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Abstract. This paper examines the detection step in automatic detection 
and classification of lung nodules from low-dose CT (LDCT) scans. 
Two issues are studied in detail: nodule modeling and simulation, and 
the effect of these models on the detection process. From an ensemble 
of nodules, specified by radiologists, we devise an approach to estimate 
the gray level intensity distribution (Hounsfield Units) and a figure of 
merit of the size of appropriate templates. Hence, a data-driven 
approach is used to design the templates. The paper presents an 
extensive study of the sensitivity and specificity of the nodule detection 
step, in which the quality of the nodule model is the driving factor. 
Finally, validation of the detection approach on labeled clinical dataset 
from the Early Lung Cancer Action Project (ELCAP) screening study is 
conducted. Overall, this paper shows a relationship between the spatial 
support of the nodule templates and the resolution of the LDCT, which 
can be used to automatically select the template size. The paper also 
shows that isotropic templates do not provide adequate detection rate 
(in terms of sensitivity and specificity) of vascularized nodules. The 
nodule models in this paper can be used in various machine learning 
approaches for automatic nodule detection and classification. 
Keywords: Parametric Templates Matching, Lung Nodule Definitions, 
Sensitivity and Specificity of CAD systems. 

1   Introduction 

The goal of computer-based nodule analysis methods is to assist the radiologists in 
early detection of presumable nodules. Assistance means to be able to mimic what a 
physician does in detecting and judging doubtful nodules. In the United States, lung 
cancer accounts for over 30% of all cancer–related deaths, resulting in over 160,000 
deaths per year [1]. That is more than the annual deaths from colon, breast, 
pancreatic, prostate, and ovarian cancers combined.  Lung cancer survival is strongly 
dependent on the pathologic stage at the time of diagnosis [2][3].  The hope is that 
early detection of lung cancer can improve the survival rate of this disease, thus 
research studies to reach an optimal detection rate is important.  Should the use of 
LDCT scans become a standard clinical practice (for example, as a component of 
annual physical exams), an automatic way to analyze the scans will lend great benefit 
for the entire healthcare system; e.g., [4]-[7] and extensive surveys in [8][9].      
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The generalized framework for a CAD system consists of four main steps (see, Figure 
1): 1) Filtering and normalization of the LDCT scans. 2) Segmentation of the lung 
regions (parenchyma) from the surrounding tissue. 3) Detection of lung nodules and 
4) Nodule classification as benign or malignant.   

 

 
 
Fig. 1: A block diagram of the major steps involved in computer-based analysis of LDCT of 
the chest in order to detect and classify doubtful lung nodules. 

 
This paper will focus on the third step; nodule detection.  The ELCAP dataset [10] is 
used for nodule design and testing and the sensitivity and specificity of the template 
matching approach in terms of detection is studied. 
 
Since the early 90’s various approaches for automated pulmonary nodule detection 
have been introduced. These approaches can be categorized as follows [4]-[7]: model 
based and density-based approaches. Template matching is one technique for model-
based approaches which utilize a priori information of the size, intensity and shape of 
the nodules. Density-based approaches uses the fact that the lung parenchyma has 
relatively lower CT attenuation (density) than those of the lung nodules, thus they 
utilize image processing algorithms that rely on multiple thresholding, region growing 
and clustering. Various other approaches from the computer vision literature have 
been employed as well (e.g. [14]), which will not be surveyed due to space 
limitations. 
 
Since the components of the CAD system in Fig. 1 are serial, we will briefly mention 
the techniques we employed in the filtering of scan artifacts, and segmentation of the 
lung tissues. For extensive surveys of various approaches on LDCT CAD research, 
the reader is directed to [8][9]. 
 
This paper is organized as follows: section 2 briefly discusses filtering of the scanning 
artifacts and segmentation of the lung region from the surrounding tissues; section 3 
discusses template modelling and simulation; section 4 discusses template matching; 
section 5 presents experimental results and validation; and section 6 concludes the 
paper.

2   Artifacts Removal and Lung Segmentation in LDCT Scans 

Filtering: During the acquisition of CT scans the generated slices can be affected by 
contrast, resolution, noise, artifacts and/or distortion. In particular, a slice can be 
corrupted by random fluctuations in image intensity which is considered a source of 
noise, thus, a CT slice is required to be filtered prior to further processing such as 
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segmentation. In this work we use the anisotropic diffusion filter (e.g., [11]), which is 
a well proven approach in various image analysis applications.  
 
