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Abstract. In this paper, we propose an interactive method for lung nodule 
segmentation. Given a seed point, the segmentation process consisting of three 
steps is done automatically. The first step is intensity normalization. The second 
one is to build an energy function for graph cuts. The third one is to do the 
segmentation by graph cuts. In the third step, if there are imperfects in the 
result, we provide an interactive way to correct. The main advantages of our 
method are that: 1) object intensity is estimated based on energy function; 2) 
boundary energy of graph cuts is determined by AdaBoost; 3) a novel effective 
correction way is provided. Experimental results show that 1) and 2) improved 
the segmentation accuracy a lot, and 3) provided an effective way to correct the 
segmentation results even in very difficult cases. 
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1   Introduction 

Measurement of size and volume of lung nodules are useful for the assessment of 
staging and the results of chemotherapy or radiotherapy [1, 2]. On follow-up 
computed tomography (CT), it is important to determine whether a lung nodule has 
grown and, if so, how fast it has grown. Nodules are defined as solid, part solid and 
Ground Glass Opacity (GGO). The doubling time of nodules is an important indicator 
for malignancy. Malignant solid nodules typically double in volume in <500 days. On 
the other hand, part solid and GGO are sometimes more likely to be malignant than a 
solid one [3]. Therefore, measurement of all these three types is important. Because 
nodule growth or shrinkage is a 3D phenomenon, volume is appropriate for 
measurement. 

Because it is very time-consuming to do the volume measurement manually, many 
researches for automatic segmentation have been done. However, there are two 
difficulties as shown in Fig. 1. The first one is that nodules are often adherent to 
pleura or/and vessels. The second one is the diversity of nodules, including big 
intensity variation among the three types, obscure boundaries, and cavities inside. 
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Fig. 1. Typical types of nodules in our test data set. S: solid, P: part solid, G: GGO. 

To solve the first difficulty, sphere-like shape information of nodules is used. In [4], 
ellipsoid is used as a shape model to approximate a nodule boundary, but the method 
can not measure nodules with irregular surfaces accurately. In [5, 6], shape feature is 
incorporated into graph cuts boundary energy. In [7], an adaptive sphericity oriented 
contrast region growing technique on fuzzy connectivity map within a mask is used to 
identify the extent of a nodule. Experimental results in [5, 6, 7] showed that the 
difficulty was solved well. 

To solve the second difficulty, estimation of object (i.e., nodule) intensity is 
necessary. In [7], object region is found by doing local adaptive segmentation. In [8], 
a graph Laplacian matrix is constructed for the estimation of GGO intensities, but 
manually drawn scribbles are needed. In [9], a priori distribution and low-level image 
information are incorporated into a nonparametric dissimilarity measure that defines a 
local indicator function for the object likelihood. However, it is still very difficult to 
estimate the object intensity in cases such as P1 and P2 shown in Fig. 1, where parts 
of object have almost the same intensity with the background. 

Recently, methods to analyze the lung anatomy including vessels, bronchi and 
nodules have been proposed [10, 11]. This is a direction to improve nodule 
segmentation accuracy, but the anatomy analyzation itself is difficult. 

In the previous methods, cases like P1 and P2 in Fig. 1 have not been discussed. 
Furthermore, because of the diversity of nodules, it is almost impossible to do the 
automatic segmentation perfectly for all the nodules without correction. For example, 
there are still failure cases in [5, 6]. 16% of segmentation results required alternative 
segmentation solution in [7]. To solve this problem, interactive segmentation is 
proposed in [12], but because it is based on dynamic programming (DP), applying to 
3D images is difficult. To the best of our knowledge, there is still no effective way for 
correcting 3D nodule segmentation results. 

In this paper, we propose an interactive method for lung nodule segmentation. 
Given a seed point, the segmentation process consisting of three steps is done 
automatically. The first step is intensity normalization based on automatically 
estimated object and background intensity. The second one is to build an energy 
function for graph cuts. The third one is to do the segmentation by graph cuts [13, 14]. 
In the third step, if there are imperfects in segmentation result, we provide an easy 
interactive method to correct based on the correction points given by user. The main 
advantages of our method are that: 1) object intensity is estimated based on energy 
function; 2) boundary energy of graph cuts is determined by AdaBoost [15, 16]; 3) a 
novel effective correction way is provided. 
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Fig. 2. Examples showing the flow of our method. (a) Cropped images. Blue “+” are seed 
points. (b) Images with normalized intensity. (c) Images of ( )pAdaScore  (section 2.2.2). (d) 
Segmentation results. (e) Segmentation results after a correction point (blue “O”) is given. If 
there is no imperfect, (e) is not necessary. 

