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Abstract. Computational techniques for parenchymal characterization
using CT have demonstrated significant research potential [1, 2]. We
describe similar quantitative analysis of the lung using hyperpolarized
helium-3 MR ventilation image data. This study consisted of a total of 55
subjects (47 asthmatics and 8 non-asthmatics). Each subject was imaged
both before and after respiratory challenge. Additionally, each subject
underwent a complete pulmonary function exam. Following image acqui-
sition, approximately 1600 statistical features were calculated from the
segmented lungs (and sub-regions) in each image. Each of these features
were ranked along with the 27 pulmonary function test (PFT) values us-
ing a mutual information based feature subset selection algorithm. It is
shown that several image features perform much better in characterizing
clinical diagnosis compared with the current clinical gold-standard PFT
values.

1 Introduction

Recent developments in MRI research utilizing noble gases, such as helium-3
and xenon-129, have demonstrated the capability of visualizing alveolar and
bronchial air spaces [3]. Currently, hyperpolarized helium-3 MRI is a low-risk
investigatory technique which provides high spatial and temporal resolution im-
ages of the air spaces of the lungs.

Ventilation or spin density images are acquired by measuring the signal pro-
duced by the helium-3 atoms within each voxel. If the signal intensity in the MR
images were solely dependent upon the density of helium-3 atoms in each pixel,
these images would directly reflect regional ventilation. However, this is not the
case since the coil transmit and receive sensitivity, and the regional partial pres-
sure of oxygen within the lung contribute to the measured signal intensity. For
this reason, the helium-3 images provide information about the homogeneity of
ventilation within the lung but do not provide a quantitative measure of absolute
regional ventilation. When a subject inhales the helium-3 gas, areas of the lung
that are well ventilated receive a large volume of helium-3 gas which produces
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a strong MR signal causing these areas to appear bright on the resulting MR
images [3]. In contrast, regions that are poorly ventilated receive little helium-3
and thus produce a weak MR signal causing these regions to appear dark in the
resulting images (Fig. 1).

(a) (b)

Fig. 1. Axial hyperpolarized helium-3 MR ventilation images contrasting well-
ventilated lungs (left) with poorly ventilated lungs (right).

Previous methodologies for evaluation of helium-3 ventilation images have
been limited to radiological assessment of signal heterogeneity as well as various
forms of quantifying ventilation defects, i.e. regions of poor ventilation, whether
it be the number of such defects or the total volume of such defects. Using
hyperpolarized helium-3 MRI, it has been shown that asthmatics have an in-
creased volume of lung regions that are poorly ventilated (ventilation defects)
than age-matched normal subjects, and that these defects increase in number
with increasing asthma severity or with provocation such as exercise or metha-
choline [4]. Thus, the ventilation defects on hyperpolarized gas MRI appear to
be depicting the reversible airway obstruction that was known to occur in asth-
matics but was previously difficult to visualize [5].

In this paper, we describe an automated computational framework for gen-
erating and analyzing features from helium-3 ventilation images. Such features
attempt to characterize lung parenchyma in the varying stages of pathogene-
sis. Our computational approach permits the analysis of large studies due to
complete automation, is extendible to incorporating new features, and facili-
tates quick processing of data. Furthermore, we demonstrate that our analysis
compares favorably with the gold-standard of pulmonary function testing for
characterizing clinical diagnosis of asthmatics.

2 Method

Image processing for each helium-3 image volume requires the following steps:

1. bias field correction,
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2. segmentation of the lungs,
3. generation of regional masks,
4. generation of feature images,
5. calculation of the image features, and
6. ranking of the image features in conjunction with the PFT values.

Due to the large quantity of current image data used for the study in addition
to future stuides, a software pipeline was developed for automated analysis of
helium-3 lung MRI. This pipeline was implemented on a computing cluster that
allows for distributed parallel processing of the images. In addition, much of the
software development constituting our analysis pipeline has been made publicly
available through the Insight Toolkit (ITK) of the National Institutes of Health,
an open-source repository for popular image analysis algorithms [6].