Image segmentation: as the name implies, connotes dividing or separating the 
information content in an image (or volume of images) into recognizable classes. It is 
a very fundamental and important step in image analysis. Various approaches have 
been used to segment the lungs from the rest of the organs that show the chest CT 
scans; again, the reader is referred to the surveys in [8][9]. The segmentation 
algorithm employed in this paper (similar to Armato et al [5]) exploits the intensity 
characteristics of lung CT scans, which appears as two distinct modes in the gray 
level intensity (Hounsfield Units) histogram.  Multi-level thresholding is used to first 
isolate the thoracic region from the CT slice background; the lung parenchyma is then 
extracted from the segmented thoracic region, Fig. 2.   

   
 
Fig. 2: A Block diagram of the segmentation algorithm. Lung region (parenchyma) and 
fat/muscle region constitute two dominant peaks in the histogram, in order to separate the lung 
region a threshold is chosen to maximize the separation.  
 
Morphological dilation is then applied as a smoothing filter on the contour of the 
segmented lung region in order to avoid losing nodules that may be attached to the 
lung walls.  To decrease the sensitivity of the segmentation result to the structuring 
element diameter, we apply it to the inner and outer lung region contour. After 
segmentation was completed small nodules attached to the pleural surface were found 
to no longer exist since these nodules were segmented as not belonging to the lung 
parenchyma. This operation resulted in 6.5% of the ground truth nodules to be 
excluded from further experimentations. Various improvements to the segmentation 
are possible; the algorithm employed here is 93.5% accurate with respect to retaining 
the nodules.  

3   Nodule Modeling and Simulation 

Proper nodule modeling is crucial for successful detection and classification. 
Modeling involves the shape, spatial support and the appearance (intensity) of the 

Second International Workshop on 
Pulmonary Image Processing

-151- 



template. The focus of this paper is on data-driven approaches for nodule modeling 
and simulation. 

3.1   Nodule Types  

A pulmonary nodule usually has a spherical shape; however, it can be distorted by 
surrounding anatomical structures such as vessels and the pleural surface. We shall 
use the nodule classification of Kostis et al [12][13], which groups nodules into four 
categories:  

i. well-circumscribed where the nodule is located centrally in the lung 
without being connected to vasculature; 

ii. vascularized where the nodule has significant connection(s) to the 
neighboring vessels while located centrally in the lung; 

iii. pleural tail where the nodule is near the pleural surface, connected by a 
thin structure;  

iv. and juxta-pleural where a significant portion of the nodule is connected 
to the pleural surface.  

3.2   Nodule Simulation  

In a CT scan the nodules can take various shapes and topologies, but the common 
characteristic amongst the nodules is the density distribution that tends to be 
concentrated around a region with an exponential decay (e.g., [7][15][16]). To 
illustrate this behavior, Fig. 3 shows the radial distance for each of the nodule types. 
Figure 4 shows the average distribution of HU densities for each nodule type. It can 
be observed that nodules’ density distribution exhibit a bi-modal distribution (two 
dominant peaks) where the lower density mode represents regions surrounding the 
nodules and the higher density mode represents nodules densities. A linear model can 
be used to fit the joint density.  
 
Using Gaussian kernels in the linear model, we employ the EM algorithm to obtain 
the joint and marginal density estimates. Figure 5 shows the marginal density 
estimates of the four nodule types. The range of intensity (HU) values is within two 
quantities qmin and qmax which will be used to estimate the density of a nodule 
template. From the knowledge of the nodule density (HU) vs. radial distance, and the 
nodules’ marginal probabilities, we can compute the probability density function of 
the nodule’s intensity (HU) with respect to radial distances from nodule centroid. 
These densities have been shown to be concentrated in radial distances around 5 
pixels.  
 
The behavior of the nodule intensity (HU) vs. radial distance provides three clues: 1) 
the intensity (HU) decays exponentially from the centroid; 2) the probability density 
of the intensity (HU) is concentrated within a range qmin and qmax; and 3) the 
probability density of the HU vs. radial density is concentrated below 10 pixels 
(hence, the spatial support of the templates is within 21x21 pixels). The first two clues 
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enable us to devise a formula for estimating the density of a nodule model (template). 
The third clue provides a figure of merit of how big the nodule template should be. 
 

 
 
Fig. 3: The distribution of the radial distance from the centroid of the nodules. The bars are 
one standard deviation off the mean values of each nodule type. Note the exponential behavior 
of the radial distance, and that it diminishes after a distance of 10. 
 
Given the range qmin  and qmax of nodule density distribution (Fig. 5), obtained from 
the ground truth nodules (an ensemble of nodules outlined by the radiologists), the 
intensity or HU, at a distance r from the centroid,  can be estimated by the following 
equations. 

