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Preface

Both the quantity and quality of image data available to study the pulmonary
system have increased enormously in the last decade. The goal of this workshop
is to bring together researchers in pulmonary image analysis and discuss recent
advances in this rapidly developing field. We invited papers on all aspects of
image analysis of pulmonary image data, including segmentation, registration,
quantification, modeling of the image acquisition process, visualization, statisti-
cal modeling, biophysical modeling of the lungs (computational anatomy), and
novel applications. In addition, we want to address the effective use of these
methodologies for diagnosis and therapy in clinical applications, bringing to-
gether theory and practice, by including a hands-on demo session focusing on
clinical workstations for pulmonary analysis.

We received many high quality submissions covering a broad spectrum of
issues in pulmonary image analysis. All papers underwent a thorough review
process with 3-4 reviews per paper by members of the program committee and
additional reviewers. We finally accepted 12 papers for oral presentation, 16
poster presentations, and 3 papers describing software systems which will be
demonstrated during the poster and demo session.

We would like to take this opportunity to thank the MICCAI 2008 organiz-
ers for help with organizing the workshop, David Naidich for agreeing to give
the invited lecture, and the reviewers for helping us with the paper selection.
We acknowledge the generous contributions of MeVis Medical Solutions, Philips
Medical Systems, Siemens Corporate Research, and VIDA Diagnostics, which
helped make this workshop possible.
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Keynote Statement

David P. Naidich

New York University - Langone Medical Center, NY, USA

The First International Workshop on Pulmonary Image Analysis provides a
unique opportunity for researchers in pulmonary image analysis to explore cut-
ting edge concepts in thoracic imaging. This welcome forum represents the in-
teraction of recent technologic advances in hardware development, providing
increasingly large imaging data sets (including the now widespread availability
of state-of-the-art MR and multi-detector CT scanners) with ever more sophis-
ticated software applications. The range and depth of the presentations in this
Workshop, in particular, stand testament to the creativity of numerous investi-
gators in the field of thoracic imaging.

It is also apparent that we currently stand at a cross-roads in which basic
science research must be made more accessible for general clinical applications.
Given current limitations in available financial support for scientific research as
well as limitations in the timely transfer of sophisticated image processing con-
cepts to clinically accessible imaging formats, it may be anticipated that closer
dialogue between basic imaging researchers and clinicians will prove critical in
insuring that key advances in diagnosis and management of patients with tho-
racic disease continues in as rapid a pace as possible. In this regard, identification
of key areas of particular clinical concern and most daunting technical challenge
may prove especially helpful by focusing the efforts of all on those problems most
deserving of attention.

To this end, forums such as the First International Workshop serve an es-
pecially crucial function by facilitating an ongoing dialogue between basic re-
searchers, clinicians and industry representatives. It is hoped that this will be
the first on many such opportunities to come.

David Naidich, MD

Professor of Radiology and Medicine
New York University - Langone Medical Center
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Texture Based Emphysema Quantification in
Lung CT

Lauge Sgrensen', Saher B. Shaker?, and Marleen de Bruijne'?

! Department of Computer Science, University of Copenhagen, Denmark,
{lauges, marleen}@diku.dk
2 Department of Cardiology and Respiratory Medicine, Hvidovre University Hospital,
Copenhagen, Denmark
3 Biomedical Imaging Group Rotterdam, Erasmus MC, Rotterdam, The Netherlands

Abstract. In this paper we propose to use texture based pixel classi-
fication in lung computed tomography (CT) for measuring emphysema.
Two quantitative parameters for emphysema, based on the pixel classi-
fication, are suggested; relative class area and mean class posterior.
The approach is evaluated on a group of 39 patients, of whom 20 have
been diagnosed with chronic obstructive pulmonary disease, using two
different feature groups, local binary patterns and a filter bank based
on Gaussian derivatives. The pixel classification based quantitative pa-
rameters correlate well with lung function (r = 0.80, p < 10~° for the
parameter with the highest correlation) and correlate significantly bet-
ter than the most commonly used CT based emphysema quantification
method, namely relative area of low attenuation.

1 Introduction

Chronic obstructive pulmonary disease (COPD) is a major cause of death and
a growing health problem worldwide. In the United States it is the fourth lead-
ing cause of morbidity and mortality and it is estimated to be ranked the fifth
most burdening disease worldwide by 2020 [1]. COPD is a chronic lung disease
characterized by limitation of airflow in the airway and it comprises two com-
ponents: Chronic bronchitis, which is an inflammation of the small airways, and
emphysema, which is characterized by gradual loss of lung tissue.

The primary diagnostic tools for COPD are lung function tests (LFT). An-
other diagnostic tool that is gaining more and more attention is computed to-
mography (CT) imaging. CT is a sensitive method for diagnosing emphysema
and both visual and quantitative CT are closely correlated with the pathological
extent of emphysema [2]. This makes CT suitable for both early detection and
study of COPD as well as for monitoring the effect of different treatments.

We focus on the assessment of emphysema, which is thought to be the main
cause of shortness of breath and disability in COPD. Emphysema is usually
classified into three subtypes, or patterns, and we will adopt the naming and
definitions from Webb et al. [3]. These subtypes are: Centrilobular emphysema
(CLE) defined as multiple, small, spotty lucencies, that may have thin walls,
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paraseptal emphysema (PSE) defined as multiple, lucencies in a single layer
along the pleura, commonly with thin walls visible, and panlobular emphysema
(PLE) defined as a lucent lung with small pulmonary vessels.

In CT emphysema lesions, or bullae, are visible as areas of abnormally low
attenuation values, close to that of air. Different objective quantitative mea-
sures of emphysema can be derived from the histogram of CT attenuation val-
ues. The most common measure is the emphysema index or relative area of low
attenuation (RA) [2], which measures the amount of lung parenchyma pixels
that have values below a certain threshold relative to the total amount of lung
parenchyma pixels. Common for the quantitative methods based on the attenu-
ation histogram is that they ignore the possibly valuable information inherent in
the emphysema disease patterns, such as subtype, shape, and size distribution.

One way to objectively analyze the properties of the disease patterns is to
use texture analysis [4]. Several publications exist on characterizing emphysema
and other disease patterns in regions of interest (ROI) in lung CT images using
texture features [5-9]. In [5,7, 8] the entire lung is labelled by subdividing the
lung into adjacent ROIs followed by a classification step that assigns the same
label to all pixels within a ROL In [5,7] the labelled result is evaluated by
comparing the agreement between the output of the classification and that of
human expert readings of the same ROIs. [8] Reports the percentage of different
disease patterns present.

In this paper we propose a quantitative measure for emphysema, based on a
pattern classification approach that utilizes local texture information. Compared
to RA, a pattern classification approach allows for more than the two classes
healthy and emphysematous, making it possible to quantify different subtypes
of emphysema, which may be related to prognosis of the patient. Further, texture
may be less influenced by inspiration level, compared to using intensity alone.
We perform full lung classification by computing the posterior class probability
for each pixel in the lung based on the local neighborhood around the pixel. Two
ways of deriving a quantitative measure for emphysema, from the posterior, are
investigated and evaluated. The first approach is to perform a hard classification
and compute the relative area of the classes, the second approach is to compute
the average posterior probability of each class in the lung. Thus, we obtain
two measures per class. To our knowledge the use of the mean class posterior
probability for quantifying emphysema is novel. We experiment with using two
different kinds of features for this purpose, local binary patterns [10] and a filter
bank based on Gaussian derivatives. These two feature groups were previously
tested and evaluated on a set of hand picked ROIs, achieving an accuracy of
95.2% and 94.0% respectively in discriminating between normal tissue (NT),
CLE, and PSE [9]. The experimental results reported in [9] are based on a
subset of the CT images used in the experiments in this paper.
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2 Methods

In the following the lung pixel classification system is described. Sections 2.1
and 2.2 describe the features we use for characterizing the lung texture, namely
local binary patterns and a filter bank based on Gaussian derivatives, Section
2.3 describes the classification framework, and Section 2.4 describes how the
classification framework is used for pixel classification and how the classification
result is turned into a quantitative measure for emphysema.

2.1 Local Binary Patterns

The first group of features is based on the local binary patterns (LBP) proposed
by Ojala et al. [10]. LBP measures the local structure at a given pixel by thresh-
olding P samples on a circle of radius R around the pixel using the intensity
in the pixel as threshold. The resulting thresholded samples are interpreted as
a binary number, that provides a unique code for each kind of local structure
or pattern. The operator is highly non-linear and detects microstructures in the
image at different resolutions governed by the parameter R, for example spots,
edges, corners, etc. Applying the LBP operator to an ROI results in an LBP
code image. Based on this an LBP histogram is formed by accumulating the
LBP codes directly into a histogram. We use the rotation invariant formulation
of LBP, see [9, 10] for more details. LBP are by design gray-scale invariant, and
this is not a desired property when dealing with CT images, where values are
measurements of a physical property of the tissue displayed. Therefore the dis-
tribution of the intensities is included, by forming the joint histogram between
the LBP and the intensities in the center pixels.

