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Abstract. We present an automated approach for airway tree recon-
struction from CT images. Our approach performs an initial identifica-
tion of tubular structures, followed by a reconstruction of the airway
tree. During the reconstruction step, tubular objects that are part of the
airway tree are identified and linked together based on prior knowledge
about the structure of human airway trees. A major advantage of our
approach is that it handles local disturbances robustly, as demonstrated
by our experiments.

1 Introduction

Segmentation of airway trees in lung CT data is a prerequisite for several clin-
ical applications including diagnosis and monitoring of lung disease or surgical
planning. To facilitate such applications, it is highly desirable to have an au-
tomated airway segmentation method which is robust. The main challenges in
the context of airway tree segmentation are: noise, inhomogeneous appearance
of the airway wall due to partial volume effects, motion artifacts, or lung disease
(e.g., emphysema).

In the literature, several airway tree segmentation methods have been pre-
sented. An overview is given in the survey of Sluimer et al. [1], and newer
approaches are discussed in [2]. Frequently, region growing or front propaga-
tion methods [3–5] are utilized that make some assumptions about the den-
sity (gray-values) of airways in CT data. More sophisticated variants of front
propagation methods try to avoid segmentation errors by constantly analyzing
local segmentation results and by adapting parameters accordingly. Different ap-
proaches have been proposed [3, 6, 4] that utilize local information like radius or
branching angle. To enhance robustness, compared to methods that solely rely
on density/gray-value information for airway segmentation, some approaches fo-
cus on airway candidate detection using mathematical morphology [7], template
matching techniques [8], or voxel classification based on different image descrip-
tors [9, 10].
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Many of the available approaches have problems in dealing with local dis-
turbances (e.g., motion artifacts) or pathology (e.g., obstructed airway) which
frequently results in incomplete airway segmentations. Graham et al. [2] ad-
dressed this problem by building an airway tree from candidate airway branch
segments by computing connection costs between branches and using graph the-
oretic approaches to extract the airway tree [2]. However, their method does not
consider possible connections in the context of the complete airway tree structure
which can lead to false connections.

In this work, we present an automated approach for the reconstruction of
airway trees that is robust against local disturbances which can result from
disease or imaging artifacts, for example.

2 Method

Our method consists of two main processing steps. First, all tubular structures
are identified in the dataset. Second, the airway tree is reconstructed from these
tubular objects by utilizing knowledge about the tree structure. During this
step, tubular objects that are not related to airways are discarded. In addition,
tubular objects that are part of the airway tree are linked together. Consequently,
potential gaps between airway branches, that may occur due to disturbances
(e.g., imaging artifacts), are closed. Fig. 1 illustrates the individual processing
steps by showing intermediate results.

2.1 Detection and Description of Tubular Objects

Airways form tubular tree structures that can be detected by utilizing a tube
detection filter (TDF), because in CT data, the airway branches appear as elon-
gated structures with varying diameter that are darker than the surrounding
tissue. To detect and describe these structures, a TDF combined with a center-
line extraction method based on a ridge traversal is utilized.

The utilized multi-scale TDF extends the works presented in [11, 12]. Specif-
ically, our method achieves an increased robustness and minimizes artifacts by
utilizing additional constraints. Therefore a radius dependent tube-likeliness
measure R(x, r) is computed for every point x in the image domain for a
set of different radii. To obtain R(x, r) for a given radius r, an offset medi-
alness function and an adaptive threshold are used that utilize two different
scales simultaneously: σH = r and σB = rη with 0.0 ≤ η ≤ 1.0. While the
scale σH is large and and is used to cover the whole structure, σB is smaller
and is utilized for obtaining boundary information. First, the Hessian matrix
H(x) = σ2

H
[
(∂2I(σH))/(∂xi∂xj )

]
with its associated eigenvalues |e1| ≥ |e2| ≥ |e3|

and eigenvectors v1, v2, and v3 is computed, where I(σ) = Gσ �I(x) corresponds
to the original image at scale σ. Based on this information, “dark” structures
(low density) are identified (e1 > 0 and e2 > 0). For these points, an offset
medialness function is computed based on boundariness contributions bi which
are sampled along a circle in the tubes cross sectional plane defined by v1 and
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(d) (e) (f)