   
 

 
These equations can be used to simulate parametric and non-parametric templates. 
For example, to simulate a circular template, we simply need to specify the radius R, 
and the intensity (HU) of the inside of the template at a distance r from the center can 
be calculated from Eq. 1 and 2. In this case, any of the four nodule intensity 
distributions in Fig. 5 may be used to obtain qmin  and qmax. We should point out that 
this approach is valid for 2D and 3D non-parametric template designs as well. 
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Fig. 4:  Average distribution of HU densities for each nodule type. The middle region 
corresponds to the nodule. The solid arrow is qmin  and the dashed arrow (red) is qmax  
in Eq. 1 and 2. 
 

 
Fig. 5: Probability density of the Radial distance of the nodules: Top left: Well-
Circumscribed nodule; Top right: Vascular nodule; Bottom left: Juxta-Pleural; and 
Bottom right:  Pleural-Tail nodule. Arrows show  qmin  and qmax . This behavior may 
be described by a single Gaussian (to resemble the circular-symmetric Gaussian in 
[7][15][16]). 
 
To test the overall approach of nodule detection, we used a set of 2D scans from the 
ELCAP clinical data set with known ground truth in terms of nodule type and 
location.  Therefore, only 2D templates are used in this paper. The most common 
parametric nodule models in 2D are circular and semi-circular. Fig. 6 shows a few 
examples of such templates.  
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Fig. 6: An ensemble of generated circular and semi-circular templates with radii ranging from 
5 to 20 pixels with orientation from 0o to 360o with step size 90o, in the semi-circular cases.

   
The isotropic templates are defined in terms of the radius (size), R, and the gray level 
distribution as a circular symmetric Gaussian function [7][15][16] while non-isotropic 
templates are defined by radius, gray level distribution and orientation. Automatic 
generation of the gray level distribution of the nodules with known radius and 
histogram of nodule prototypes can be generated, for a given shape, using Eq. 1 and 2 
above. This is particularly simple to perform in the case of parametric templates (e.g., 
Fig. 6, where given a radius R we only need to estimate the intensity of HU from 
these equations. 

4.   Template Matching 

Among the widely used approaches for computerized nodule detection is the template 
matching approach, in which the nodule model (template) is swept across the scan 
(2D slices or the 3D volume) in a raster fashion and a similarity measure is calculated 
between the intensity (or HU) of the template and the region of the CT data 
underneath.  If the result of the matching process between an unknown object in the 
CT data and the template is sufficiently high, the unknown object is labeled as 
resembling the template (i.e., a nodule candidate), however due to image noise, 
spatial, amplitude quantization effects, and a priori uncertainty of the exact shape and 
structure of the object to be detected, an exact match rarely occurs. Hence, a 
subsequent step of authenticating the detected nodule candidates is performed to 
reduce the false positives. Among the widely used similarity measures is the 
normalized cross correlation (NCC), which has a maximum value of unity that occurs 
if and only if the image function under the template exactly matches the template.  
The normalized cross-correlation of a template, t(x,y) with a sub-image f(x,y) is: 

,)),()(),((
1

1=
, tfyx

tyxtfyxf
n

NCC
��

��
� �       (3) 

where n is the number of pixels in template t(x,y) and sub-image f(x,y) which are 
normalized by subtracting their means and dividing by their standard deviations.     
 
The probability density functions (pdf) of nodule and non-nodule pixels are computed 
using the normalized cross correlation coefficients resulted from templates with 
varying parameters (shape, size and orientation if applicable). Based on the Bayesian 
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classification theory, the intersection between the pdf’s of the two classes is chosen as 
the threshold separating the correlation coefficients resulted from nodule and non 
nodule pixels.  
 
A decision fusion approach (Fig. 7) was also conducted in this paper using the 
circular and semi-circular templates in the detection process for radius 10 and 20 
pixels with different orientations (semi-circular case) in a serial fashion and the final 
decision is Exclusive-OR (XOR) of the binary outputs. Template matching is 
performed as before using the same NCC threshold and the output of the template 
matching from each nodule model is a binary image (NCC values rank from zero to 1; 
after thresholding the zeros are NCC values below the specified threshold and the 
ones are otherwise), representing where the candidate nodules for the corresponding 
parametric template are located. Binarization is performed onto these images to give 
any pixels that are black a value of 0 and any white pixels a value of 1. The images 
are then Exclusively-ORed (XOR) together to receive a final black and white image 
that represents the candidate nodule locations for all of the nodule types. Fig.  8 
summarizes this process. 