2   Method 

The input of our method is 3D pulmonary CT images with a seed point of a nodule. 
The output is 3D segmentation result. If there are imperfects in the result, correction 
points can be inputted, and then the corrected result is outputted. Although the 
segmentation is 3D, only key 2D axial images are shown in Figures because of space 
limit. Fig. 2 shows the flow of our method with examples. 
 

2.1   Image intensity normalization 

Given a seed point S , ROI including the whole nodule is cropped automatically. The 
ROI size (

xSize , 
ySize  and 

zSize ) is determined by using the possible maximum 
nodule size MaxSize  and pixel spacing (

xPS , 
yPS  and 

zPS ). We set MaxSize  to 
70mm. 
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Based on the cropped ROI, we estimate 
bkgVal  and 

objVal . 
bkgVal  represents average 

Hounsfield value of air region of background. 
objVal  represents object value. Then, 

intensities are normalized to 0.0~1.0, by using 
bkgVal  and 

objVal  as low and high limits. 
All calculations about the energy function ( )AE  in our method are based on the 
normalized intensities. 

Estimating 
bkgVal  consists of three steps: 1) calculate Hounsfield value histogram; 

2) find the biggest peak below -700HU; 3) set 
bkgVal  to the value with the peak. 
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Fig. 3. (a), (b), (c): Examples showing how to set hard constraints. Object: red. Backgroud: 
blue. (d): An example showing how to set “hard constraints” based on a correction point (green 
“O”). Red and blue pixels are set to hard constraints of object and background respectively. 
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objVal  is determined adaptively by equation (2). T  is a set of possible candidates 

of 
objVal . Three 

objCan s which are selected based on the above Hounsfield value 
histogram. ( )AE  is an energy function described in section 2.2. We use each 

objCan  as 
a supposed 

objVal . The reason of incorporating ( )AE  is that: the energy of ( )AE  
should be lower when 

objCan  is closer to the object value, since the nodule boundaries 
will be more by normalizing intensities with optimal value. The reason of 
incorporating ( )objCanWeight  is that: in part solid cases, ( )objCanWeight  should be lower 
when 

objCan  is closer to the value of GGO parts that have lower values than solid 
parts. Therefore, the possibility of segmenting only solid parts out becomes lower.  
Normalization examples of different types are shown in Fig. 2 and Fig. 4. 
 

 
2.2   Energy function 

We use the energy function proposed in [14]. It is shown as follows. 
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P  represents image pixel set. N  represents pairs { }qp,  of neighbors in P . For 
3D segmentation, we use a standard 26-neighborhood. P  is a binary vector whose 
component pA  specify assignments to pixels p  in P . The region term ( )AR   
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Fig. 4. Comparison results. (a) Cropped image. (b) Normalized intensity. (c) Inverse magnitude 
of Sobel filter. (d) Result of (c). (e) ( )pAdaScore . (f) Result of (e). 
 
assumes that the individual penalties for assigning pixel p  to object and background. 
The boundary term ( )AB  comprises the boundary properties of segmentation. 

qpB ,
 

should be small if boundary possibility between p  and q  is high. 

2.2.1   Region Energy 

Generally, the region energy is defined as follows. 
pI  and 

qI  represent intensities. 
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However, because of cavities inside and partial volume effects, it is impossible to 
calculate object intensity likelihood correctly. Therefore, we only set “hard 
constraints” [14] to pixels which are regarded soundly as object or background. 
Examples are shown in Fig. 3. 
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2.2.2   Boundary Energy 

( )
�
�
�

�
�
�
�

� −
−∝ 2

2

, 2
exp

σ
qp

qp

II
B

 (8) 

Generally, the boundary energy is calculated by equation (8). However, we calculate 
the boundary energy as follows because: 1) nodule size is unknown in advance; 2) 
segmentation result should be sphere-like; 3) intensity difference can not represent 
nodule boundaries of different types well. 
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In equation (10), ( )spdist ,  is the distance between p  and the seed point. 

distweight  not only allows nodule size variation, but also lets the boundary energy of 
sphere-like shape be smaller. 