Fig. 1. Illustration of the processing steps of our airway tree reconstruction approach.
(a) Volume rendering of the utilized dataset. (b) Tube detection filter response. (c) Cen-
terlines of initially extracted tubular objects. (d) Initially extracted tubular objects
with associated radii/tangent directions. (e) Tree reconstruction step showing the iden-
tified tubular objects belonging the airway tree (blue), the discarded tubular objects
(red), and the closed gaps (green). (f) Reconstructed airway tree.

v2. The boundariness contributions are calculated at N = �2πr +1� points with
varying angle αi = (2πi) /N (N is limited to the range 16-100). The individual
boundariness values B(x) = σB∇I(σB)(x) represent a measure for the contribu-
tion of the gradient in the radial direction vαi = cos(αi)v1 + sin(αi)v2 of the
tube: bi = |B(x + rvαi

)vαi
|. Based on the average b(x, r) = 1

N

∑N−1
i=0 bi and

the variance s2(x, r) = 1
N

∑N−1
i=0

(
bi − b

)2
of these boundariness samples, the

offset medialness function is computed: R0(x, r) = b(x, r)(1 − s2(x, r)/b(x, r)2).
The second term that includes the variance allows suppressing responses for not
circular symmetric structures. To avoid wrong responses that could occur near
edges, an adaptive thresholding scheme based on the gradient magnitude is used
to suppress such responses, and the final medialness response for a given ra-
dius is computed: R(x, r) = max{R0(x, r) − σH|∇I(σH)(x)|, 0}. The mutli-scale
response Rmulti(x) = maxrmin≤r≤rmax

{R(x, r)} is obtained as the maximum
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response over all radii, which also yields the associated radius r and tangent
direction t = v3 for each point.

An example of the TDF response is shown in Fig. 1(b). The response in-
creases towards the tube center. Consequently, the tubular objects form ridges.
As can be seen in Fig. 1(b), the filter enhances dark tubular structures (air-
ways) without producing artifacts or responses to other image structures like
the lung surface, for example. However, the response decreases in proximity of
junctions, and is lower for thin low contrast airways. Consequently, separating
the tubular structures from noise based on a simple global thresholding would
not be robust. To address this issue, a ridge traversal procedure with a hysteresis
thresholding scheme is utilized to extract centerlines. The centerlines are then
analyzed and noise induced responses are discarded. The procedure requires a
starting point x0 for every ridge and an estimate of its tangent direction which
is provided by the TDF. All local maxima in the TDF response with a value
Rmulti(x) > thigh are considered as starting points and used for initialization
of the traversal. Starting from a given point x0, the ridge is traversed in both
directions t0 and −t0. Given a point on the ridge xi, the next point xi+1 on
the ridge in the traversal direction ti is chosen as the local neighbor xn

i with
the highest value of Rmulti(xn) that satisfies

−−→
xixn

i · ti > 0. The traversal direc-
tion t(xi+1) = sign(−−−−→xixi+1 · t(xi+1))t(xi+1) is updated to maintain the correct
direction, and the procedure is repeated as long as Rmulti(xi+1) stays above a
given threshold tlow or an already traversed point is found. Thus, object center-
lines {lj}m

j=1 are extracted for all tubular objects, consisting of an ordered set
of points {lj}m

j=1 with associated radius rj
i and tangent directions tj

i . To discard
short spurious responses (noise), all centerlines with an accumulated TDF re-
sponse below tconf are discarded. For the remaining centerlines the radius and
tangent directions are re-estimated by averaging over the ±5 local neighbors
along the centerline. The centerlines are split into subparts at local angles larger
than 90◦ to guarantee that at furcations at least one of the centerlines has an
endpoint. This is a necessary prerequisite for the next processing step. The angle
is determined based on the ±5 local neighbors along the centerline.

