
Curve- and Surface-based Registration of Lung
CT images via Currents

Vladlena Gorbunova1, Stanley Durrleman2,3, Pechin Lo1, Xavier Pennec2, and
Marleen de Bruijne1,4

1 Department of Computer Science, University of Copenhagen, Denmark
2 Asclepios, INRIA Sophia Antipolis, France

3 Centre de Mathematique et Leurs Application, ENS Cachan, France
4 Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam, the Netherlands

Abstract. Feature-based registration methods offer a robust alternative
to intensity-based methods when intensities change because of pathology,
image artifacts or differences in acquisition. For registration of lung CT
images, we propose to use distinctive anatomical structures, such as the
pulmonary vessel tree centerlines and lung surfaces, to establish corre-
spondences between pairs of scans. In this respect, we develop and eval-
uate a curve- and surface-based registration method using currents. This
method does not require point correspondence between structures. We
conducted experiments on five pairs of images, where each pair consists
of image volumes extracted at the end inhale and end exhale phases of a
4D-CT scan. To evaluate the registration, we used a set of 300 anatomi-
cal landmarks marked on each image pair. Using both vessel centerlines
curves and lung surfaces yields better alignment (median error of 1.85
mm) than using only curves (2.37 mm) or surfaces (3.53 mm). The com-
bined method achieves overall registration accuracy comparable to that
of intensity-based registration, whereas the errors are made in different
locations. This suggests that low dimensional geometrical features cap-
ture sufficient information to drive a reliable registration, while results
can still be improved by combining intensity and feature based registra-
tion approaches into one framework.

1 Introduction

Registration of chest CT scans is an important subject within pulmonary image
analysis. The general task of registration is to establish a point-to-point cor-
respondence between two images. Registration of lung CT images can be used
in various clinical applications, such as lung cancer radiotherapy planning and
quantitative analysis of disease progression.

Image registration methods can be separated into two general groups: intensity-
based and feature-based methods. Intensity-based methods integrate spatial in-
formation over the entire image domain, whereas feature-based methods require
a representation of the image data in terms of distinctive geometrical structures.
Feature-based methods offer more robust registration when image intensity is
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changed, owning to for instance pathology, image artifacts or differences in scan
protocol. Generally, segmentation of geometrical structures in lungs is less sen-
sitive to intensity changes, since the method incorporates geometrical regularity
constraints or prior anatomical knowledge. Moreover, segmentation of distinctive
lung structures may be either corrected manually or delineated by a professional.

The most distinctive anatomical structures in lung CT images are vessels,
airways, lobe fissures and lung surfaces. Lungs surface and lobe fissures define
large-scale deformations of the lungs and provide an insight into the global mo-
tion of the lungs, while small-scale deformations are influenced by vessels and
airway tree motion.

Feature-based registration relies on various geometrical structures, e.g., points,
curves or surfaces. Thin-plate spline image registration [1–3] is the standard
method for matching points under the assumption that deformations are small.
For large deformations, a diffeomorphic point matching approach was developed
by Joshi and Miller [4] and was later adapted for surface matching [5]. Current-
based diffeomorphic method for surface matching under the large deformations,
pioneered by Glaunès et. al. [5], was further developed and adapted for curve
matching problem [6, 7]. Within a framework of currents, no point correspon-
dence between structures is required.

Several surface-based registration methods were previously developed for
lung CT images [8–10]. The outer surface of the lungs together with the outer
surface of vessels were used in an algorithm similar to iterative closest point
methods in [8]. Lung surface was used to register CT lung images [10] and to con-
strain intensity-based registration with a deformation field obtained from surface
matching procedure [9]. The two main advantages of the feature-based registra-
tion of lung CT images via currents are: no point correspondence is required
and unified representation of curves and surfaces. The low dimensional geomet-
rical features, such as curves and surfaces contain much fewer points compared
to dense intensity images, thus feature-based registration can be more efficient.
Moreover, in the framework of currents, dimensionality of image features may
be reduced even more without decreasing registration accuracy [11].

In this paper we apply the current-based registration method, pioneered by
Glaunès et. al. [5] and further propagated by Durrleman [7, 12], to three feature
sets: vessel centerlines, lung surface and combined set of centerlines and surface.
We evaluated the registration methods on a set of 5 pairs of end exhalation and
end inhalation phases of 4D-CT images with ground truth landmarks.