In equation (11), x  is sub-window of 5x5x5 pixels in 3D space, and 
mf  is a 

learned weak classifier based on the normalized intensity combination of 2 pixels in 
the sub-window. In advance, 10 CT data containing nodules with different types with 
ground truth boundaries were used for AdaBoost learning. We obtained positive 
samples where the boundary is at the center of the sub-window, and negative samples 
randomly where the boundary is not at the center. Note that local regions of boundary 
are used, tens of thousands positive samples were generated from the 10 nodules. 
Applying AdaBoost learning [16], we got ( )�

=1m
m xf  which represents nodule 

boundary likelihood. 50 
mf  were selected, and L  is the highest ( )�

=1m
m xf  among 

the positive learning samples. Because the classifiers learned the different boundary 
patterns in the sub-window, it is much more effective than intensity difference. Fig. 4 
shows a comparison of segmentation results between the classifiers and Sobel filter. 

2.3   Interactive segmentation 

Here, we use graph cuts to find the minimum of ( )AE  for segmentation. If there are 
imperfects in the result, we provide an effective way to correct. As shown in Fig. 3 (d), 
after a correction point on the boundary is given, we find the radiate line from the 
seed point to the ROI boundary through the correction point. Then, we set the pixels 
on the two segments divided by the correction point to “hard constraints” of object 
and background respectively. The correction result has been show in Fig. 2. 
Correction can be done multiple times till user gets the satisfied result. 
 
3   Results 

3.1   Test Data Set 
For a quantitative validation, the proposed method was tested on a test data set of 
clinical pulmonary scans, containing 60 nodules with 0.5mm slice thickness. The 10 
nodules used in section 2.2.2 were not included. Detail information of the data set is 
shown in Table 1. To prepare ground truth, a chest radiologist, who has 15 years of 
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experience with the interpretation of thoracic CT images, manually drew the 
boundaries of each nodule on all 2D axial images. 

Table 1.  Detail information of the test data set.  

Subgroup N / N 
Internal opacity                Solid / Part solid & GGO 33 / 27 
Adherence to vessels & pleura    None / Present 20 / 40 
Diameter(mm)                 �2 / >2 24 / 36 

3.2   Quantitative Evaluation 

Experiments of our interactive segmentation evaluate the segmentation results on the 
test data set. Segmentation results can be corrected several times until the satisfied 
result is got. Frequency of correction was that: 1) 0 times: 46%; 2) 1-2times: 31%; 3) 
>2times: 23%. The largest correction times required in the experiments was 4. 
Nodules adherent to vessels and pleura are prone to have large correction times. 
Average processing time for segmenting a nodule once is about 2~3 seconds on a 
quad-core 2.8 GHz PC. And time with and without correction points are almost the 
same. 

Dice’s coefficient (R) between each segmented nodule and the ground truth nodule 
is calculated as follows: 

YX
YX

R
+
∩

=
2  (12) 

where X and Y are the segmented nodule region and the ground truth respectively. 
The notation |.| stands for the total number of voxels in the regions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Dice's coefficients. Blue dots: solid. Pink dots: part solid & GGO nodules. 
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Fig. 6. Dice's coefficient. Blue dots: solitary. Pink dots: adherent to vessels & pleura. 
 

The mean Dice’s coefficient is 0.85. Fig. 5 shows that, coefficients between solid and 
part solid & GGO are almost the same. This demonstrates that, our method makes the 
segmentation robust for both solid and part solid & GGO. Fig. 6 shows that, 
coefficients between solitary and non-solitary are almost the same. This demonstrates 
the effectiveness of the interactive correction. Fig. 7 shows some 3D segmentation 
results. In [6], the mean coefficient for GGO was 0.63 and no effective correction 
method was proposed. Our method has a much higher Dice’s mean coefficient (0.84) 
for GGO. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. 3D segmentation results shown by 3 axial images. Column 1,4,6: cropped images. 
Column 2,5,7: ground truth. Column 3,6,9: results of our method. Row 1: result without 
correction, R=0.90. Row 2: result without correction, R=0.89. Row 3: result without 
correction, R=0.83. Row 4: result with 3 correction points, R=0.81. 
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4   Conclusion 
 

This paper proposed a novel interactive lung nodule segmentation method using 
AdaBoost and graph cuts. There are three contributions in this work. The first one is 
that object intensity is estimated based on energy function. The second one is that 
boundary energy of graph cuts is determined by AdaBoost. The third one is that an 
effective correction way is provided. The first and second contributions improve 
segmentation accuracy a lot, and the third one provides a novel effective way to 
segment difficult nodules satisfactorily. Because our method is based on AdaBoost 
and graph cuts, it is generic and can be applied to other tumor segmentation.  
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