Figs. 1(c) and (d) depict the resulting descriptions of the identified tubular
objects. Fig. 1(c) shows only the centerline information, while in Fig. 1(d) also
the associated radius and tangent direction are displayed using a cylinder with
appropriate orientation and radius. As can be seen, major parts of the airway
tree can be extracted with this approach. However, two problems remain that
have to be addressed. First, the centerlines of the tubular objects may break up
at junctions or in disturbed regions (e.g., motion artifacts). Second, some false
positive responses caused by other low density (dark) tube-like structures that
are not airways are also present.

2.2 Tree Reconstruction

For reconstruction of the airway tree, tubular objects that are part of the actual
airway tree need to be identified, and all other unrelated tubular objects must
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be discarded. For this purpose, the structure and the relation between the iden-
tified tubular objects is analyzed. In addition, prior knowledge is utilized for the
reconstruction. Starting from the trachea, the airway tree furcates recursively.
At furcations, the radius of the child branches decreases. In addition, no abrupt
changes of the tangent direction occur. Our method incorporates this knowledge.
Beginning with the trachea, tubular objects that follow this pattern are merged.

During the tree reconstruction process, a graph-based representation of the
whole tree is derived, describing the tree structure. In this graph, nodes represent
branchpoints and edges correspond to tubular objects connecting these branch
points. For all tubular objects lj , the average radius rj is determined and the
proximal/distal direction of the tube element dj ∈ {+1,−1}; dj = +1 if the
direction is from the first centerline point to the last or dj = −1 otherwise. In
addition, we define the angles αl = ∠

(−−−→
xl

kx
j
i , d

ltlk
)

and αj = ∠
(−−−→
xl

kx
j
i , d

jtji
)

and

the distance d = max
(
0, |−−−→xl

kx
j
i | − rl

k

)
between points xj

i and xl
k of the tubular

objects which are required for the tree reconstruction process. (Fig. 2).

Fig. 2. Branch angles and the distance between tubular structures as used by the tree
reconstruction.

Starting from the trachea, the airway tree is reconstructed by iteratively
merging unconnected tubular objects. Therefore, connection confidences are cal-
culated between endpoints of unconnected tubular objects and the current air-
way tree: c(xj

i ,x
l
k) = exp(−αj/2ρ2)(1 + d/rj). This confidence decreases with

increasing distance and increasing angle. In addition, to be considered a valid
connection, the following constraints have to be fulfilled:

1. the branching angle must not be too large (αj ≤ γa and αl ≤ γa),
2. the radius must not increase (rj ≤ γrrm; where rm is the smallest radius on

the whole path from the trachea),
3. the connection distance must not be too large (d ≤ γd), and
4. a minimum connection confidence is required (c ≥ γc).

After determination of the connection with the highest confidence that fulfills all
above described constraints, the associated tube element is added to the airway
tree and the structural representation is updated. In addition, the identified
connection is also added to the airway tree by using a linearly interpolated
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path. By applying the method recursively, gaps between unconnected airway
branches are closed and a connected skeleton of the whole airway tree is obtained,
which includes additional radius and tangent direction for each centerline point
(Figs. 1(e) and (f)).

2.3 Preprocessing Steps for Automated Airway Tree Reconstruction

The above outlined principle is general applicable. To fully automate the ap-
proach for airway detection, the input CT dataset is preprocessed to discard
non lung tissue and to restrict the search area for tubular objects. Therefore a
rough lung mask is generated by using thresholding (< −700HU), connected
component analysis, and morphological closing with a ball structuring element
with a radius of 10 voxels. All voxels outside this lung mask or with a value larger
than −700HU in the original dataset are set to −700HU . The resulting dataset
was used as input for our method. The trachea is identified automatically by
searching for the largest tubular object located at the center of the volume.

3 Evaluation

Our approach was applied to 40 clinical datasets (with undisclosed gold stan-
dard) which were provided by the organizers of the “Extraction of Airways
from CT 2009 (EXACT09)” workshop (http://image.diku.dk/exact). The
datasets were split in two groups of 20 training datasets, where the parameters
have been adapted and 20 testing datasets. For information about how the ref-
erence segmentations were obtained and the exact definition of the used perfor-
mance measures we refer to http://image.diku.dk/exact/information.php.