2.2 Gaussian function and its derivatives

The second group of features is based on the Gaussian function G(x;0) and
combinations of derivatives of G(x;0). We use x = [z,y]7 to denote the pixel
position. By varying the standard deviation ¢ of the function in a discrete man-
ner we obtain a whole bank of filters that can be applied to the image by
convolution. The Gaussian function itself is included to make the filter bank
sensitive to offsets in absolute intensity. The filters that we use are similar to
those used in [7], except that the filters we use are all rotation invariant. The
filter bank comprise the following filters: G(x;0); the Laplacian of the Gaus-
sian V2G(x;0); the gradient magnitude |VG(x;0)|2; the Gaussian curvature
K(x;0) = 0°G(x,0) /02> +0°G(x, 0) | 0y? —20°G(x, 0) /| Oxy. Feature histograms
are obtained by convolving the ROIs with each filter and making histograms of
each filter response.

2.3 Classification framework

Classification is done using the kNN classifier [11] with combined histogram
similarities as distance measure. We use histogram intersection as the similarity
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Model k Window size Features Feature specific
. . Joint LBP and intensity histogram, One resolution:
Model 1 1 31 x 31 pixels see Section 2.1 R=1P=8

Histograms of filter responses of the Two filters:
Model 2 1 31 x 31 pixels Gaussian derivative based filters, G(x,0 =0.5)

see Section 2.2 [VG(x,0 =1)|2
Table 1. Parameter settings for the two models used in the pixel classification exper-
iments. k is the number of neighbors used in the kNN classifier. The unit of R and o
is pixels and the unit of P is samples.

measure between histogram H and histogram K

Ny
Lyist(H, K) =1 =" " min(H), K,,), 1)
b=1

where H}, denotes bin b of histogram H, N, is the number of histogram bins and
the histograms are assumed normalized to sum to one. In the case of measur-
ing combined histogram similarity based on different histograms, e.g. different
Gaussian based filters, the similarities are computed individually for each feature
histogram using (1) and summed afterwards

Ny
L(x.wi,m) = Y Lnist(fa(x), MS,), (2)

where M}%i,, is the n’th feature histogram of prototype m from class w;, f,(x)
denotes some function that extracts the local neighborhood around pixel x in the
current image and computes the n’th feature histogram, and Ny is the number
of feature histograms used in the combination. The histograms of the intensities
and the filter responses are constructed using non-linear binning, where the
binning is found by employing two rules on the total distribution of the ROIs
in the training set: The total distribution should be approximately uniform and
the number of bins is | {/N,], where N,, is the number of pixels in the ROL

In [9] the accuracy of both feature groups is estimated as an average of a
number of leave-one-patient-out experiments, in which the optimal filters and
parameters are selected on the training set and can vary in between the exper-
iments. Table 1 summarizes the parameter settings for the two feature groups
that we will be using in this paper, which are those that were most often selected
in the experiments in [9].

2.4 Quantification by pixel classification

Prior to classification, the lung parenchyma is extracted using a combination of
thresholding, connected component analysis, and manual editing. The posterior
probability of class w; given pixel x is computed based on the combined his-
togram similarity (2) with the closest prototype histograms of each class and is
given by

min,, L(x, w;, m)

Plwilx) = 3)

Z?Zl min,, L(x,w;, m)’
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The size of the local neighborhood is the same as the window size used in the
model, i.e. 31 x 31 pixels, see Table 1, and the pixel being classified is in the
center of this window. The classification result is a posterior class probability
for each pixel in the lung.

A hard classification can be obtained by using the maximum a posteriori
(MAP) rule in each pixel [11]. It should be noted that pixels that are not part
of the lung segmentations are not classified, but they can still contribute to the
classification, e.g. part of the exterior of the lung is in the local neighborhood
when classifying a pixel at the border of the lung. In this way all potential
relevant structural information is included, like being at the border of the lung
or near large vessels and airways.

The quantitative measures for emphysema that we propose are the relative
class area (RCA) and the mean class posterior (MCP). RCA is defined by the
relative amount of pixels with a given class label, obtained using the MAP rule,
divided by the total number of lung pixels N;

N
1 .
RCA,, = ﬁl Ej d(arg m?*XP(“—)a‘Xj) — 1), (4)

where § denotes the Kronecker delta function. MCP is given by averaging the
posterior class probability of a given class, obtained using (3), across all pixels

in the lung
N;

1
MCP., = & 2]: P(wilx;). (5)

3 Experiments and Results

3.1 Data

The data used for the experiments consists of a set of thin-slice CT images of the
thorax. CT was performed using GE equipment (LightSpeed QX/i; GE Medi-
cal Systems, Milwaukee, WI, USA) with four detector rows, using the following
parameters: In-plane resolution 0.78 x 0.78 mm, 1.25 mm slice thickness, tube
voltage 140 kV, and tube current 200 milliampere (mA). The slices were recon-
structed using a high spatial resolution (bone) algorithm. A population of 39
individuals, 9 healthy non-smokers, 10 smokers without COPD, and 20 smokers
diagnosed with moderate or severe COPD according to LFT [1] were scanned in
the upper, middle, and lower lung, resulting in a total of 117 CT slices. Visual
assessment of the leading pattern, either NT, CLE, PSE, or PLE, and sever-
ity, ranging from 0 to 5, in each of these slices was done individually by an
experienced chest radiologist and a CT experienced pulmonologist. In cases of
disagreement, consensus readings were obtained. 216 non-overlapping ROIs were
annotated in the slices representing the three classes: NT (107 observations, of
which 48 were near the lung border or hilum area), CLE (50 observations), and
PSE (59 observations). PLE was excluded due to underrepresentation in the data
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Model 2 NT Model 2 CLE Model 2 PSE
Model 1 NT 49.6 2.1 3.9
Model 1 CLE 2.4 18.8 3.5
Model 1 PSE 2.3 0.9 16.6

Table 2. Confusion matrix showing the percentage of pixel labels that the two models
agree/disagree on.

set as only 2 out of the 20 individuals diagnosed with COPD had PLE as the
leading pattern. These 216 ROIs were used as prototypes in the kNN classifier.

The 39 individuals also underwent LFT, performed according to the Euro-
pean Respiratory Society recommendations, prior to the CT scanning of the
lungs. One widely used LFT is forced vital capacity in one second (FEV;) which
is the amount of air in liters that you can forcibly blow out in one second. FEV;
can be adjusted for age, sex, and height by dividing by a predicted value ac-
cording to these three parameters, thereby obtaining FEV;%pred, and it is this
LFT that we will use in the evaluation.

3.2 Lung pixel classification

Each of the 39 individuals were in turn measured using our proposed approach
by classifying the pixels in each of the three CT slices using either Model 1 or
Model 2, while leaving the prototypes coming from that individual out of the
ENN classifier. The classification result is then used as a quantitative measure
for emphysema by applying (4) or (5) to the posterior. Figure 3.2 shows the CT
slices from two different patients, along with obtained pixel classifications and
NT pixel posterior, when using Model 1. For comparison the RA below -910 HU
(RA910) is shown in Figure 3.2 bottom-left.

3.3 Comparison of Model 1 and Model 2

The confusion matrix in Table 2 reveals that the two models generally are in
good agreement; in 85% of the pixels, the two models agree on the class label.
The highest level of disagreement is in the cases where Model 1 labels a pixel as
NT or CLE whereas Model 2 labels that pixel as PSE, which happens in 3.9%
and 3.5% of the cases. Correlating the class posteriors also shows a high degree
of agreement between the two models, with » = 0.93 for NT, » = 0.93 for CLE,
and r = 0.91 for PSE.

