows to decrease irregular distances between the grid points. The adapted mesh
represents the fissure surface that can be modified by the user.

4.2 Processing of user interaction

Each curve drawn by a user is also converted to a set of sampling points and
added to the set of fissure sampling points. Before recalculating a new fissure
surface based on the updated set of sampling points the source of inaccurate
segmentation must be eliminated. Thus these sampling points that represent a
leakage must be deleted from the set of fissure sampling points. In order to find
these points a 3D region around the user curve is defined and all points inside this
region are removed. The region is calculated by several morphological operations
in 2D and extrapolated to 3D. The extent of the region mainly depends on the
distance between the user drawn curve and the original fissure on the interaction
slice. A significant correction on a slice leads to a larger 3D impact region than
a minor correction. The key issue is to find a balance between removing as many
as possible sampling points that are responsible for a inaccurate segmentation
while keeping as many as possible appropriate sampling points.

When the user has finished correction the fissure surface is used to split
the lung mask into two parts. The resulting lobe candidates are classified by a
simple heuristic based on the center of gravity. The upper lobe is expected to
have the highest z-coordinate followed by the middle and lower lobe. The method
was evaluated on 3 CT scans with a reference standard provided by an expert.
Figure 7 shows an example of an interactive correction of a given segmentation
with a strong leakage. For details see [4].
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(a) Lung lobe segmentation before correction.

(b) Lung lobe segmentation after correction.

Fig. 7: Correction of a lobe segmentation of a left lung. The automatic segmenta-
tion result (a) shows a strong leakage that can be correction by two interactively
sketched curves.

5 Interactive Lung Lobe Segmentation from Scratch

The interactive lung lobe segmentation approach from scratch is meant for cases
without an automatic lobe segmentation result. It only requires a lung mask as
input. The method is based on the same approach as the interactive lung lobe
correction (see Chapter 4) except that no sampling points have to be deleted be-
cause there is no given segmentation. The user sketches the pulmonary fissure on
several slices in arbitrary orientation (see Figure 8). Analogous to the correction
approach the curves are converted to a set of sampling points which are used to
calculate a fissure surface that extends the whole lung. Any user curve results in
an immediate recalculation of the fissure surface. Thus the user can again sketch
the fissure on any more slices until the segmentation result is adequate. Since
the fissure always extends over the total lung the lobes can easily be estimated
by separating the lung by the fissure surface. Empirical studies shows that best
segmentation results are achieved by sketching the fissure in sagittal orientation.
The interactive lung lobe segmentation approach was evaluated on 25 CT data
sets. For details see [4].
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(a) Four sagittal fissure
curves (dark red), manu-
ally sketched in 2D by an
observer.

(b) Fissure curves
(dark red), visualized
using semi-transparent
3D surface renderings
of the lungs in slanted
coronal view.

(c) Calculated fis-
sure surface (grey)
that divides the left
lung into upper and
lower lobe.

(d) Calculated left
major fissure surface
(dark red) visualized
using semi-transparent
3D surface renderings
of the lungs in slanted
coronal view.

Fig. 8: From scratch segmentation of a left lung with four manually sketched
fissure curves.

6 Experiments and Results

6.1 Experiment Setup

All algorithms were implemented using the in-house version of the rapid pro-
totyping and development platform MeVisLab [5]. First, the automated lung
segmentation was applied to the data. Based on the lung segmentation results,
both automatic (method 1) and interactive (method 3) lobe segmentations were
performed. The results of the automatic lobe segmentation (method 1) were then
additionally corrected using the interactive correction (method 2). Where cor-
rection did not make sense because of a totally failed automatic segmentation, it
was possible to delete all prior results and start from scratch, which is equivalent
to using method 3.

To support the interactive procedures (lobe segmentation methods 2 and 3),
a dedicated MeVisLab GUI application was developed. Both the interactive seg-
mentation and correction were performed by an experienced lung image analyst
after a few hours of training using mostly sagittal views on the data.