The following parameter were used to process the test datasets. The tube
detection was performed on 15 radius steps on a logarithmic scale between radii
0.25mm and 10mm with η = 0.7 (the variance term of the boundariness samples
in the offset medialness function was omitted for radii ≤ 0.5mm); thigh = 35,
tlow = 25 and tconf = 150 for the centerline extraction; ρ = 0.5, γa = 90◦,
γr = 1.3, γd = 40mm and γc = 0.1 for the tree reconstruction.

For evaluation, binary volume datasets were required that contain a single
6-connected airway structure. Our airway tree reconstruction method produces a
26-connected airway tree skeleton with corresponding radius information. Thus,
to obtain a binary volume dataset, we performed an inverse distance transforma-
tion to obtain a rough segmentation and dilated the so obtained reconstruction
to assure 6-connectivity. The generated segmentations were sent to the organiz-
ers, who in return provided evaluation results. Table 1 summarizes the evaluation
results for the 20 testing datasets. On average, 57.9% of airway branches were
detected with an average detected tree length of 55.2%. The mean leakage count
was 6.5, and the mean false positive rate was 2.44% (median: 1.41%).
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Table 1. Evaluation results on the twenty test cases.

Branch Branch Tree Tree length Leakage Leakage False
count detected length detected count volume positive

(%) (cm) (%) (mm3) rate (%)

CASE21 100 50.3 54.6 49.4 1 102.5 1.09
CASE22 296 76.5 258.7 78.3 23 1311.2 3.91
CASE23 232 81.7 201.0 77.2 14 700.5 2.81
CASE24 148 79.6 121.0 74.4 5 288.7 1.18
CASE25 157 67.1 134.0 53.2 9 1693.0 6.08
CASE26 39 48.8 29.4 44.7 4 254.1 5.13
CASE27 38 37.6 27.6 34.1 1 56.8 1.08
CASE28 70 56.9 50.9 46.5 2 8.6 0.09
CASE29 118 64.1 83.6 60.5 3 222.6 1.56
CASE30 91 46.7 70.2 46.0 1 47.6 0.32
CASE31 100 46.7 73.8 42.0 1 64.7 0.38
CASE32 125 53.6 118.6 54.4 2 34.8 0.14
CASE33 117 69.6 99.1 67.4 15 931.2 7.56
CASE34 296 64.6 233.5 65.3 6 167.3 0.49
CASE35 187 54.4 133.2 43.1 2 123.3 0.57
CASE36 239 65.7 283.0 68.7 8 661.1 2.12
CASE37 96 51.9 82.8 46.6 5 360.2 2.25
CASE38 40 40.8 30.8 46.3 2 79.6 1.25
CASE39 210 40.4 198.1 48.4 8 745.7 2.61
CASE40 237 60.9 219.6 56.7 17 3678.0 8.07

Mean 146.8 57.9 125.2 55.2 6.5 576.6 2.44
Std. dev. 81.8 13.0 80.3 12.8 6.3 864.9 2.46

Min 38 37.6 27.6 34.1 1 8.6 0.09
1st quartile 91 46.7 54.6 46.0 2 64.7 0.49
Median 122 55.6 108.8 51.3 5 238.3 1.41
3rd quartile 237 69.6 219.6 68.7 14 931.2 5.13
Max 296 81.7 283.0 78.3 23 3678.0 8.07
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4 Discussion

In this paragraph, we discuss properties of our approach based on two examples.
In Fig. 3, a case with emphysema is shown. Several structures that are similar
to airways are present in the image data. They are hard to distinguish solely
based on gray-value appearance. Without utilizing prior knowledge about the
structure of airway trees, a correct segmentation is hard to achieve, and simple
algorithms will likely show leakage. As shown in Fig. 3(b), our approach initially
also identifies some of these structures as tubular objects. However, the con-
straints incorporated into the tree reconstruction step successfully prevent that
such structures are added to the airway tree (Fig. 3(d)). In the example shown
in Fig. 4, a tumor infiltrates the airway wall and blocks one of the lower airway
branches completely, such that the airway tree appears to be unconnected in the
image data. Contrary to region growing or front propagation approaches, our ap-
proach identifies the unconnected airways and allows us to link them together.
This ability enables our method to handle local disturbances robustly.