Two specific cases of disagreement are shown in Figure 2. In the first case
Model 1 labelled half the pixels as CLE whereas Model 2 labelled these pixels
mostly NT and partly CLE. Interestingly RA910 does not label one single pixel
as emphysematous. Perhaps the models have picked up on a texture pattern and
really found some emphysema, which was not possible using a simple threshold
of -910 HU. Increasing the threshold to -860 HU reveals some low attenuation
pixels partly in the areas labelled CLE by Model 1. Thus it seems that there is
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Fig. 1. Example images from two patients. The images are organized as follows: First column of
each sub-box is a healthy non-smoker and second column is a patient diagnosed with moderate
COPD according to LFT [1]. First row of each sub-box corresponds to the upper scan, second row
to the middle scan, and third row to the bottom scan. Top-left: The segmented images used in the
classification. The images are shown with the window setting -600/1500 HU. Top-right: The pixel
classification result obtained when applying Model 1 to the lung segmentations shown top-left. Green
corresponds to NT, blue to CLE, and red to PSE. Bottom-left: A threshold of -910 HU applied
to the lung segmentation shown top-left. The areas below the threshold are indicated in black and
the lung segmentations are indicated in light gray. Bottom-right: Posteriori NT probabilities. Dark
red means that a NT prototype ROI is very similar to the given pixel’s neighborhood in histogram
feature space and corresponds to a NT probability of 0.48 when using (3). Dark blue means that
all NT prototype ROIs are dissimilar and corresponds to a NT probability of 0.16. Refer to the
electronic version for colors.
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Fig. 2. Visual inspection of the classification results obtained using the two models
in Table 1. Left: A non-smoker. Right: A smoker diagnosed with COPD. Top: The
CT slice overlayed with a square indicating where the particular case is taken from.
Bottom: Zoom in on the cases, from left to right; the original image, a threshold of
-910 HU applied to the image with the areas below the threshold indicated in black
and the lung segmentations indicated in light gray, the classification result obtained
using Model 1, and the classification result obtained using Model 2. Green corresponds
to N'T, blue to CLE, and red to PSE. Refer to the electronic version for colors.

some emphysematous pattern present that Model 1 picks up. In the second case
in the right part of Figure 2 Model 1 has labelled all lung pixels as CLE whereas
Model 2 has labelled some CLE and some PSE. The ROI in the second case is
from within the lung and thus by definition it should not be PSE. An explanation
of why Model 2 labels many of the pixels PSE could be the large vessels seen
within the ROI. Since we are using histograms, the spatial information in the
ROI is ignored, and thus emphysematous regions with large vessels can share
similarities with emphysema at the boundary in histogram feature space.

3.4 Relation to lung function

We evaluate the quantitative measures obtained from the pixel classification by
correlating them with two other measures for emphysema, namely FEV; %pred,
representing the classical objective way of measuring COPD by LFT, and an
emphysema score (ES) computed by summing the visually assessed emphysema
severity across the three slices. ES represents the subjective way of measuring
emphysema by human visual assessment. For reference, we also compute RA910
for each of the patients and correlate that with FEV;%pred and ES. The Corre-
lation results are reported in Table 3, where the correlations with FEV;%pred
are computed using the Pearson correlation coefficient r and the correlations
with ES are computed using the Kendall tau correlation coefficient 7.

RCA correlate well with FEV;%pred and generally also MCP. All texture
based quantitative parameters for emphysema show significant correlation with
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Measure FEV,%pred ES Separation
Model 1 RCAnT 0.80 (< 107°) -0.56 (0.006) <107°
Model 1 RCAcrr -0.77 (< 107%) 0.55 (0.006) <107°
Model 1 RCApse -0.77 (< 107%) 0.49 (0.067) <107°
Model 1 MCPnr 0.73 (< 107°) -0.56 (< 107°) <107
Model 1 MCPcrg -0.58 (0.0001) 0.48 (0.0001) 0.0005
Model 1 MCPpsp -0.73 (< 1077) 0.50 (< 107°) <107°
Model 2 RCAnT 0.79 (< 1077) -0.56 (0.004) <107°
Model 2 RCAcrr -0.76 (< 107°) 0.53 (0.013) <107®
Model 2 RCApsp -0.74 (< 107%) 0.46 (0.158) <107°
Model 2 MCP n7 0.73 (< 107°) -0.54 (< 107%) <107°
Model 2 MCPcrr -0.63 (< 107°) 0.48 (0.0001) 0.0001
Model 2 MCPpsg -0.69 (< 107°) 0.49 (0.0001) <107°
RA910 -0.62 (< 107°) 0.61 (< 107°) <107°
FEV;%pred - -0.44 (< 107%) <107°

Table 3. Correlations with FEV;%pred and ES as well as ability to separate patient
groups according the a rank sum test. p-values of the correlations are shown in paren-
thesis next to the correlation coefficients.

FEV;%pred and all except one, MCPcpg of Model 1, have a higher correlation
with FEV;%pred than RA910. RCA 1 measured using Model 1 achieves the
highest correlation of » = 0.80, which is significantly better than the correlation
of r = —0.62 for RA910 (p = 0.006) according to a Hotelling/Williams test [12].
Note that we in the Hotelling/Williams test inverted the signs of the RA910 mea-
sures so that the two correlations being compared have the same sign. Looking
at the correlations with ES, RA910 achieves the highest correlation coefficient
(7 = 0.61). Only two correlation coefficients are not significantly different from
zero, and that is RCA pgsg using both models. All the texture based quantitative
parameters for emphysema, as well as FEV;%pred and RA910, can separate
non-smokers/healthy smokers from smokers diagnosed with COPD according to
a rank sum test (p < 1074).

4 Discussion and Conclusion

It is not surprising that the texture based emphysema parameters perform dif-
ferently than RA910, since the two approaches are very different in the amount
of information they utilize. RA910 is based on a single threshold, -910 HU, and
makes a decision for each pixel based only on the information in that particular
pixel. The texture based emphysema parameters on the other hand, base the
decision on all pixels in a local neighborhood and thus incorporate much more
information. Further, the decision is not based on a specific threshold parameter,
but is based on the distribution of the attenuation values as well as measure-
ments of local structure. A consequence of this is that the proposed texture based
approaches are expected to be less sensitive to differences in inspiration level. It
is known that RA is sensitive to changes in inspiration level, since inspiration
level influences the lung density, and thereby the CT attenuation values [13].



-14-

FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

The insensitivity to inspiration level is something that is not investigated in this
paper, but could be interesting to evaluate in the future on longitudinal data.

There is a tendency that RCA correlate better with FEV;%pred than MCP,
however the difference is not significant in all cases. This tendency could be due
to uncertainty at the boundaries, evident in the bottom-right part of Figure 3.2,
causing boundary effects as seen in the top-right part of Figure 3.2.

To conclude, we have proposed new parameters for quantifying emphysema
in lung CT using texture based pixel classification. The proposed measures gen-
erally correlate well with lung function and the highest correlation, r = 0.80, is
achieved by the relative normal tissue area.
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Strategic Research (NABIIT), the Netherlands Organisation for Scientific Re-
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Abstract. Growth assessment for lung nodules is known to be the most
relevant clinical parameter to distinguish malignant nodules from benign
ones. The assessment of growth is usually done by multiple segmenta-
tions in follow-up CT examinations of a patient. Each segmentation is
performed separately yielding a volume number assigned to the nodule
at a certain point in time. Experiments have shown that the segmented
volume may change due to small variations in certain voxel values. To cir-
cumvent this ill-posed problem, we present a growth assessment scheme
which combines the result of an elastic registration and of a segmentation
method. Regarding the absence of publicly available ground truth data,
a method for the creation of artificial nodules is developed. Experiments
show that the described combined growth assessment method leads to
similar or better results than a growth assessment method achieved by
a segmentation method only.

1 Introduction

The differential diagnosis of lung nodules is an essential step in the early de-
tection of lung cancer. Besides shape properties, the most important criterion
for the distinction between malignant and benign nodules is the growth rate.
The growth assessment is usually done by comparing follow-up CT examina-
tions of a patient, typically with a difference of three to six months. Currently,
growth assessment schemes consist of a matching of the nodule positions in a
first step, followed by a (semi-)automatic segmentation of the (same) nodule in
both examinations as a second step, and, finally, a comparison of the two seg-
mented volumes from which a change in volume can be computed. Of particular
importance is the fact that each segmentation of the same nodule is performed
independently from the other one. Experiments with follow-up data have shown
that the segmented volumes may vary due to small variations in certain voxel
values, e.g., if a nodule is attached to a vessel in the follow-up scan but not in
the baseline scan. In this case a leakage of the follow-up segmentation into the
vessel is reported [1]. To circumvent unwanted leakage into adjacent structures,
detection of lung wall and vessel structures can be employed [2]. However, from
the view of a vessel structure, the segmentation scheme may be faced again with
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Fig. 1. Illustration of segmentation as an ill-posed problem: While the segmentation
of an artificial vessel-attached nodule (left) is successful (center left), a slight modi-
fication at the nodule-vessel interface (center right) changes the segmentation result
significantly (right).

a leakage problem, here from the vessel into the nodule. In particular, nodules
which are heavily vascularized by vessels are affected. The leakage problem is
even more prominent for small nodules, since a vessel-attached nodule with a
similar or smaller diameter than the vessel diameter is likely to be characterized
as protuberance of the vessel. From a mathematical point of view the segmenta-
tion of follow-up scans can therefore be expressed as an ill-posed problem, since
small variations in the input data (the examinations themselves) may lead to
large variations in the output data (the segmented volumes), cf. Figure 1.

In contrast to a segmentation, a regularized registration scheme is known
to be a well-posed problem [3]. Its application to lung nodules enables for dis-
crimination between expanding and shrinking lesions, for instance, by visually
interpreting the displacement field and/or the according Jacobian map [4]. For a
quantitative analysis we propose to combine the registration with a segmentation
of the nodule which is required for the baseline scan only. The displacement field
is then evaluated within the nodule, resulting in a single growth factor. Here, we
compare the popular Jacobian map with two alternative criteria: the divergence
of the displacement field and the quotient of the volume of the original and the
deformed segmentation.