6.2 Segmentation Accuracy

The overlap scores in comparison with the LOLA11 reference standard are given
in Tables 1 to 4.

Table 1: Overlap scores for the Automated Lung Segmentation for the 55
scans in LOLA11.

mean SD min Q1 med. Q3 max

left lung 0.974 0.098 0.277 0.987 0.992 0.995 0.999
right lung 0.972 0.135 0.000 0.991 0.994 0.996 0.999

score 0.973
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Table 2: Overlap scores for the Automatic Lobe Segmentation (method 1)
for the 55 scans in LOLA11.

mean SD min Q1 median Q3 max

left upper lobe 0.922 0.163 0.198 0.94 0.978 0.991 0.997
left lower lobe 0.885 0.229 0.000 0.939 0.964 0.983 0.996
right upper lobe 0.921 0.088 0.604 0.897 0.960 0.978 0.998
right middle lobe 0.765 0.299 0.000 0.773 0.886 0.945 0.989
right lower lobe 0.914 0.176 0.000 0.936 0.968 0.983 0.998

score 0.881

Table 3: Overlap scores of the Interactive Lobe Segmentation Correction
(method 2) applied to the automatically generated results (c.f. Table 2) for the
55 scans in LOLA11.

mean SD min Q1 median Q3 max

left upper lobe 0.947 0.132 0.203 0.968 0.984 0.991 0.996
left lower lobe 0.911 0.210 0.000 0.954 0.978 0.983 0.997
right upper lobe 0.937 0.079 0.675 0.935 0.969 0.982 0.995
right middle lobe 0.837 0.235 0.000 0.829 0.923 0.961 0.987
right lower lobe 0.960 0.070 0.541 0.955 0.977 0.988 0.999

score 0.918

Table 4: Overlap scores for the Interactive Lobe Segmentation (method 3)
for the 55 scans in LOLA11.

mean SD min Q1 median Q3 max

left upper lobe 0.945 0.141 0.207 0.964 0.985 0.99 0.996
left lower lobe 0.913 0.212 0.000 0.962 0.979 0.984 0.994
right upper lobe 0.943 0.079 0.678 0.946 0.974 0.987 0.995
right middle lobe 0.850 0.224 0.000 0.861 0.932 0.963 0.990
right lower lobe 0.962 0.071 0.542 0.968 0.979 0.987 0.997

score 0.923

6.3 Time Consumption

For processing of the test data, a two year-old standard quad-core Windows
PC with 8 GB of RAM was used. Processing times for the methods were as
follows (preprocessing time for lung segmentation is not included for the lobe
segmentation methods):

(*) Automatic Lung segmentation required about 1minute per case on
average. Times ranged between 0.5 and 3minutes and depended on data size,
and on whether airway leaks were detected and removed or not.

(1) Automatic Lobe segmentation required about 9minutes per case on
average. Times ranged between 2 and 31minutes, growing with data size and
the depth of the segmented airway tree.
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(2) Interactive lobe correction required 1.5minutes of interaction per
case on average. Times ranged between 0 and 3minutes. In addition, 1 minute
of pre- and post-processing time needs to be spent, but only for those cases
where the existing segmentation was insufficient. Individual averages for each
fissure (left major, right major, right minor) were 23, 32, and 32 seconds,
respectively.

(3) Interactive lobe segmentation required about 4minutes of interac-
tion per case on average. Times ranged between 2 and 7minutes. In addition,
about 1 minute per case was required for automatic pre- and postprocess-
ing. Individual averages for each fissure (left major, right major, right minor)
were 78, 84, and 62 seconds, respectively. In a previously published study (see
[4] for details) interaction time was slightly smaller. The increase observed
for this study could be due to the higher ratio of pathological lungs.

In summary, it takes about 10 minutes to segment lungs and lung lobes from a
typical chest CT dataset using the presented fully-automated methods. If results
are to be interactively corrected, this takes about 2 minutes in addition. To seg-
ment only the lungs automatically and then segment the lung lobes interactively,
the whole process takes about 6 minutes per case.