2 Registration via Currents

2.1 Representation of curves and surfaces

In the framework of currents [5, 6, 12], geometrical shapes such as curves and
surfaces are represented with a set of vectors. A current is encoded with a finite
set of vectors attached to the specified positions. A curve C(x) can be defined
with its tangent vector τ(x) at each position x. In a discrete setting, curve is
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considered as a set of piece-wise linear segments where each segment is repre-
sented by its center point, tangential direction, and segment length. Similarly, a
surface S(x), with a given mesh, is represented with the normal direction n(x),
face center x and area. Both surfaces and curves are thus encoded into currents
as a set of vectors. Geometrical shape in the framework of currents is defined in
a weak form, as the action of the shape on a test vector field w from a space
of possible vector fields W . The current of a curve C(ω) is defined by the path
integral along the curve through the test vector field w,

C(ω) =
∫

C

w(x)τ(x)dx. (1)

And the current of a surface S(ω) is defined by the flux of the vector field w
trough the surface,

S(ω) =
∫

S

w(x)n(x)dx. (2)

The space W of test vector fields is a space of square integrable vector fields
convolved with a Gaussian kernel with standard deviation σw [12, 6]. The norm
of the current, μ(C), is defined in the dual space W ∗, as the maximum action of
the current among all possible test vector fields ||μ(C)||W = sup||ω||W ≤1 C(w).

2.2 Lung structures as currents

In this paper we used distinctive anatomical lung structures such as vessels and
lung surface as features for registration. Fig. 1(a) shows an example of segmented
lung structures. The lung fields and vessels are segmented with the algorithm
described in [14]. A sparse triangulation of the lung surface was computed via
the marching cube algorithm [15]. For each face, the corresponding normals
were computed and oriented to point outwards of the surface. Fig. 1(b) shows
an example of the constructed current for a lung surface.

Vessel tree was segmented as follows: lung image was thresholded with a
fixed intensity value tv = −600HU , then a local analysis of Hessian matrix was
performed in order to remove non-tube like structures. Large vessels segmented
near the hilum area were omitted from the vessel tree segmentation. For more
details on vessels segmentation algorithm we refer the reader to [14]. Centerlines
were extracted from the segmented vessel tree using a 3D thinning algorithm
[16].

The tangential direction of a centerline was computed via local principal com-
ponent analysis. For each centerline point we extracted neighboring centerline
points, applied PCA to the point cloud, and assigned the first principal compo-
nent to the tangential direction at the centerline. For centerlines sufficiently far
from vessel bifurcation and neighboring vessel, the principal direction points to
a tangential direction of the centerline. For centerlines close to the bifurcation
the principal direction points between the two splitting vessel centerlines. This
is consistent with the framework of currents, were the action of each vessel di-
rection results in a joint action at the bifurcation point. The orientation for the
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(a) Example of segmented lung
surface and lung vessel tree

(b) Current corresponding to a lung surface.

(c) Current corresponding to a vessel tree centerlines.

Fig. 1. Example of segmented lungs surface and vessel tree 1(a); triangulation
of the lungs surface (black mesh) with the corresponding current (red vectors)
1(b); current corresponding to the vessel tree centerlines (red vectors) with a
zoom-in 1(c).

positive direction was set to point outwards from the center of the image. Fig.
1(c) shows an example of the constructed current for a segmented vessel tree
and a zoom-in into a bottom part of the image.

2.3 Current-based Image Registration

In this paper, we combine the previous work on matching curves [6] and sur-
faces [5] via currents. The similarity measure between two curves Cf , Cm or
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two surfaces Sf , Sm is defined as the squared norm of the difference in μ for
corresponding currents with respect to the test vector field w ∈ W :

E(Cf ;Cm) = ||μ(Cf ) − μ(φ(Cm))||2W , (3)

for fixed and moving curves Cf and Cm respectively. And

E(Sf ;Sm) = ||μ(Sf ) − μ(φ(Sm))||2W , (4)

for fixed and moving surfaces Sf and Sm respectively, where φ is a diffeomorphic
transform function. Combining two similarity terms for curves (3), surfaces (4)
and a regularisation term with trade-off coefficients γC , γS , γφ in a final cost
function gives:

E(Cf , Sf ; Cm, Sm) = γC ||μ(Cf ) − μ(φ(Cm))||2W + γS ||μ(Sf ) − μ(φ(Sm))||2W
+ γφReg(φ). (5)