Validation should be based on ground truth data which, at first, are gen-
erated by multiple readers, at second, deal with follow-up data, and at third,
are publicly available. Multiple reader delineations are, for instance, provided
by the lung image database consortium (LIDC) [5]. However, no follow-up data
are included in the LIDC database. Existing follow-up data known to us either
originate from so-called coffee-break examinations (inter-examination time range
from several minutes up to a few hours, therefore the nodule volume is assumed
to not have changed between the scans) or are delineated by a single radiologist
only, cf., e.g., [2]. Nevertheless, multiple reader delineations are advantageous,
since inter-observer variability can be taken into account. For the LIDC data, an
assessment revealed a median volumetric deviation of each delineation from the
averaged delineation by 14% [6]. To our knowledge, there is no publicly avail-
able screening study including both follow-up data and delineations by multiple
readers. Therefore, for validation and for comparison with a standard segmen-
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tation method, artificial nodules are generated — either embedded into noisy
background or into real-world data.

For the registration we use an elastic model based on the Navier-Lamé equa-
tions. Its principles and numerical implementation are introduced in Section
2. The second section finishes with the description of three growth assessment
methods which combine the result of the registration with the result of a segmen-
tation method. Section 3 describes the settings of the experiments. A method
for generating artificial nodules as test cases is introduced here. The results are
presented in Section 4 and concluded in Section 5.

2 Methods

Basic ideas. Given a reference and a template image, image registration tries
to find a displacement field v : R — R3 such, that the displaced template im-
age minimizes both a certain similarity measure D and a regularizing term S.
Within this work, the sum of squared differences is used as similarity measure.
By adding a regularizing term, the registration problem is a well-posed prob-
lem [3]. In general, a regularizer introduces assumptions about the likelihood of
certain transformations. Within this context, a perfect regularizer would privi-
lege transformations, which are likely to be the result of growth or shrinkage of a
nodule. However, no general growth model for pulmonary nodules is known until
today so that a more general regularizer has to be chosen. Flastic registration
assumes that the images can be characterized as an elastic and compressible ma-
terial and leads to the elastic regularizer [7]. The elastic properties are modelled
by the so-called Lamé constants A, p. By using calculus of variations a solution
for the regularized registration problem is calculated by computing a stationary
point u of its Gateaux derivative. This leads to a system of non-linear partial
differential equations, known as Navier-Lamé equations,

Alu] == pAu+ (p+ AV -Vu=f, (1)

where f is the Gateaux derivative of D.

Discretization & numerical solution. For the discretization of (1) finite
differences in conjunction with Neumann boundary conditions have been chosen.
A time-marching iteration scheme is employed resulting in the iterative solution
of

(kA + 1d) vec(u™V) = k- vee(f(u)) + vee(w®V) =: f(uV), le Ny, (2)

with &k as temporal step size, vec(:) as lexicographically ordering operator and
Avec(u) as discretization of Afu]. For details, we refer to [3,8]. This leads to a
linear system of equations (LSE) with 3N unknowns, where N is the number
of voxels of a single image. Since (kA + Id) does not depend on u®, it has to
be computed only once. Opposed to this, the term f depends on ™ and needs
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to be recomputed in every iteration step. For the calculation of the displaced
template image a linear interpolation scheme turned out to be sufficient. The
matrix (kA + Id) is sparse, symmetric [8] and highly structured with a typical
size of 3 - 402 entries. For the solution of the LSE a conjugate gradient method
has been used.

Starting with u(®) = 0 the step size k is initialized such, that the maximum
displacement in the first iteration step is approximately the voxel grid width and
set to be kmax. Then, for each iteration step, the step size k is adapted under
certain conditions. If DU+D > DO then the step size is halved and the current
iteration step repeated. If DD « DO and k + Ay < kmax then the step size
is increased by Ajg. This procedure works well within all our experiments. The
iteration loop is stopped when the relative update of D is below a threshold, i.e.,
(DWW — D) /DU < 1073, Throughout this work, the regularizing parameter
A has been set to zero and u has been chosen as 0.01 being large enough to avoid
any folding within the displacement u.

Estimating the growth rate. The displacement field u as result of the de-
scribed registration scheme together with a segmentation image allows the growth
assessment of a nodule. Here, a segmentation image is defined as a binary mask
indicating the affiliation of an image element to the object of interest. The set of
its image elements with a value of 1 is called foreground in the following. Assum-
ing a segmentation of the reference image, three different criteria are employed
to estimate the growth rate.

The first criterion is based on a transformation of the segmentation image
according to the displacement field u. With a given sampling rate, the growth
rate is assessed by comparing the volume of the original segmentation image
with the volume of the deformed segmentation image.

The second criterion calculates the determinant of the Jacobian of u. It rep-
resents the local volume difference between reference and template image [9]
and is given by det(/d + Vu). Taking the mean value over the foreground of the
underlying segmentation image results in the estimated growth rate.

The third criterion is inspired by vector calculus and utilizes the divergence
of the displacement field. Again, the growth rate is estimated by taking the mean
value with respect to the segmentation.

3 Experiments

A general problem for the evaluation part of this work is the lack of ground truth
data. Though, common public databases as the lung image database provided
by the LIDC [5] contain delineations by various radiologists, they do not contain
delineations for follow-up cases. Single-reader delineations, on the other hand,
do not allow for assessing the inter-observer variability. Since experiments on the
LIDC data revealed that this variability is not negligible (comparing the volume
of each single radiologist’s delineation to the mean radiologists’ delineation, a
median deviation of 14% could be observed [6]), a quantitative comparison is
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difficult on the basis of a single delineation. Finally, phantoms currently do not
reflect any vascularization around a nodule and therefore do not provide suitable
ground truth for our purpose.

Consequently, an algorithm for generating artificial nodules and simulating
growth or shrinkage has been developed. The advantage of this procedure is
the availability of ground truth segmentations and the possibility to influence
certain characteristics of the generated nodules, e.g., their size or surrounding.
Each test case consists of two images, and each image contains one artificially
generated nodule. These images may be seen as follow-up images of a CT scan.
Two kinds of test cases have been created. While the A-cases are embedded into
noisy background, the B-cases are embedded into real-world image data of lung
tissue. Category A contains 246 test cases and category B contains 68 test cases.
The volumes of the artificial nodules, which are used for the evaluation of the
described growth assessment methods, range from 30mm? to 1529mm? according
to a mean diameter ranging from about 4 to 14mm. The simulated growth factors
range from 0.7 to 1.4. The voxel resolution was set to 0.6 x 0.6 x Imms3.

Generating test cases. The generation of artificial nodules is inspired by
[10] and utilizes the parametric representation as described in [6]. Briefly, the
surface of a nodule is spanned by sample vectors which depend on a spherical
basis model. With their origin on the sphere the sample vectors point into the
direction of the surface normals. Radial basis function interpolation is used to
describe the shape profile. For further details we refer to [6].

The creation of the test cases is explained next. Starting with an artificial
nodule described by a set of parameters, a second nodule with the same center
is generated by changing these parameters such that growth or shrinkage is
simulated. This is done by randomly choosing a sample vector as deformation
center on the surface of the nodule model followed by an in- or decrease of its
length randomly. Proportional to the distance to the deformation center the
according neighboring vectors are modified. The two models will be denoted as
P, and P; in the following and contain the parameters needed for an explicit
surface description. Once the models are calculated, corresponding binary masks
are created and smoothed with a Gaussian kernel with variance ¢ which results
in image masks QJ(P1),Q%(P2) with range [0,1]. Within our experiments, o
was set to 1. Given now a foreground image I’ with normally distributed values
(up = 0HU, op = 60HU) and a background image B, the final test case images
Ry 2 are calculated by Q7(FP;) - F'+ Q¢(P;) - B, @ = 1,2. Note that in case of
category A, the background image B consists of normally distributed intensity
values (up = —860HU, op = 60HU), whereas cases of category B each use a
subvolume of real CT data. Thus, category A contains only isolated nodules,
whereas category B contains mainly nodules located next to vessels and/or the
pleura or other pulmonary structures. Since the parametric model is given for
each of the test cases, an according ground truth segmentation can be calculated
for each of these. Examples of test cases of category B created with the described
method are shown in Figure 2.
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Fig. 2. Exemplary axial views (top row: baseline, bottom row: follow-up) of test cases
of category B, i.e., artificial nodules embedded into real world image data.

Evaluating the methods. For the evaluation of the presented growth assess-
ment methods the test cases of each category have been subdivided into three
sets. The mean volume of both nodules of each test case has been used as leading
quantity for this.

As described in Section 2 the proposed growth assessment requires a segmen-
tation image. To distinguish the accuracy of the registration step from that of the
segmentation step, we assume a correct segmentation of the baseline scan and,
therefore, employ the ground-truth segmentation image for this specific scan.