 
 
Fig. 7: Block diagram of decision fusion template matching approach. 
 
XOR-ing the images after template matching and binarization provides us with 
locations where one of the template has a nodule detected for that pixel value will be 
taken as a true candidate nodule. We experimented with several other logic operators 
and studied the sensitivity and specificity results for each case before deciding on the 
XOR operator.  

5   Experimental Results 

This study is based on the ELCAP public database [10], which contains 50 sets of 
low-dose CT lung scans taken at a single breath-hold with slice thickness 1.25 mm. 
The locations of the 397 nodules are provided by the radiologists, where 39.12% are 

-156- Second International Workshop on 
Pulmonary Image Processing



juxta-pleural nodules, 13.95% are vascularized nodules, 31.29% are well-
circumscribed nodules and 15.65% are pleural-tail nodules. The official reports 
indicate the mean nodule diameter to be 8.5 mm with standard deviation 3.6. The 
ELCAP database is of resolution 0.5x0.5mm [10]. 
 
The ELCAP expert identified a point on the nodule not the entire spatial support; this 
point may not necessarily coincide with the center or the centroid of the nodule. 
Indeed, the NCC measure decays as we move away from the spatial support of the 
nodules. The sensitivity and specificity of template matching was studied for 
templates of radii ranging from 0.5mm (1 pixel) to 10mm (20 pixels). The 
orientations of the templates in the semi-circular case are from 0 to 360 with step size 
of 45 degrees.  For each detected nodule, let the coordinates of its centroid be c = 
(x,y) , the nodule is considered correctly detected and counted as true positive (TP) 
when the distance between the detected point and the closest ground truth point is 
smaller than the template radius. All other detected points are considered false 
positives (FP). True negative (TN) is the number of points which are not detected as 
candidate nodules and when compared to the ground truth they are not nodules. False 
negative (FN) is when no point is detected in the neighborhood of the ground truth 
nodule. The sensitivity and specificity are defined in terms of the false positive (FP) 
and the true positive (TP) nodules.  
 

Sensitivity SN = TP/(TP+FN), specificity SP = TN/(FP+TN) (4)  
 
These values are defined with respect to the NCC matching criterion.  Fig. 8 shows 
the NCC distribution for parametric templates of radius 10 pixels (i.e., template size 
21x21). As expected, higher values of NCC leads to reduced detection rates, while 
smaller values increases the detection rates, and consequently the number of FPs. A 
threshold of NCC value was set at 0.5 which have been shown, empirically, to be a 
good compromise between TP and FPs. This will be considered a hard classifier. The 
receiver operating characteristic (ROC) curve is used to plot the fraction of true 
positives (TPR = true positive rate) vs. the fraction of false positives (FPR = false 
positive rate), where TPR = TP = (TP+FN) and FPR = FP = (FP+TN). We 
experimented with different template sizes ranging from 1 to 20 pixels (0.5mm-5mm). 
The ROC curves showed us that variations in the template shape and/or orientation 
have minimal affect on well-circumscribed nodule detection. The semi-circular 
template with orientation 180 degrees best simulates juxta-pleural as well as pleural-
tail, while the circular template least represents these nodule types. 
 
Experiments revealed that larger template radii yield higher sensitivity; while the 
performance tends to decrease for smaller template sizes, yet, the specificity in the 
larger template radii overall decrease. The rate of performance decay depends on 
template shape and nodule type, the pleural-tail nodules are the most sensitive nodule 
type to the template size, while the well-Circumscribed nodule showed the least 
sensitivity to template size. At radius of 10, we found the overall sensitivity using the 
decision fusion approach to be higher than the results obtained without using the 
decision fusion approach.  In the individual nodule cases the templates that yielded 
relatively smaller marginal differences from the decision fusion approach in terms of 
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sensitivity rates was the semi-circular template with orientation 315o representing the 
Well-Circumscribed nodule type and the circular template representing the Juxta-
Pleural nodule type. The overall specificity was similar in the circular template cases.  
Semi-circular templates with orientations 0o to 135o (without decision fusion) 
provided higher specificity but this also means there are more false positives.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Distribution of the Normalized Cross-Correlation (NCC) for parametric nodules 
(circular and semi-circular) with radius 10 pixels. Higher NCC values results in less FPs while 
smaller values provide more FPs. At a threshold of 0.5 the range of NCC is {0.007, 0.012}. 
 
