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Abstract. This paper describes a new method for airway segmentation
from CT images. We propose a form of adjusted image gradients for
thin airways segmentation and apply it in multi-stencil fast marching. A
graph of airway path segments is constructed from the arrival time func-
tion of fast marching. Instead of detecting leakage during segmentation,
our method verifies each path segment in a separate step, using a novel
leakage cost function defined on the whole path. Our scheme of path
removal can be viewed as complementary post-processing for existing re-
gion growing methods. Experiments show that the proposed method can
remove leakage regions while keeping most thin airways.

1 Introduction

Segmentation of airway trees from computed tomography images is critical for
various clinical applications involving pulmonary diseases. Diameters of fourth
generation airway in a typical CT image are about two or three voxels wide. The
limitation of imaging resolution and noise lead to the inhomogeneity of image
intensities inside airway walls and also the blurring effects around airway walls.
These factors make the balance between detecting leakage and extending thin
airways very critical in airway segmentation

Various algorithms have been proposed in the literature. Schlathölter et al
used level set methods for a simultaneous segmentation and tree reconstruction
framework [1]. The authors proposed several heuristic rules to detect leakage
in the growing regions. Tschirren et al proposed to keep an active region of
cylinder shape [2]. By tracking the orientation of active cylinder, the active region
was extended to next possible airway location. A multi-threshold approach was
adopted in [3] to increase robustness in growing airways trees. Recent work from
Christian et al [4] used gradient vector flow to guide growing direction. The work
of [5] focused on extending thin airways by computing the shortest paths inside
a search sphere from end points in the initial segmentation.

Many of these algorithms have shown successful segmentation of the bronchi
and trachea. However, for the third and higher generations in the airway tree,
current segmentation results still have room for improvement, indicated by a
recent evaluation on 15 airway segmentation algorithms [6].

In this paper we explore a new approach in airway segmentation. Instead
of mixing airway segmentation and leakage detection at every iteration as in
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[4, 5], we divide this problem into a hypothesis generation of thin airway paths
and a post processing procedure of removing leakage path candidates. For the
purpose of generating as many hypotheses as possible, we propose a novel speed
function for thin airways. To exclude leakage regions, we propose a novel cost
function defined on the whole path candidate. Such a scheme is more flexible
when evaluating the whole path and can be viewed as complementary to current
region growing methods.

2 Methods

Our method includes two steps: path candidate generation and path candidate
removal. In the first step, we generate all initial path candidates in the segmen-
tation using the fast marching method. A new formulation of adjusted image
gradients is proposed to compute the speed image. Path candidates are then
extracted by back tracing in the arrival time function. Next, those paths which
may contain the leakage regions are further removed from the initial segmenta-
tion using our novel leakage cost function.

2.1 Initial Segmentation Using Speed Function on Adjusted
Gradients

We use fast marching as the first step to generate the initial airway segmentation.
The arrival time is modeled by the Eikonal equation |�T |F = 1, where F is the
speed function of the propagation front and T is the arrival time. Given the 3D
image volume I, one form of the gradient based speed function is F = e−β|�I|

used in [1]; β is a scalar weighting coefficient.
By definition �I usually has high values at the locations close to the boundary

of airways, both inside and outside the airway. Thus fast marching will have a
low speed along the boundary inside airways. For the trachea and bronchi, this
is not a practical problem since the airway boundary takes a small portion in
the whole volume. However, for thin airways (like fourth order airways), where
the diameter of the airway is about two voxels wide, the speed F would be low
along whole thin airway segment and this would prevent fast marching from
successfully extending further (See Fig. 1b).

Using |�I| directly is not suitable for front propagation along thin airways
with partial volume effect. One way to deal with this problem is to interpolate
image to a higher resolution, or to assign a special label for airway boundaries
in fast marching. Here we propose a different solution by adjusting the defini-
tion of image gradients. The ideal gradient for airway segmentation should be
defined only on the wall of airways (brighter voxels) rather than inside airways
(darker voxels), such that the speed inside airways are high while low outside.
To formalize this notion, the following modified gradient is proposed:

g(x) =

{
|�I(x)| if |I (x + 1

2
nx

)− I(x)| < |I(x) − I
(
x − 1

2
nx

) |;
0 otherwise.

(1)
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nx is the unit direction of the gradient: nx = �I(x)

|�I(x)| and is measured in voxel
units. Note that this definition is not for leakage detection, but for generating
all possible airway segmentation.

With this gradient definition, the corresponding front propagation equation
becomes F = e−βg(x). A seed point x0 in the trachea region is selected as the
initial condition T (x0) = 0. A comparison of results using g(x) and �I(x) is
shown in Fig.1. The fast marching gives the correct segmentation using the
proposed g(x) on this thin airway segment.