To compare the three combining assessment methods, i.e., the methods which
utilize one segmentation image and a displacement as result of an elastic registra-
tion, with a non-combining growth assessment scheme, a segmentation of both
the baseline and the follow-up scan is computed separately with a state-of-the-art
segmentation method [11]. This segmentation method has been evaluated on 33
nodules in a study at the Hematology-Oncology Clinic of Little Rock, Arkansas.
Comparisons were made of manual segmentations between two radiologists, and
manual vs. automatic volume segmentation. The agreement between manual and
automatic volumetry proved to be equally good as the agreement between the
two human readers [11].

4 Results

For the quantification of the performances of the growth assessment methods
the magnitude of the difference between the real and the assessed growth rate
(MRA) has been chosen. The results for cases from category A and B are shown in
Table 1. Arranged according to the nodule volume, mean and standard deviation
of MRA are given for the standard segmentation method (SEGM) as well as for
the registration method evaluated by deforming the segmentation image (DEF),
calculating the mean of the Jacobian map (JAC), and determining the mean of
the divergence (DIV).
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Table 1. Mean (standard deviation) of the MRA in terms of the percentage for cate-
gories A and B.

| SEGM DEF JAC DIV
30 — 70 mm® 4 9 (3.8) 1(4.4) 7.0 (4.6) 7.0 (5.1)
A 71 — 172 mm?® 3 (2.2) 4 (3.5) 4.5 (3.6) 5.1 (3.9)
173 — 1529 mm? 6 (1.3) 3 (2.7) 3.1 (2.6) 3.9 (3.1)
all 9 (2.7) 6 (3.7) 4.6 (3.8) 5.1 (4.1)
30 — 70 mm? 12.3 (12.8) 3 (3.6) 5.8 (3.8) 5.8 (4.3)
B 71 — 172 mm?® 17.0 (27.7) 5 (3.6) 4.7 (3.8) 4 8 (4.1)
173 — 1529 mm® 8.4 (13.4) 1 (3.3) 4.2 (3.1) 1 (3.3)
all 13.1 (18.9) 6 (3.5) 4.8 (3.6) 8 (3.9)

In category A it can be observed that all methods perform better with an in-
creasing mean volume of the nodules. Overall, SEGM leads to a MRA of 2.9%. In
comparison to this, the MRA of the combining methods is about two percentage
points larger. This can be explained by the fact that segmentation of an isolated
nodule is a straightforward task. Consequently, its accuracy is expected to be
higher than for the combining methods which involve two algorithmic steps and
thus two sources of potential errors. In contrast, growth estimation for embedded
nodules as in category B is a more complicated task from a segmentation point
of view since leakage into adjacent vessels may occur (cf. Figures 1,2).

For category B, SEGM results in a MRA of 13.1% which is about four times
larger than the MRA for category A cases but still in the range of inter-observer
variability [6]. In contrast, the MRA of the combining methods stays below 5%
and is nearly the same as for the category A cases.

Compared to each other, the three combining methods lead in both categories
to similar results. Since the numerical calculation of DEF does not include the
approximation of derivatives, this method may be superior to JAC and DIV
from a numerical point of view. However, our results show only minor better
results for DEF.

Even though the category A cases are supposed to be less challenging, the
combining methods lead to slightly worse results for the set of nodules with a
volume of 30 to 70mm?® than the according category B cases. Further investi-
gation will clarify if this observation is significant or if it is caused by the low
number of test cases.

5 Conclusion

We presented a growth assessment method for lung nodules which combines reg-
istration and segmentation. Since small variations in the examination data may
lead to large variations in the segmented volumes, segmentation of follow-up
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scans can be seen as an ill-posed problem. In contrast, a regularized registration
scheme is a well-posed problem. It is based on an elastic model that character-
izes the image as an elastic and compressible material. In combination with a
segmentation image of the baseline scan, the displacement field as result of the
registration is evaluated and a growth factor estimated. Three different eval-
uation methods have been analyzed. Motivated by the lack of ground truth,
artificially generated test cases have been used for validation — either as iso-
lated nodules or embedded into real-world data. While for isolated nodules the
proposed combined method performs slightly worse than a state-of-the-art seg-
mentation method, the situation changes for the more challenging embedded
nodules: Here, the proposed combined method outperforms the non-combining
method by a factor of four. Moreover, this result is independent of the choice of
the evaluation method.
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Abstract. This article presents a new algorithm for segmenting juxta-
pleural lung nodules in CT scans. Segmentation is an essential part of
volumetric therapy monitoring for cancer patients. Pulmonary nodules
that have extensive contact to the chest wall or other structures of similar
density are a special challenge for automatic segmentation. We propose
a ray casting approach to identify points at the visible boundary of the
nodule and then approximate its shape by an ellipsoid that is a least
squares fit of these points. The adjacent structures are cut off by mor-
phological processing within a dilated version of this ellipsoid. Evaluation
on 333 juxtapleural nodules showed that this method yields good results
and can be integrated easily into a general segmentation algorithm for
lung nodules with no substantial increase in computation time.

1 Introduction

In oncological therapy monitoring, the estimation of tumor growth from consec-
utive CT scans is an important aspect in deciding whether the given treatment
is adequate for the patient. Traditionally, this is done by measuring and compar-
ing the largest axial diameter of each lesion manually, but this approach implies
several problems. First, manual examinations are always subjective, error-prone
and time-consuming. Second and even more importantly, a 3d quantity (volume)
is estimated based on a 1d measurement (diameter). This simplification would be
valid if tumors were perfectly spherical and grew symmetrically but in practice
it leads to inaccurate results.

Although volumetry has the potential to enhance the accuracy and repro-
ducibility of growth estimation, measuring the lesion volume manually would
take too much time in the workflow of a radiologist. This is the motivation for
employing software assistants in oncological therapy monitoring since they are
able to perform automatic volume measurements in the 3d data. In order to be
accepted in clinical routine, they have to work both fast and accurately. Lesion
segmentation is an essential prerequisite for volumetry and efficient algorithms
are needed for different kinds of tumors.

In this article, we focus on the segmentation of juxtapleural lung nodules.
Pulmonary nodules are mostly located centrally within the lung parenchyma,
but they can also be attached to the pleura, a thin membrane that covers the
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lungs. In CT scans of the thorax, the voxels can basically be divided into two
density classes: while the dark ones represent the lung parenchyma, bright voxels
may be nodules, but also blood vessels or structures adjacent to the lungs such
as the chest wall, the heart, or the diaphragm (Fig. 1(a)). Since the pleura itself
is invisible in CT images the boundary between a juxtapleural nodule and any of
these structures shows little or no contrast and it is sometimes impossible even
for a radiologist to determine the exact boundary of a nodule. Therefore the
segmentation of this kind of lesions is particularly challenging; a mere threshold-
based method or simple morphological processing is not sufficient.

In the following, all computations are restricted to a region of interest (ROI)
whose center and size are determined by a user-defined stroke that is drawn
across the nodule. We assume that the ROI contains the lesion completely and
its center is close to the center of the lesion. Furthermore, we supersample the
ROI to isotropic voxels if necessary.

2 State of the Art

Several authors that worked on solid lung nodule segmentation have also pro-
posed solutions for juxtapleural nodules. An obvious idea is to compute a lung
segmentation in order to separate the nodule from structures outside the lungs as
it is done by Fetita et al. [1]. However, we decided not to incorporate any global
information in order to keep computation times as low as possible and to be able
to integrate the algorithm into an existing workstation. Van Ginneken [2] uses
a local 2d lung field segmentation but no evaluation for juxtapleural nodules is
given.

One of the first dedicated segmentation algorithms for juxtapleural nodules
was presented by Shen et al. [3]. Assuming that the chest wall is physiologically
smooth and that a nodule creates a “bump” with a high local curvature, the
nodule can be separated by smoothing the wall surface. This is implemented by
projecting the surface to a plane whose normal is the mean of all surface voxel
normals. On the projection image, the nodule appears as a region of high values
which are replaced by a cubic polynomial interpolation of the other values. The
smoothed 3d surface is then computed via backprojection. This idea is promising
but there will be problems when the wall itself has points of high curvature as
in Fig. 2(c).

An algorithm proposed by Wiemker et al. [4] starts with region growing and
determines the optimal cut-off value retrospectively by means of an objective
function that separates the wall at its strongest inflection. Unfortunately, no
results for juxtapleural nodules are shown.

Reeves et al. [5] approximate the pleural surface by a clipping plane that is
iteratively refined until a leap in volume change is observed when it actually
reaches the pleura. This works for small nodules where the actual convex or
concave shape of the lungs can be ignored in a local view, but in other cases a
plane is not suitable and the algorithm will fail.
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Okada et al. [6] presented an approach that uses morphological opening sim-
ilar to ours, but applied it in an inverse way: the size of the structure element is
chosen such that the nodule is removed and the adjacent structure is retained.
This presumes, however, that in the ROI the wall region is significantly larger
than the nodule. Therefore the approach will fail when the nodule is large or
when the wall has a concave shape. Furthermore, it is implemented such that
segmenting a juxtapleural nodule takes more than twice as long as for a central
one.