Tables below show the results for the sensitivity and specificity for radii 10 and 20 
pixels. The sensitivity and specificity were analyzed for both the hard classifier and 
the decision fusion classifier. ROC curves are not included due to space limitations. 
  
 
Nodule Type 

Template Radius = 10 
Hard Classifier  

Template Radius = 10 
Decision Fusion Classifier 

Sensitivity Specificity Sensitivity Specificity 
Well-Circumscribed 49.44 % 81.15 % 58.43% 75.55% 
Vascularized 70.73 % 78.54 % 73.17% 72.36% 
Juxta-Pleural 83.48 % 66.73 % 93.04% 71.80% 

Pleural-Tail 91.30 % 77.80 % 97.83% 72.81% 
 

 
Nodule Type 

Semicircular Template 
 Radius 10; Orientation = 0o 
Hard Classifier 

Semicircular Template Radius 
10; Orientation = 90o 
Hard Classifier 

Sensitivity Specificity Sensitivity Specificity 
Well-Circumscribed 37.08% 93.44% 31.46 % 93.70% 
Vascularized 48.78 % 94.00 % 29.27 % 93.23% 
Juxta-Pleural 75.65 % 88.41 % 73.04 % 86.70 % 

Pleural-Tail 60.87% 92.50% 67.39% 92.50% 
 

 
Nodule Type 

Semicircular Template 
 Radius 10; Orientation = 180o 
Hard Classifier 

Semicircular Template Radius 
10; Orientation =270o 
Hard Classifier 

Sensitivity Specificity Sensitivity Specificity 
Well-Circumscribed 31.46 % 92.88 % 30.34% 93.64% 
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Vascularized 48.78 % 93.94 % 46.34% 93.36% 
Juxta-Pleural 77.39% 86.30 % 75.65% 86.27% 

Pleural-Tail 78.26 % 92.74 % 63.04% 92.80% 
 

 
Nodule Type 

Template Radius = 20 
Hard Classifier  

Template Radius = 20 
Decision Fusion Classifier 

Sensitivity Specificity Sensitivity Specificity 
Well-Circumscribed 76.40 % 61.17% 87.80% 36.58% 
Vascularized 87.81% 53.71% 87.80% 36.58% 
Juxta-Pleural 89.57 % 54.99% 92.17% 33.16% 

Pleural-Tail 95.65 % 50.63% 97.83% 35.18% 
 

 
Nodule Type 

Semicircular Template 
 Radius 20; Orientation = 0o 
Hard Classifier 

Semicircular Template Radius 
20; Orientation = 90o 
Hard Classifier 

Sensitivity Specificity Sensitivity Specificity 
Well-Circumscribed 53.93 % 76.99% 57.30% 72.51% 
Vascularized  75.61% 73.75%  73.17% 71.58% 
Juxta-Pleural 82.61% 64.72% 80.87% 65.93% 

Pleural-Tail  75.61% 73.75% 86.96% 66.32% 
 

 
Nodule Type 

Semicircular Template 
 Radius 20; Orientation =180o 
Hard Classifier 

Semicircular Template Radius 
20; Orientation =270o 
Hard Classifier 

Sensitivity Specificity Sensitivity Specificity 
Well-Circumscribed 59.55% 71.28% 53.93% 74.35% 
Vascularized 70.73% 71.85% 73.17% 73.40 % 
Juxta-Pleural 75.65% 64.24% 83.48% 66.30% 

Pleural-Tail 86.96% 68.65% 91.30% 69.19% 

 

6   Conclusion 

In this paper, a data-driven approach was devised to model and simulate typical lung 
nodules. We studied the effect of template shape on detection of different nodules 
types. Variations in the template shape and/or orientation has minimal affect on well-
circumscribed nodule detection. The hard classifier (based on thresholding the NCC) 
showed that the semi-circular template best simulates juxta-pleural and pleural-tail 
nodules, while the circular template least represents these nodule types. Similar 
conclusion also was achieved with the vascular nodules. Experiments revealed that 
larger template radii yield higher sensitivity, while the performance tends to decrease 
for smaller template sizes, yet, the specificity decreased with larger template. The 
overall performance depends on template shape and nodule type.  The pleural-tail 
nodules are most sensitive to the template size, while the well-circumscribed nodule 
was the least sensitive. Overall, the decision fusion classifier provided best 
performance for templates of radius 10 pixels (i.e., nodule sizes of 1.5 mm), in terms 
of sensitivity and specificity.   Current efforts will extend the nodule models into 3D 
using large clinical data set.  Significant efforts are also directed towards designing 
non-parametric templates in 2D and 3D with attributes of the real data.  
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