(a) (b) (c) (d)

Fig. 3. Emphysema lung CT data. (a) Volume rendering of the dataset. (b) Identified
tubular objects. Note that some of the “pathological” structures have been detected
as tubular objects. (c) Tree reconstruction step showing the identified tubular objects
belonging to the airway tree (blue), the discarded tubular objects (red), and the closed
gaps (green). (d) Reconstructed airway tree.

Compared to other methods, we achieve a good trade-off between “branch
count”/“tree length” and leakage. Fig. 5 depicts the three cases with the largest
“leakage volume”. Two points can be observed: i) the majority of the “leaks”
detected by the workshop organizers are due to surface representation inaccura-
cies (Figs. 5(c) and (d)) and ii) blobs are included in some airway segmentations
(Figs. 5(a) and (b)). Point i) can be explained as follows. Our approach pro-
duces a description of the airway tree on a structural level (centerline points,
radius, tangent direction), but not a voxel or sub-voxel accurate segmentation
of the inner and/or outer airway wall(s). In addition, since results were required
to be 6-connected, we decided to dilate our results, which clearly negatively im-
pacts leakage performance metrics. As shown in Fig. 5(d), voxels are classified
as leakage, if the segmentation is thicker than the reference segmentation even
if its structure is correct. Point ii) was caused by a bug in the software that
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(a) (b) (c)

(d) (e)

Fig. 4. Dataset with a large tumor that infiltrates and blocks one airway branch com-
pletely (indicated by the arrow). Note the gap between the airway branches at the
tumor region. (a) Coronal slice of the dataset. (b) Volume rendering of the dataset.
(c) Identified tubular objects showing also a gap between airway branches. (d) Tree
reconstruction step showing the identified tubular objects belonging the airway tree
(blue), the discarded tubular objects (red), and the closed gaps (green). (e) Recon-
structed airway tree.

transformed our structural airway description into the binary volume dataset
which was discovered after the evaluation. In the future we plan to improve our
method by adding a surface segmentation step. The generated structural infor-
mation will be utilized as a shape prior to constrain a consecutive segmentation
step. The presented methods for tube detection, centerline extraction, and tree
reconstruction are generic and can be utilized in other application domains.

Compared to simple airway segmentation approaches (e.g. region growing)
our approach is more complex. However, TDFs as used with our approach are
highly parallelizeable and well suited for a GPU (graphics processing unit) based
implementation. Using a CUDA1 based implementation of the TDF running on
an NVIDIA Tesla C1060 card, the TDF response is computed on average in
approximately 30 seconds per scale for the whole dataset. Using axis aligned
subvolumes that just contain the lung area, computation time can be reduced to
about 10 seconds per scale. The Processing time for preprocessing, ridge traver-
sal, and tree reconstruction combined are about 30 seconds. Overall, computation
time using such a subvolume containing only the lung is about 3 minutes.

1 http://www.nvidia.com/object/cuda home.html
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(a) (b) (c) (d)

Fig. 5. Examples of reconstructed airways with a high “leakage volume”. (a) CASE40:
“leakage count”=17; “leakage volume”=3678.0 mm3. (b) CASE25: “leakage count”=9;
“leakage volume”=1693.0 mm3. (c) CASE22: “leakage count”=23; “leakage vol-
ume”=1311.2 mm3. (d) CASE22 comparison to gold standard: voxels classified as
leakage (red), correct voxels (green), missed airways (yellow).

5 Conclusion

In this work we presented an automated approach for the reconstruction of air-
way trees from CT datasets. The approach utilizes local appearance information
in combination with prior knowledge about the structure of airway trees. It first
identifies tubular objects which are then grouped together to form an airway
tree. As demonstrated on examples, our approach allows to robustly deal with
cases where parts of the airway tree are locally disturbed.
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