In a recent publication, Dehmeshki et al. [7] describe an algorithm that uses
sphericity-constrained region growing on a fuzzy connectedness map. Successful
results are reported for nodules “very close to lung wall or diaphragm” but the
method always needs a visible contrast between the nodule and the adjacent
structure.

The methods described in this article are based on the algorithm by Kuhnigk
et al. [8] which has been designed to segment small and large nodules even with
extensive vascularization. This is done by an initial region growing, followed by
morphological opening with an adaptive erosion strength to remove blood vessels.
As a preliminary solution for juxtapleural nodules, the algorithm makes use of
the fact that the lungs are convex in most parts and that juxtapleural nodules
create a concavity in this shape. The idea is to reconstruct the lung shape of the
tumor-free state by computing the convex hull of the lung parenchyma within
the ROI and cut off the nodule along the boundary of the convex hull. However,
in regions where the lungs are not convex, such as the boundaries to the heart
or the diaphragm, the convex hull is not suitable for this purpose since it does
not remove convex parts of the attached structure completely. Furthermore, the
results depend on the size of the ROI. This leads to poor segmentation results
as shown in Fig. 2(d,e,f). In our contribution, we present an improvement to the
algorithm that can handle this case as well. Parts of this work have previously
been published in German [9].

3 Segmentation Method

The goal of our extension of Kuhnigk’s algorithm [8] was to improve the seg-
mentation of nodules located at concave parts of the pleura while changing the
original method as little as possible in order to get consistent results. The convex
hull operation is obviously not suitable for reconstructing the shape of a concave
object but we observed that the error decreases when the ROI is made smaller
since the convex hull is basically determined by the most distant points of the
lung boundary that are contained in the ROI. Therefore our approach is to make
the ROI as small as possible so that the disturbing effect of the concavity is min-
imized. As a minimal ROI, we choose a dilated ellipsoid that is computed as an
approximation of the nodule shape. Ellipsoid approximation of lung nodules has
been used with different goals and methods in the literature [6,10].
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®

Fig. 1. Step-by-step illustration of the segmentation algorithm for juxtapleural lung
nodules, exemplified by the central axial slice. (a) Result mask of the initial region
growing and rays cast towards the boundary of the mask. (b) Valid ray endpoints on
the nodule boundary. (¢) Ellipsoid fitted to the boundary points. (d) Part of the mask
within the dilated ellipsoid. (e) Convex hull of the inverse mask within the dilated
ellipsoid. (f) Difference of convex hull and inverse mask.

Our method is a preprocessing step for Kuhnigk’s algorithm [8] and consists
of three parts which are described in the following sections and illustrated in
Fig. 1:

1. identification of points on the nodule boundary by region growing and sub-
sequent ray casting from the seed point;

2. calculation of an ellipsoid that approximates the shape of the nodule;

3. convex hull operation as in [8], but restricted to the dilated ellipsoid.

3.1 Region Growing and Ray Casting

Initially, region growing is performed, using the ROI center as a seed point.
Since we only need to separate the nodule and attached high-density structures
from the lung parenchyma in this first step, we can use —400 HU as a fixed
threshold. In order to find points on the boundary between the nodule and the
parenchyma, we apply a ray casting approach. Starting from the seed point, rays
are sent out through all surface voxels of a 5 x 5 x 5 cube around the seed point.
This ensures a symmetric distribution of rays and an alignment to the voxel
grid. These 53 — 33 = 98 rays are traced until they reach either the boundary
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of the region growing mask or leave the ROI (Fig. 1(a)). In the former case, the
endpoints are stored, otherwise discarded (Fig. 1(b)). Since some false boundary
points may be found due to noise or other structures in the outer parts of the
ROI, ray endpoints above a certain distance from the seed point should also be
discarded. We found the 95% quantile of the distances of all points to provide a
good threshold.

3.2 Ellipsoid Approximation

Typically, the points found by the ray casting procedure cover a major part
of the actual nodule surface. Assuming that the nodule has approximately an
ellipsoid shape, we aim at reconstructing this shape by fitting an ellipsoid to the
points (Fig. 1(c)).

A 3d ellipsoid is defined as a conic section

{x e R®|xTAx +bTx + ¢ =0}, (1)

where the symmetric matrix A € R®*3 is positive or negative definite. Due to
its symmetry, A has only six degrees of freedom, plus a total of four for b € R3
and ¢ € R. From the valid endpoints of the 98 rays we want to determine those
ellipsoid parameters which are optimal in a least squares sense. This establishes
a non-linear equation system which can be reduced to a generalized eigenvalue
problem and solved efficiently with a method proposed by Grammalidis and
Strintzis [11]. It does not guarantee A to be definite, but our experiments showed
that this is almost always the case. If the points are distributed in a way such
that it is not possible to fit an ellipsoid to them — if the nodule, for example, has
an irregular shape or very extensive contact to other structures — a sphere can
be computed instead with the radius as the only free parameter. Although this
is a coarser approximation, it can still yield acceptable results in most of these
rare cases.

It should be noted that the center of the ellipsoid is included in the optimiza-
tion. The user-defined seed point influences only the distribution of the boundary
points. Since the equation system is highly overdetermined it is robust against
variations caused by different user interactions.

3.3 Convex Hull

For the following computations we use a slightly dilated version of the ellipsoid
as a new minimal ROI (Fig. 1(d)). The dilation is necessary to ensure that
the nodule is covered completely. At its margin, the ellipsoid contains some
parenchyma voxels as well, so the convex hull operation can now be applied to
reconstruct the original lung shape within this ROI (Fig. 1(e)). This is sufficient
for determining the boundary of the nodule and it works in concave parts of the
lungs as well because these concavities are no longer visible inside the ellipsoid.
For performance reasons, the convex hull has been implemented as the union of
slice-wise convex hulls in axial, sagittal, and coronal views.

Subsequently, the original algorithm [8] is executed and the adaptive opening
procedure removes attached vessels. The final result is shown in (Fig. 1(f)).
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Fig. 2. Upper row: Examples of successful segmentations with the extended algorithm.
Lower row: Corresponding results of the original version.

4 Results and Discussion

For our evaluation, we used a database of 333 ROISs of juxtapleural lung nodules
from various patients, clinics and CT scanners with seed points set manually by
radiologists. Since extensive studies have been conducted for the original ver-
sion [8], we focussed on the effects of the extensions presented above. It is often
impossible to determine the exact boundary between a nodule and a structure it
is attached to. In cases like these where no reliable ground truth is available it is
most important to produce consistent results so that volumes can be compared
over time. Therefore we evaluated the segmentation results visually and exam-
ined if they were consistent with our approach to reconstruct the tumor-free
shape of the lung parenchyma.

While in 71% of the cases the result of the original algorithm was classified as
good, our extension could increase this proportion to 89%. For an additional 5%,
a good result was obtained after applying the interactive correction procedure
of [8]. Fig. 2 shows some examples of successful segmentations and reveals a
significant improvement over the previous results. Most of the nodules that could
not be segmented had complex shapes or a very extensive connection to high-
density structures that made it impossible to fit ellipsoids to them. Examples
can be seen in Fig. 3.

The experiments show that we have developed an algorithm which is able
to segment most juxtapleural lung nodules, even if the surrounding parenchyma
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(b)

Fig. 3. Examples of difficult cases where the new algorithm did not succeed. (a) The
ellipsoid does not cover the entire lesion since its 3d shape is hard to estimate. (b) The
extensive vasculature is not cut off completely.

is not convex. Thus we closed a gap in Kuhnigk’s algorithm [8] that had sys-
tematic problems in these cases. Our proposed method can easily be integrated
there and has no effect on central nodules. No significant increase in runtime
could be found. Although some additional operations are performed, subsequent
computations can be restricted to the dilated ellipsoid. The computation time
for the complete segmentation is around 2 s for large nodules and often below
1 s for small ones on a PC with a 2 GHz DualCore processor.

All of the nodules in this study had direct contact to the pleura and con-
stituted a sample of very difficult cases. Considering that [8] already reported
a success rate of 91% on a representative collection of central and juxtapleural
lung nodules, we can conclude that with our extension the algorithm allows a
successful segmentation in almost all cases.