Diffeomorphic transformation φ of curves and surfaces was modeled in the frame-
work of large deformation diffeomorphic matching [4, 6], where deformation of
each feature is defined by a velocity vector field vt = φ′

t. The smooth velocity
field vt is described via Gaussian kernel with standard deviation σV , where σV

determines the typical scale of the deformations [12, 6]. To guarantee smoothness
of the final diffeomorphism, we defined the regularisation term as in [12],

Reg(φ) =
∫ 1

0

||vt||2V dt. (6)

3 Experiments

In order to quantify the accuracy of the proposed registration method with a
ground truth, we used images from a publicly available dataset [13]. For each
image pair, 300 manually placed corresponding landmarks were provided [13].
Five pairs of images, where each pair consists of images extracted at end exhale
and end inhale phases of 4D CT image, were used in our experiments. In-plane
resolution of the images varied from 0.97× 0.97 mm to 1.16× 1.16 mm and slice
thickness was 2.5 mm.

3.1 Parameter Settings

Vessel tree were segmented using the algorithm as in [14] with the intensity
threshold −600 HU, ratio of Hessian eigenvalues was set to m1 = 0.75, m2 = 0.5.
For every centerline point we extracted a neighboring centerline points from the
cube neighborhood of 7× 7× 7 voxels size and computed the principal direction
of the centerlines. All the direction vectors were normalized to 1. Fig. 1(c) shows
an example of the extracted currents for vessel centerlines with a zoom-in to a
lower part of the lungs. A regular surface triangulation was constructed with a
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marching cube algorithm with further simplification of the mesh [15]. Normal
directions to each of the face were normalized to 1.

In our experiments, end inhale phase of 4D-CT image was registered to end
exhale phase. The following internal parameters of image registration were se-
lected manually. The accuracy of feature alignment σW was set to 5 mm for
curves and 10 mm for surface features. The spatial variability of deformation
velocity field σV was set to 25 mm for both types of features. The weight coef-
ficients in the cost function (5) were set to γC = 1 for the curve matching term,
γS = 0.01 for the surface matching term and γφ = 10−4 for the regularizer. The
cost function was minimized with a standard gradient descent approach.

3.2 Results

We evaluated four registration methods, as follows: combined curve- and surface-
based registration with cost function (5); curve-based registration with cost func-
tion (3); surface-based registration with cost function (4); and a free-form B-
Spline intensity-based method as in [17]. We compared registration accuracy of
the four methods based on the alignment of 300 landmarks distributed uniformly
in lung area, Fig. 2(b) shows an example of the spatial distribution of landmarks
within the lungs.

The overall accuracy of the image registration methods was defined as the
mean Euclidean distance between landmarks, target registration error (TRE), in
millimeters. The mean and the standard deviation of TRE for the four methods is
reported in Table 1. We performed Wilcoxon rank-sum test on TRE distribution
to compare the combined curve- and surface-based registration with the curve-
based and surface-based methods individually. Results are reported in the Table
1. Box-plots in Fig. 2(a) show the overall accuracy of the four image registration
methods on a complete set of landmarks over all five cases.

Correlation between TRE for the intensity-based and combined curve- and
surface-based registration was ρ = 0.5, varying from 0.17 − 0.59 for the five
cases. Overall, for 35.5% cases of landmarks the combined curve- and surface-
based registration method performed better than intensity-based method.

4 Discussion

Fig. 2(a) shows that the curve-based method alone provides good registration
accuracy for the majority of landmarks. However, there are many outliers present
with errors of up to 2.5 cm. Within the framework of currents, points located fur-
ther than the typical scale of deformations σV are not affected by deformations
of the features, which might cause landmarks distant to the vessel centerlines to
be misaligned. Surface-based registration result in a slight overall improvement
in TRE compare to the initial configuration. In contrast, incorporating both
surfaces and curves into feature-based registration results in more accurate reg-
istration (1.85 mm) compared to both curve-based (2.37 mm) and surface-based
(3.53 mm) methods.
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Table 1. Registration error at the landmark positions in [mm] for the four reg-
istration methods. The mean (m) and the standard deviation (sd) are reported.
Statistical comparison of combined curve- and surface-based registration method
was performed against the surface-based and curve-based methods. The nota-
tions of statistical significance level are as follows: ∗ corresponds to p < 0.05 and
ns to p > 0.05. The most right column indicates percentage of landmarks where
the combined curve- and surface-based registration outperforms the intensity-
based registration.