Another issue in solving front propagation for thin airways is the choice of
connectivities. Many airway segments are extended along diagonal directions.
However, Sethian’s original fast marching method (FMM, [7]) is not accurate
along these directions as it computes the derivative using 6-connectivity. In or-
der to adopt the 26-connectivity in fast marching, we applied the multi-stencil
fast marching method (MSFM, [8]) to solve the equation in practice. Compared
to FMM, MSFM solves the equation along several predefined stencils to cover the
entire 26 neighboring locations. For those stencils that are not aligned with the
natural coordinate system, the equation is derived using directional derivatives.
Details of MSFM can be found in [8]. A 26-connectivity is especially impor-
tant for fast marching in thin airways when one location has no 6-connectivity
neighbors in the airway.

2.2 Path Candidate Generation from Initial Segmentation

Given the arrival time function T and a threshold t0, the initial segmentation is
obtained as S = {x|T (x) < t0}. S contains both airway tree segments and leak-
age regions. A nice property of the function T is that the propagation path from
any given location to the seed location x0 can be traced back using the gradient
of T . Our motivation is to cluster voxels in S into different path segments. In

(a) (b) (c) (d) (e)

Fig. 1. Example of the proposed adjusted image gradients. (a) A region containing a
thin airway (b) Gradients computed as |�I|. Note that it has high gradients inside the
airway, which prevent fast marching. (c) Airway segmentation using (b) to compute
speed image and MSFM. (d) Adjusted gradients computed using g(x). Only the gra-
dients in the bright airway wall are preserved. (e) Airway segmentation using adjusted
gradients in (d) to compute speed image and MSFM.
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turn, leakage can be detected on voxels in each path segment as a whole, instead
of on each voxel individually.

More formally, a graph G is built to describe the structure of the binary mask
S. Each node in G is a cluster of voxels in S, corresponding to part of the airway
or to part of the leakage. We apply an approach similar to [1] and [9] to get the
graph G.

First a distance field, D(x), to the initial seed point x0 is computed in the
domain S. Then each continuous value D(x) is discretized into an integer j
such that D0(x) = j if jh ≤ D(x) < (j + 1)h, in which h is the bin width for
discretization. By assigning a node n to one connected component of the same
integer value in D0(x), a graph G is constructed from S. Neighboring connected
components are connected in the graph. The bin width h controls the shape of
each node in the airways so that a node is roughly a tube-like structure. An
example of the graph construction using discretization is illustrated in Fig.2.

The propagation from initial seed point x0 to a voxel x1 in S, denoted as

Cx1
x0

, can be traced by solving ordinary differential equation
dC(t)

dt
= − �D

|�D|
with boundary condition C(t1) = x1 and C(0) = x0. We define the path from
x0 to x1 on the graph G as the series of nodes that intersect with C(t):

P x1
x0

= {n|n ∈ G, n ∩ Cx1
x0

�= ∅} (2)

2.3 Leakage Removal Using Cost Function on Path Nodes

Each path segment node n in G is a candidate for leakage removal. We consider
three properties of the path segment: its volume, its vesselness measurement and
how it is separated from the background in the image. The first two properties

(a) (b) (c) (d)

Fig. 2. Path graph construction. Only the airway tree in the right lung is shown. (a)
Initial segmentation S using fast marching with adjusted gradients. (b) Distance trans-
form D inside S with color bar shown on the right. (c) Graph G using discretization on
D. Nodes {n} are colored by red, green and blue. Each node n has the same discretiza-
tion value in D0 and belong to the same connected component. (d) Final segmentation
of airway tree using our path segment removal approach.
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have been investigated in the literature [1, 4, 5]. In this paper we use Frangi’s
vesselness definition [10] on dark tubes to measure each voxel in n. Those voxels
of vesselness smaller than tvessel are removed from node n. The nodes of a volume
greater than a threshold tvol are also removed. These two properties make sure
that path segment n is of a tube-like shape, however, it may still contain leakage
areas (see Fig.3 for an example).

We propose a novel leakage cost function to estimate how each path node can
be separated from background. For each node n, its medial axis is computed as
the segment direction . The local coordinate system use this direction as z axis
of the segment. The surrounding region of n (obtained from image dilation oper-
ation) is then divided into k sections by different angles uniformly distributed in
the x-y plane. Fig.3 shows an example of k = 8 sections in different colors. If the
node has leaked into the background from some direction, the average gradient
in that section would be low.

The leakage cost on path n, S(n), is defined as the minimum of average
gradients in all sections:

S(n) = min
i

1
|Ni(n)|

∑
x∈Ni(n)

g(x) (3)

where g(x) is the adjusted gradient in section 2.1, Ni(n) is the neighborhood of n
in the i-th angle. The nodes of S(n) lower than a threshold tpath are considered as
leakage and are removed from G. The final airway segmentation is the connected
component in G that contains most remaining nodes.