6.4 Amount of Interaction

For the interactive methods, the number of interactions was measured. Besides
actual fissure drawings, ’undo’ and ’undo all’ counted as interactions.

(1) Interactive lobe correction required 7 interactions per case on aver-
age. The number of interactions ranged between 0 and 18. For each indi-
vidual fissure (left major, right major, right minor), the average number of
interactions was 2, 3, and 3, respectively.

(2) Interactive lobe segmentation required 20 interactions per case on
average. The number of interactions ranged between 8 and 30, subjectively
increasing with fissure irregularity and incompleteness. For each individual
fissure (left major, right major, right minor), the average interaction counts
were 6, 7, and 6, respectively.

7 Discussion

7.1 Evaluation results

The accuracy of the lobe segmentation results correlates with the amount of
interaction. Method 3 shows best results but requires the largest amount of in-
teraction whereas method 1 got the lowest score compared to the other methods
with no interaction at all. Method 2 turns out to be the best trade-off between
accuracy and interaction. Only little interaction is required to obtain almost as
accurate results as method 3.

The largest variations compared to the reference occurred in the right middle
lobe for all three methods. The middle lobe is usually smaller than the other
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lobes thus inaccuracies have a stronger impact on the overlap error. Moreover,
the minor fissure which delimits the middle lobe from the upper lobe is more
often incompletely or not clearly visible than the major fissures.

7.2 Limitations

The limitations of the lung segmentation are mainly due to its basic approach
of iterative refinement of an initial, purely connectivity and threshold-based
airspace segmentation. Whenever a pulmonary high-density pathology such as
a large tumor or atelectasis is connected to the lung boundaries, it will not be
covered by the lung mask unless it is small enough to be included by the rolling
ball closing. Another problem is occasional leakage of the airspace segmentation
into extrapulmonary airspaces such as the colon or esophagus. Lastly, while
lung separation was shown to be very robust also for very inflated lungs [2], cases
where one lung is very small or missing entirely cannot currently be detected and
will most likely be segmented incorrectly. Regarding the acquisition parameters
(e.g. reconstruction increment and kernel, dosage, inspirations state), the lung
segmentation algorithm has no special requirements.

All three presented lobe segmentation methods require a lung segmentation
as input but are not limited to certain types of scans or exclude pathological
lungs in general. Nevertheless, some pathological lungs can lead to problems
for the automatic segmentation (method 1). Especially occluded bronchi can
preclude a proper bronchi segmentation, which is required for the generation of
classification lobe markers for the watershed transform. Moreover, due to the
very simplistic vessel segmentation included, high-density pathologies are often
mistaken for vasculature and can lead to inaccuracies when located near the
lobar boundaries. In particular, this includes thickened fissures.

The interactive correction and segmentation approaches (methods 2 and 3)
do not require image features and are therefore not limited to CT data. One
limitation of the interactive methods is accuracy. Since the underlying fissure
surface is inter- or extrapolated for most slices, the segmentation result might not
be voxel-accurate at the lobar boundaries. Even in regions with an interactively
sketched curve the fissure surface might minimally differ from this curve because
of a global smoothing of the underlying mesh. Inaccuracies arise in particular at
lobar boundaries with an extremely angular shape.

8 Summary and Conclusion

We have proposed one automatic lung segmentation method and three partly re-
lated lobe segmentation approaches. If preprocessing time is irrelevant the three
proposed lung lobe segmentation approaches are best applied in the following
way to restrict interaction time: First, the automatic lobe segmentation (method
1) is performed. Then, in case of unsatisfying segmentation results, the inter-
active correction method (method 2) is applied. If the automatic segmentation
completely fails the user can perform an interactive segmentation from scratch
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(method 3). For most cases the automatic segmentation provides appropriate
results while the interactive correction or segmentation guarantee to get appro-
priate results even for very difficult cases.
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