Acknowledgement. This work was supported by a research grant from Siemens
Healthcare, Computed Tomography, Forchheim, Germany.
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Abstract. Our long term research goal is to develop a fully automated,
image-based diagnostic system for early diagnosis of pulmonary nodules
that may lead to lung cancer. This paper focuses on monitoring the de-
velopment of lung nodules detected in successive chest low dose (LD) CT
scans of a patient. We propose a new methodology for 3D LDCT data
registration which is non-rigid and involves two steps: (%) global align-
ment of one scan (target) to another scan (reference or prototype) using
the learned prior appearance model followed by (#) local alignment in
order to correct for intricate deformations. After equalizing signals for
two subsequent chest scans, visual appearance of these chest images is
modeled with a Markov-Gibbs random field with pairwise interaction.
We estimate the affine transformation that globally register the target
to the prototype by gradient descent maximization of a special Gibbs en-
ergy function. To handle local deformations, we deform each voxel of the
target over evolving closed equi-spaced surfaces (iso-surfaces) to closely
match the prototype. The evolution of the iso-surfaces is guided by an
exponential speed function in the directions that minimize distances be-
tween the corresponding voxel pairs on the iso-surfaces in both the data
sets. Preliminary results on the 135 LDCT data sets from 27 patients
show that our proper registration could lead to precise diagnosis and
identification of the development of the detected pulmonary nodules.

1 Introduction

Because lung cancer is the most common cause of cancer deaths, fast and accu-
rate analysis of pulmonary nodules is of major importance for medical computer-
aided diagnostic systems (CAD). We have already introduced the following three
successive pre-processing stages of such a system: a fully automatic segmentation
algorithm to separate lung regions from LDCT images [1], a fully automatic nod-
ule detection algorithm showing the accuracy up to 93.3% on the experimental
database containing 200 real LDCT chest data sets with 36,000 2D slices [3], and
an accurate segmentation algorithm to separate the detected pulmonary nodules
from the lung regions in the LDCT images [4]. This paper focuses on the next
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stage, namely, on accurate registration of the detected nodules for subsequent
volumetric measurements to monitor how the nodules are developing over the
time.

&0 &0 &0 $0

Fig. 1. Pre-processing steps: (a) an initial LDCT slice, (b) the segmented lung re-
gions [1], (c) the normalized segmented lung regions, and (d) the segmented pulmonary
nodules [4].

Figure 1 shows the results of the above-mentioned three pre-processing stages
of the proposed CAD system for monitoring detected pulmonary nodules (these
stages are not discussed in this paper): (¢) an initial LDCT slice in Fig. 1(a) is
segmented with the algorithms in [1] in order to isolate lung tissues from the
surrounding structures in the chest cavity as shown in Fig. 1(b), (i7) data nor-
malization as shown in Fig. 1(c), and (ii) the nodules in the isolated lung regions
are segmented by evolving deformable boundaries under forces that depend on
the learned current and prior appearance models as shown in Fig. 1(d) (see [4]).
This paper focuses on details of the proposed global and local registration models
being the core of our approach to monitoring the nodule development.

Previous work. Tracking the temporal nodule behavior is a challenging
task because of changes in the patient’s position at each data acquisition, as
well as effects of heart beats and respiration. In order to accurately measure
how the nodules are developing in time, all these motions should be compen-
sated by registering LDCT data sets taken at different time. Many methods
have been proposed for solving medical image registration problems (see e.g. [5])
and to exclude the lung motions (see [6]). Moreover, it has been reported that
the computer-assisted volume measurement is more reliable for small pulmonary
nodules than the measurement by human experts [7]. Therefore, the remaining
principal difficulty in monitoring and evaluating the nodule growth rate is auto-
matic identification (or registration) of corresponding nodules in the follow-up
scans. Registration of the two successive CT scans determines transformation of
one image with respect to the other [8]. Some examples of previous works on
registration of CT lung images are overviewed below.

Most of them exploit corresponding local structural elements (features) in
the images. For the follow-up of small nodules, Brown et al. [9] developed a
patient-specific model with 81% success for 27 nodules. Ko et al. [10] used cen-
troids of local structures to apply rigid and affine image registration with 96%
success for 58 nodules of 10 patients. To account for non-rigid motions and de-
formations of the lung, Woods et al. [11] developed an objective function using
an anisotropic smoothness constraint and a continuous mechanical model. Fea-
ture points required by this algorithm are detected and registered as explained
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in [12], and then the continuous mechanical model is used to interpolate the
image displacement. In the Wood’s experiments, the difference between the es-
timated and actual volumes was about 1.6%. Later on, Dougherty et al. [13]
developed an optical flow and model based motion estimation technique for es-
timating first a global parametric transformation and then local deformations of
the images. This method aligned sequential CT images with a 95% correlation.
Naqa et al. [14] combined the optical flow analysis with spirometric data (mea-
surements of the airflow into and out of lungs) in order to track the breathing
motion automatically. The spirometry in this study was obtained by using the
reconstruction of free breathing from the 4D CT data proposed in [15].

In several studies CT lung images are matched directly for pulmonary regis-
tration. Zhang et al. [16] used a standard lung atlas to analyze the pulmonary
structures in CT images. The atlas is registered to a new image by combining
global rigid and local elastic transformations of a 3D surface. Li et al. [17] still
used feature points to search for correspondence but exploited landmark and
intensity based registration algorithms to warp a template image to the rest of
the lung volumes. Okada et al. [18] proposed an anisotropic intensity model fit-
ting with analytical parameter estimation to evaluate the nodule volume without
explicit image segmentation. Zhao et al. [19] and Kostis et al. [20] proposed to
segment 2D and 3D nodules by thresholding the voxel intensity followed by a con-
nectivity filter. Their algorithms accurately segment well-defined solid nodules
with similar average intensities but become unreliable on cavities or non-solid
nodules. Reeves et al. [21] proposed a framework for measuring changes of the
nodule size from two CT scans recorded at different times. This approach is based
on using rigid registration to align the scans followed by adaptive thresholding
to segment the nodules.

Nonetheless, all the existing computational methods for monitoring the pul-
monary nodules detected in the CT scans do not account for large deformations
of the lung tissues due to breathing and heart beating. These methods are not
suitable for some types of pulmonary nodules such as cavities and ground glass
nodules. Also, these methods require significant user interaction which is difficult
for a clinical practitioner.

Our approach to nodule monitoring is simpler for the clinical use because
all the computations to follow up the pulmonary nodules detected in the LDCT
images are performed fast and in a fully automatic mode. To achieve the goal
of early diagnosis of malignant nodules, our system follows up the detected pul-
monary nodules using the following image analysis steps:

1. location of the nodule either by an expert (radiologist) or using our previous
lung CAD system [3];

2. segmentation of the lung in the LDCT images;

3. registration (global and local alignment) of two successive LDCT scans to
correct motion artefacts caused by breathing and other patient motions and
establish correspondence between the nodules;

4. segmentation of the corresponding pulmonary nodules; and
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5. measurement of volumetric changes between the corresponding nodules.

2 Lung Motion Correction Models

2.1 Global Alignment

Basic notation. Let Q = {0,...,Q —1}; R=[(z,y,2) :2=0,...,. X — L;y =
0,....,Y —1;2=0,...,Z — 1], and R, C R be a finite set of scalar image sig-
nals (e.g. gray levels), a 3D arithmetic lattice supporting digital LDCT image
data g : R — Q, and an arbitrary-shaped part of the lattice occupied by the
prototype, respectively. Let a finite set N = {(&1,7m1,(1), - -+, (§ns n» C) } Of the
(z,y, z)-coordinate offsets define neighboring voxels, or neighbors {((z + &,y +
nz+Q),(x—&y—n2-0):(&n.¢) € N} A R, interacting with each voxel
(2,9,2) € Ryp. The set A yields a 3D neighborhood graph on R, that specifies
translation invariant pairwise interactions between the voxels with n families
Cen,c of second-order cliques c¢ . c(z,y,2) = ((z,y,2),(x + &y + 0,2 + ().

Interaction strengths are given by a vector VT = {ng ¢t & n,¢) € N] of po-

tentials Vg—%C = [Vg,,,.g(q,q’) 1 (q,q') € Qﬂ depending on signal co-occurrences;
here T indicates transposition.

Data normalization: To account for possible monotone (order -preserving)
changes of signals (e.g. due to different sensor characteristics), every LDCT
data set is equalized using the cumulative empirical probability distribution of
its signals (see Fig. 1(c)).

MGRF based appearance model: In a generic MGRF with multiple pair-
wise interaction [1], the Gibbs probability P(g) o exp(E(g)) of an object g
aligned with the prototype g° on R, is specified with the Gibbs energy E(g) =
|R,|[VTF(g) where FT(g) is the vector of scaled empirical probability distribu-
tions of signal co-occurrences over each clique family: FT(g) = [f)&n,Can,c(g) :

(&mn,¢) € N] where peyc = leT"pf‘ is the relative size of the family and

Fenclg) = [fencladle) (@) € Qs here, feyclg.q'lg) = =iy
are empirical probabilities of signal co-occurrences, and Ce ) ¢iq.q'(9) € Ce ¢ is
a subfamily of the cliques c¢ ;¢ (z,y, z) supporting the co-occurrence (gs .. = ¢,
Gzt yt+n,z+¢c = ¢') in g. The co-occurrence distributions and the Gibbs energy
for the object are determined over Ry, i.e. within the prototype boundary af-
ter an object is affinely aligned with the prototype. To account for the affine
transformation, the initial image is resampled to the back-projected Ry by in-
terpolation.