Image Registration Accuracy in mm [m ± sd]

N Before Combined Surface Curve Intensity %

1 3.89 ± 2.78 1.47 ± 0.72 2.45 ± 1.56∗ 2.24 ± 1.41∗ 1.23 ± 0.61 37.7

2 4.34 ± 3.90 2.19 ± 1.98 3.63 ± 2.94∗ 2.32 ± 2.06ns 1.26 ± 0.67 39.0

3 6.94 ± 4.05 3.30 ± 3.05 5.31 ± 3.26∗ 3.03 ± 2.79∗ 1.86 ± 1.11 25.0

4 9.83 ± 4.86 3.34 ± 2.67 5.98 ± 3.74∗ 5.28 ± 4.52∗ 2.15 ± 1.48 36.0

5 7.48 ± 5.51 3.83 ± 3.54 5.80 ± 4.37∗ 4.40 ± 4.42∗ 2.32 ± 1.82 40.0

All 5 cases
6.50 ± 4.83 2.83 ± 2.72 4.63 ± 3.58∗ 3.45 ± 3.48∗ 1.76 ± 1.31 35.5

median 5.13 1.85 3.53 2.37 1.44

The median of TRE for the combined curve- and surface-based registration
was 1.85 mm compared to 1.44 mm for the intensity-based method. Several rea-
sons may lead to larger TRE for the combined curve- and surface-based method,
such as inconsistency in segmentations of vessels in the two images. Ambiguous
segmentation of lung surface near the hilum may leads to large missregistration
errors in this area. Fig. 3(b) shows a difficult case in the data with irregular
centerlines in the back of the lungs. Registration of lung images based on such
geometrical structures as vessels centerlines and lung surfaces can be naturally
improved by including airways and lung fissures into the presented framework.

In order to understand where are the main differences between the feature-
based and intensity-based method, we visualized discrepancy between the two
deformation fields in Fig. 3(a). For illustration purpose, we sparsely selected
points where the orientation between deformation vectors were above 60◦ and
with the magnitude of discrepancy vectors more than 3 mm and plotted inside
the lung area. Interestingly, the discrepancy between the feature- and intensity-
based methods were localized.

We further investigate image slices located at the areas where the discrepancy
between the two methods was largest (blue cut planes in Fig. 3(a)). Fig. 4 shows
the difference image with the moving image subtracted from the fixed image for
both registration methods. Overall, lung surfaces and small vessels were aligned
more accurately with the feature-based registration method.
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(a) Box-plot of target registration errors. (b) Distribution of landmarks.

Fig. 2. Target registration errors (TRE) is shown in 2(a), as follows, before
registration was applied (Initial), after surface-based (Suface), after curve-
based (Curve), after combined curve- and surface-based (Combined) and after
intensity-based registration (Intensity). Example 2(b) shows the spatial distribu-
tion of landmarks in the lungs. The landmarks, better aligned with the combined
feature-based method are shown in red and with the intensity-based method in
blue.

Another important component of currents is the length or the weight of the
direction vector. For the task of registration of repeated lung CT images, the
current for a small vessel could be given more weight than for a large vessel,
leading to more accurate registration of small vessels. This is an important ad-
vantage of current-based registration over intensity-based method where small
vessels with low contrast to surrounding lung tissue have negligible impact on
the overall cost function. In this paper we used equal weights for all currents
and normalized the length to 1.

On average, 35.5% of landmarks were aligned better with the curve- and
surface-based registration. The low correlation coefficient (0.5) suggests that the
two registration methods align landmarks differently and may be combined into
a more robust registration method.

5 Conclusion

In this paper, a curve- and surface-based registration method is presented, where
lung surface and vessel tree centerlines are built-in into the framework of current-
based registration. Incorporating both centerlines and surfaces results in more
accurate registration than curve- or surface-based registration method alone.
The proposed combined curve- and surface-based registration method achieves
slightly lower accuracy than intensity-based registration but for 35.5% of land-
marks outperformed the intensity-based method. A natural extension of the
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(a) Deformation vectors for the combined
curve- and surface-based (magenta) and
intensity-based (green) methods methods
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(b) Example of irregular current

Fig. 3. (a) An example of discrepancy in deformation fields between the feature-
based and intensity-based registration methods. (b) An example of an ambigious
current for the back of the lung.

presented work will be incorporating more anatomical lung structures, such as
airways and fissures, to improve the feature-based method.

Results show that the proposed feature-based registration method is robust
to inconsistent segmentation and outliers in segmented features and capable of
handling imperfect segmentations. In applications where importance of different
features varies, the prior weight of a feature may be encoded into the presented
registration framework. Results suggest that a natural improvement of registra-
tion would be obtained by combining the feature- and intensity-based methods.
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