Fig. 3. Example of the proposed path leakage cost function on a node of leakage. Left :
shape of the node is similar to airway, but is not part of airway. First and second rows
in the middle: on left) one 2D slice with the path n shown in brown; on right) k = 8
sections of the neighborhood of n in different directions, each section Ni(n) shown in
different colors. Last row in the middle: bar plots of 1

|Ni(n)|
P

x∈Ni(n)
g(x) with each i

shown in corresponding colors. Right : surface rendering of the k = 8 sections. Location
a has an leakage in the upward direction; however location b is difficult to segment
locally. Our proposed cost S(n) is defined as the minimum of the k = 8 values (the red
bar here), which is significantly lower than other bars.
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3 Results

The proposed method was applied to extract airways in four canine specimens
at 15 months after pulmonary lobe surgery (part of lobes were removed). The
images were taken under forced inflationary pressure of 30 cm H2O. All images
have a slice thickness of 1.25 mm and in-plane resolution of 0.46×0.46 mm2. The
airways in these volumes were semi-supervised extracted and manually modified
as the ground truth for evaluation.

In all our experiments, parameter β used in computing speed function was
set to 0.05. The initial segmentation threshold t was 200. The distance field
D(x) was discretized by bin width h = 2. The value of h is related to the
length of the node in practice. We tested h from 2 to 4 and got similar results..
We applied the multi-scale strategy when computing Frangi’s vesselness, using
four scales s = 0.5, 1, 2, 3 (see the discussion of scale s in [10]). For each path
node n, its surrounding neighborhood was obtained by computing the dilation of
radius= 3 and was further divided to k = 8 sections along the segment direction.
The vesselness threshold was 30 and the volume threshold was 1000. The final
segmentation was given by removing all path nodes whose path leakage cost
S(n) was lower than 10.

Our method requires a seed point in the trachea region as the initial condition
for fast marching. While such points could be easily manually selected, we further
automated the whole process by applying Hough transform on circles. Assuming
that the trachea was roughly aligned with z axis in image volume, we scanned
each slice along z axis from the top and the seed point x0 was identified as the
center of the first detected circle.

All final segmentation results S were evaluated against the manually labeled
airway trees Sg. Using | · | to denote the number of voxels in a set, we computed
the recall rate as |S∪Sg|

|S| , the false alarm rate as |S−Sg|
|S| and the missing rate

as |Sg−S|
|Sg| . As trachea and bronchi are relatively easy to segment using region

growing approaches and our main interest was to extract thin airways, these
regions were excluded in computing both S and Sg. Another reason is that the
trachea and bronchi might take up to 95% volume in the whole airways; thus it
should be excluded as a huge bias in evaluating thin airways. An example of our
final segmentation is illustrated in Fig.4. Missing regions Sg − S are colored in
blue and false alarm regions S − Sg in red (in Fig.4b).

On the four canine specimens, our algorithm got the average recall rate of
96.8% and the missing rate is 8.2%. Most missing regions are extended from the
end segments of 2 to 3 voxels wide. The false alarm rate is 3.2%, but we observed
that many of the false alarm regions are due to the human label errors. These
are not leakage regions in segmentation, which shows the good performance of
our path elimination approach in preventing leakage while keeping most airways.
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(a) (b) (c)

Fig. 4. Surface rendering of an example result using the proposed method. (a) Seg-
mented airways using our approach. (b) Comparison with ground truth. The blue
regions are labeled in ground truth but missing in our results. The red regions are
labeled in our results but missing in ground truth. The brown regions exist in both
ground truth and our results. (c) Example of the trachea and bronchi region, which is
excluded when computing the rates.

4 Discussion

In this paper we proposed a new method for extracting airway trees from 3D
computed tomography images. We focused our method on removing leakage
regions while still segmenting most thin airways. Compared to existing region
growing methods, our method has a unique path removal procedure to exclude
potential leakage. A graph of path candidates is constructed from the arrival
time using the fast marching method. The leakage regions are identified from
all path segment candidates using our proposed leakage cost function. A similar
idea of checking different directions was proposed in [11]. They used gradients
in different radial directions from one voxel to track vessels. In comparison, our
cost function is defined on the node of a whole path segment for leakage removal.
Each node is a higher level structure, which is more robust to noise and has a
more flexible definition. Furthermore, this is not a linear measurement which
means it can not be represented as an integration along the path. Thus we do
not use Dijkstra’s algorithm, which was used in [5].

The second contribution in this paper is that we proposed a form of adjusted
gradient in computing speed image. We also apply multi-stencil fast marching for
a 26 connectivity neighborhood in thin airway segmentation. We show that thin
airways of 2 to 3 voxels wide can be extracted by our adjusted image gradients
and utilizing the connectivities along diagonal directions in fast marching.

It should be noted that our approach is not contradictory to existing region
growing methods. By separating the leakage detection as a post processing step,
our method can take the advantage of current work on region growing while
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reducing leakage. The result from one approach can be used as input to the
other. For example, the missing rate in our experiment may be further improved
using the method in [5] in the stage of generating path candidates.

The number of datasets used in the evaluation is limited. A larger evaluation
data set is needed in our future work. Also, we used manual segmentation as
our ground truth. An alternative for constructing the reference is combining
results from different algorithms as in [6]. It would also be interesting to test
our algorithm on the output of other algorithms to verify the effectiveness of
post-processing.
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