2.1 Retrospective Bias Field Correction

Significant bias field effects can be seen in typical helium-3 images. This is man-
ifested as a low frequency intensity artifact across the image. The left column
of Figure 2 illustrates this bias field artifact in two subjects. Several algorithms
exist for correcting the nonparametric nonuniform intensity in magnetic res-
onance images caused by field inhomogeneities. One popular algorithm is the
non-uniform intensity normalization (N3) approach [7, 8]. A particularly advan-
tageous aspect of this algorithm is that it does not require a prior tissue model
for its application. This algorithm was used to estimate the bias field and correct
the images shown respectively in the middle and right columns of Figure 2.

Uncorrected 3HeMRI Calculated Bias Field Corrected 3HeMRI

S
u
b

je
ct

1
S
u
b

je
ct

2

Fig. 2. Left column: Axial 3HeMRI from two subjects evidencing severe bias field
artifacts. Middle column: The calculated bias field. Right column: Corrected images.

Second International Workshop on 
Pulmonary Image Processing

-75- 



2.2 Lung Segmentation

An essential precursor to calculation of meaningful image measures is the seg-
mentation of whole lungs from the helium-3 images. Because the quantity of
data processed prohibits the use of routine manual segmentation or supervision-
intensive semi-automated segmentation methods, we developed an automated
segmentation routine specifically tailored for helium-3 lung images.

We first preprocess the images by applying an anisotropic diffusion operation
which smoothes both the background noise and the helium-3 signal internal to
the lungs while respecting the lung boundaries. Using the statistics surrounding
a seed point placed in the background of the image, we grow this region to the
rest of the connected background region while iteratively recalculating regional
statistics. This separates the whole lung from the background. A 3-D view of a
single segmentation is shown in Fig. 3(b).

(a) (b)

Fig. 3. Automatic labeling of left and right lungs. (a) Segmentation of the lungs from
the background is illustrated in red. For each axial slice, we generate a minimum-cost
path (the minimum path for each axial slice is rendered a different color). (b) Fitting
a B-spline surface to these minimum-cost paths labels the left (blue) and right (green)
lungs.

Due to the anatomical proximity of the anterior portions of the left and
right lungs as well as the presence of helium-3 in the trachea, the whole lung
segmentation might produce a single connected component segmented object. To
separate the left and right lungs, we iterate through each axial slice and find a
minimum path [9] which separates the image slice into left and right halves while
respecting the segmented object. A sample set of axial minimum paths is shown
in Fig. 3(a). We then fit a smooth surface [10] to the set of axial minimizing paths
which separates the whole lung segmented object into left and right components
(Fig. 3(b)).
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Note that the images acquired from asthmatics used in this study were di-
agnosed as mild to moderate. As such, the poorly ventilated regions were suf-
ficiently minimal to allow for the described segmentation approach to work for
all images in the study. We are currently pursuing a combined template strategy
for more severe cases encountered in future studies.

2.3 Generation of Regional Masks

Not only is the calculation of image features over the whole lung essential for
adequate lung characterization but feature generation over anatomically-based
regional masks also provides important regional information unavailable to pul-
monary function testing. Investigation into the distribution of airway disease
in CT, such as emphysema, from the inner parenchymal core to the rind has
demonstrated that the distribution of disease is generally more extensive in the
core than in the rind region of the lung. Thus, corresponding inner core/outer
rind regional masks are generated using binary morphological operations. We
also further subdivide the left/right lungs into lower and upper portions for ad-
ditional regional measurements. A total of 13 regional masks were created from
the whole lung segmentations described in the previous section. The axial and
coronal views of these regional masks are shown in Fig. 4.

Fig. 4. Flowchart illustrating the generation of both feature images (e.g. stochastic
fractal dimension image) and regional masks for localized analysis.
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2.4 Image Features

For each of the 13 regional masks, three categories of features were calculated.
These feature categories are:

– first order statistics derived from the intensity histogram of the original
helium-3 image,

– first order statistics derived from the stochastic fractal dimension image [11],
and

– second order statistics, or texture-based measurements, using the cooccur-
rence [12] and run-length [13] matrices of the original helium-3 image.

Helium-3 Intensity Histogram First Order Statistical Features. Within
each of the regional masks, the grey-level intensity histogram is generated. This
permits the calculation of the standard first order statistics, i.e. mean, variance,
skewness, kurtosis, entropy, 5th% intensity value, mean of 5th%, and 95th% in-
tensity value, mean of 95th%. From the histogram and image spacing we also
calculate the volume of each lung.

Stochastic Fractal Dimension Image Features. Viewed as an intensity sur-
face, Mandelbrot’s fractal theory provides an informative framework for char-
acterizing images [11, 14]. It has been shown that first order statistics derived
from the stochastic fractal dimension (SFD) image facilitate discriminative fea-
ture analysis in CT images [1]. A SFD image is produced by iterating through
the original image where, at each voxel, the corresponding fractal value requires
inspection of each pair of voxels in the surrounding neighborhood. The average
absolute intensity value difference is plotted against the voxel pair wise distances
on a log-log scale. The voxel value is equal to 3 minus the slope of the line cal-
culated using linear regression. First-order statistics from the SFD image in the
various regions are calculated and used as image features.

Cooccurrence and Run-Length Matrix Features. Second order statistics
have demonstrated utility in image texture classification. These include mea-
surements derived from the grey-level cooccurrence matrix (CM) [12] and mea-
surements derived from the run length matrix (RLM) [13]. As mentioned in
the introduction, previous methodologies for evaluation of helium-3 MR images
have included radiological assessment of “heterogeneity” for which these texture
features are a surrogate. The specific set of CM features are energy, entropy, cor-
relation, inverse difference moment, inertia, cluster shade, cluster prominence,
and Haralick’s correlation. The specific set of RLM features are short run em-
phasis, long run emphasis, grey level non-uniformity, run-length non-uniformity,
run percentage, low grey level run emphasis, high grey level run emphasis, short
run low grey level emphasis, short run high grey level emphasis, long run low
grey level run emphasis, and long run high grey level run emphasis. This ordering
of the CM and RLM features are used as subscripts in subsequent sections.
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Otsu Thresholding of Parenchyma. Also utilized in previous research of
hyperpolarized helium-3 MRI was radiological assessment of poor ventilation re-
gional quantitation. Since the ventilation images do not reflect absolute regional
ventilation we attempted to mimic this measurement in a simple fashion by ap-
plying an optimal thresholding to the grey-level histogram of the original image
[15] to quantify regions of poor ventilation. We then divide the total volume of
the ventilation defect regions by the total volume of the lungs to calculate a
ventilation ratio.

2.5 Feature Characterization using Mutual Information

A straightforward approach to finding a subset of features most characterizing of
the observed data is finding those features which correlate strongest with the tar-
get classification, i.e. the goal of “maximal relevance.” The mutual information
between two random variables x and y, defined as

I(x; y) =
∫ ∫

p(x, y) log
p(x, y)
p(x)p(y)

dxdy, (1)

is also used to define the dependency of variables. Given a set of N samples
each characterized by M features X = {xi, i = 1, . . . ,M} where each sample
is assumed to correspond to one of a finite number of classes described by the
classification vector c, the maximally relevant feature, xi ∈ S ⊂ X, maximizes
the quantity D = 1

|S|
∑

xi∈S I(xi; c). In considering multiple features, it is de-
sirable that the selected features be minimally redundant where redundancy
is defined as R = 1

|S|2
∑

xi,xj∈S I(xi;xj). The minimal-redundancy-maximal-
relevance (mRMR) framework combines these two desiderata for feature subset
selection by incrementally maximizing Φ = D −R [16].

3 Results

Hyperpolarized helium-3 images were acquired from 55 subjects (47 asthmatic
and 8 healthy) before and after respiratory provocation (exercise or methacholine-
induced). For each of the 110 images, a total of 533 features were calculated over
all the anatomic regions. Each subject also underwent pulmonary function test-
ing which generated an additional 27 clinical features, e.g. forced vital capacity
(FVC), forced expiratory volume in 1 second (FEV1), and peak expiratory flow
(PEF). For each subject we combined the pre and post respiratory challenge
images in addition to their difference values for a total of 1599 features. This
was combined with the 27 PFT values for a total of 1626 features per subject.

Two rankings were generated from the mRMR algorithm using mutual in-
formation difference. For each entry, we show the rank, the calculated feature,
whether the acquisition was pre or post respiratory provocation (or the difference
of the two), the region, and the score. Table 1 ranks the relevancy of each fea-
ture considered individually whereas the ranking in Table 2 accounts for mutual
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redundancy between features. The top 10 individually considered features are
given in Table 1. Since these features are strictly image-based, we also situate
the top 3 PFT values within the rankings. We do a similar placement for Table
2.

Rank Feature Pre/Post/Diff Region Score

1 ventilation ratio pre respiratory challenge left lung 0.357
2 ventilation ratio post respiratory challenge left lung 0.329
3 RLM5 post respiratory challenge lower left lung 0.329
4 RLM10 difference whole lung 0.267
5 RLM10 difference outer rind, right lung 0.259
6 CM2 post respiratory challenge outer rind, left lung 0.198
7 CM2 post respiratory challenge lower left lung 0.193
8 RLM5 post respiratory challenge left lung 0.182
9 CM6 post respiratory challenge left lung 0.180
10 CM4 post respiratory challenge left lung 0.169
...

...
...

...
...

169† % Predicted FEV1 — — 0.082

170† FEV3 Final — — 0.082
...

...
...

...
...

182† % FEV1 — — 0.080

Table 1. Maximal relevance ranking (each feature is considered individually) of PFT
and imaging features using the mRMR feature classification algorithm. Those rankings
marked by a ‘†’ denote a PFT value. The CM and RLM subscripts refer to the respective
ordered measurement given in the text. Note the relative performance of the top image-
based features compared with the top 3 PFT performers (rank 169, 170, and 182).

4 Discussion

There are several interesting observations to be made from the results. The first
is rather obvious in that, considered as a global assessment, individual image
features perform much better in characterizing clinical diagnosis compared with
the PFT values. Another interesting observation is that despite the relatively
poor individual classification performance of the PFT values, the better per-
formers of this group have a minimal redundancy with respect to the image
features. This is supported by the correlation values between the PFT results
and each of the 1599 image features. For example the measurement % Predicted
FEV1 (rank 7 in Table 2) has correlation values with the image features in the
range [−0.4012, 0.4328] demonstrating practically no correlation with any of the
image features. This demonstrates the orthogonal nature of the image-based
information relative to the information provided by the PFT values.
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Rank Feature Pre/Post/Diff Region

1 ventilation ratio pre respiratory challenge left lung
2 RLM5 post respiratory challenge outer rind, left lung
3 ventilation ratio post respiratory challenge left lung
4 RLM10 difference right lung
5 CM2 post respiratory challenge lower left lung
6 RLM8 post respiratory challenge lower left lung

7† % Predicted FEV1 — —
8 RLM5 post respiratory challenge lower left lung
9 CM6 post respiratory challenge outer rind, left lung
10 CM2 post respiratory challenge outer rind, whole lung
...

...
...

...

34† FEV1 — —

Table 2. Maximal relevance, minimal redundancy ranking of PFT and imaging features
using the mRMR feature classification algorithm. Those rankings marked by a ‘†’
denote a PFT value. The CM and RLM subscripts refer to the respective ordered
measurement given in the text.

It is also demonstrated that the ventilation ratio was the top classification fea-
ture, boding well for previous radiological assessments which attempted a similar
calculation in quantifying regions of ventilation defects [4]. Also consistent with
clinical understanding is the prominence of “post respiratory challenge” features
amongst the top of the rankings since such provocation tends to exacerbate the
asthmatic condition which is presumably reflected in the post images.
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