The appearance model consists of the neighborhood N and the potential V
to be learned from the prototype.
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Learning the potentials: The MLE of V is proportional in the first approxi-
mation to the scaled centered empirical co-occurrence distributions for the pro-
totype [1]:

Vene =Apenc (Fg,n,g(f) - $U> i (Em Q) eN 1)

where U is the vector with unit components. The common scaling factor A is also
computed analytically; it is approximately equal to Q% if Q@ > 1 and pg ¢ = 1
for all (£,m,¢) € N. In our case it can be set to A = 1 because the registration
uses only relative potential values and energies.

Learning the characteristic neighbors: To find the characteristic neighbor-
hood set N, the relative Gibbs energies Eg , ¢(¢°) = p§7n7<V£n7<F§,n7<(g°) for
the clique families, i.e. the scaled variances of the corresponding empirical co-
occurrence distributions, are compared for a large number of possible candidates.

To automatically select the characteristic neighbors, we consider an em-
pirical probability distribution of the energies as a mixture of a large “non-
characteristic” low-energy component and a considerably smaller characteristic
high-energy component: P(E) = 7wP(E) + (1 — m)Pai(E). Both the compo-
nents Po(E), Pni(E) are of arbitrary shape and thus are approximated with
linear combinations of positive and negative discrete Gaussians (efficient EM-
based algorithms introduced in [1] are used for both the approximation and the
estimation of 7).

Appearance-based registration: The desired affine transformation of an ob-
ject g corresponds to a local maximum of its relative energy E(ga) = V' F(ga)
under the learned appearance model [N, V]. Here, g, is the part of the object

image reduced to R, by the 3D affine transformation a = [a11,...,as3]: ' =
vy — PR A

anxtagy+aizz+ais; Y = a1x+ay+azzz+a; 2 = az1r+azey+aszzz+ass.

The initial transformation step is a pure translation with a1; = a9 = 1;

a12 = a9 = 0, ensuring the most “energetic” overlap between the object and
prototype. In other words, the chosen initial position (aj,, ab,, a3,) maximizes
the Gibbs energy. Then the gradient search for the local energy maximum closest
to the initialization selects all the 12 parameters a.

Figures 2(c,d) show the results of the global alignment of two segmented
lungs. It is clear from Fig. 2(d) that the global alignment is not perfect due to
local deformation.

2.2 Local motion model

To handle local deformations, we propose to deform the object over evolving
closed equi-spaced surfaces (distance iso-surfaces) so that it closely matches the
prototype. The evolution is guided by an exponential speed function and intends
to minimize distances between corresponding voxel pairs on the iso-surfaces in
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Fig. 2. 3D global and local registration: (a) reference data, (b) target data, (c) tar-
get data after 3D affine transformation, (d) checkerboard visualization to show the
motion of lung tissues, (e) results of our non-rigid registration, and (f) checkerboard
visualization to show the quality of the proposed local deformation model.

both the images. The normalized cross correlation of the Gibbs energy is used
to find correspondences between the iso-surfaces.

Our approach involves the following steps. First, a distance map inside the
object is generated using fast marching level sets [22]. Secondly, the distance map
is used to generate iso-surfaces (Fig. 3). Note that the number of iso-surfaces
is not necessarily the same for both the images and depends on the accuracy
and the speed required by the user. The third step consists in finding corre-
spondences between the iso-surfaces using the normalized cross correlation of
the Gibbs energy. Finally, the evolution process deforms the iso-surfaces in the
first data set (the target image) to match the iso-surfaces in the second data set
(the prototype). The following notation is used below for defining the evolution
equation:

— bgl = [pZ :k=1,...,K] - K control points on a surface h on the reference
data such that pr = (2, Yk, 2x) form a circularly connected chain of line
segments (p1,P2), ---, (Pk-1,PK); (PK;P1);

- by, =[p):n=1,...,N] - N control points on a surface v on the target
data such that p, = (Zn,Yn, 2z) form a circularly connected chain of line
segments (P1,P2), - .-, (PN—1,PN); (PN, P1);

- S (pﬁ, p;) — the Euclidean distance between a point on the surface h in the
image g; and the corresponding point on the surface v in the image go;
— S(p),p) ') — the Euclidean distance between a point on the surface v in

the image g; and the nearest point on the surface v — 1 in gp, and
— v(.) — the propagation speed function.

The evolution b, — b,4; of a deformable boundary b in discrete time,
7=0,1,...,1is specified by the system p:’wJrl =p) . +v(P) ) n=1,...,N
of difference equations where u(p;/m) is a propagation speed function for the
control point pj, ; and u, - is the unit vector along the ray between the two

corresponding points. The propagation speed function

. h —1 1

V(p:;,,T) = min {S(pr p:i,r)v S(p;ym,, p’rym— )7 S(p;yL,ﬂ p’ry:;' )}
satisfies the condition v(p} ;) = 0 if S(p},p}, ) = 0 and prevents the current
point from cross-passing the closest neighbor surfaces. The latter restriction is
known as the smoothness constraint.
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Again, the checkerboard visualization (Fig. 2(d)) of the data set in Fig. 2(a)
and the aligned data set in Fig. 2(c) highlights the effect of the motion of lung
tissues. It can be seen that the connections at the lung edges between the two
volumes are not smooth when using only the global registration model. This
is due to the local deformation which comes from breathing and heart beats.
The connections of the lung edges between the two volumes are considerably
smoother when using the proposed local deformation model (see Fig. 2(f)).

Validation of the proposed local deformation model: To validate the local
registration, we simulated local deformations on the real LDCT data set using
the free form deformation (FFD) [23] (it simulates local displacement with the 3D
cubic spline). To measure the accuracy of the proposed local registration, three
different types of the deformation fields were generated with the FFD: (1) small
deformation, (2) moderate deformation, and (3) large deformation as shown in
Table 1. Our registration model has been applied to each type of deformation,
and the accuracy of our approach has been quantitatively assessed by comparing
the simulated and recovered voxel displacements (see Table 1).

Fig. 3. Equi-spaced surfaces.

Table 1. Registration accuracy for simulated displacements (all units in mm).

Simulated displacement

Type 1 | Type 2 | Type 3

Maximum displacement 1.7 10.8 19.9
Mean =+ standard deviation|0.6 & 0.4|2.3 £ 0.7|9.1 £ 1.1

Alignment error

Maximum error 0.6 1.4 2.1
Mean =+ standard deviation|0.4 £ 0.3|1.0 & 0.4|1.2 + 1.6

3 Experimental Results

The proposed registration models were tested on the clinical datasets collected
from 27 patients. Each patient has five LDCT scans, with the three months
period between each two successive scans. This preliminary clinical database
was collected by the LDCT scan protocol using a multidetector GE Light Speed
Plus scanner with the following scanning parameters: slice thickness of 2.5 mm
reconstructed every 1.5 mm, scanning pitch 1.5, pitch 1 mm, 140 KV, 100 MA,
and F.O.V 36 cm.

After the two volumes at different time instants are registered, the task is to
find out if the nodules are growing or not. For this purpose, the lung nodules were
segmented after registration using our previous approach [4]. Once the nodules
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are segmented in the original and the registered image sequences, the volumes
of the nodules are calculated using the Az, Ay, and Az values from the scanner
(in our case, 0.7, 0.7, and 2.5 mm, respectively). Figure 4 shows the estimated
growth rate for the two detected pulmonary nodules (for two different patients

over one year) before and after data alignment.

Patient #1
Scanning | Afer3 | After 6 After9 | After 12
periods months | months | months | months
- \ \
Before ( \ (
Alignment \‘ .
AV 791% 28.7% | 492% | 121.9% %
- > N =
After S 160
Alignment / (] e
J W y
AV 27.3% 68.9% | 113.5% | 151.9% 2120 Malignant
Paticnt #2 « >
£100]
Scanning | Afier 3 After 6 After0 | After 12 H . -
periods | months | months | months | months & 89 ~ /¢/ —
L2 ”~
) 3
Before - ] - g o e
Alignment o r=) o [ =) 3 4 Benign
AV 0.96% 1.7% 5.71% 8.9% 20 R
After e i [ oty /
Alignment ks S L Time (Months)
AV 0.14% 0.81% 1.12% 1.79%

Fig. 5. Estimated volumetric changes
for 14 malignant and 13 benign nod-
ules.

Fig. 4. Results of our registration for two
patients over one year.

It is clear that our alignment algorithm facilitates accurate evaluations of
temporal changes in the nodule size. Moreover, the proposed alignment would
help doctors and radiologists to track the nodule growth direction which is crucial
for surgical or radiation treatment. Also, it is apparent that the malignant nodule
doubles in size for 360 or less days, while the volumetric changes in the benign
nodule are very small (maximum 6% over one year, see Figure 5).

Our statistical analysis using the unpaired t-test shows that the difference
between the average growth rate of malignant nodules and the average growth
rate of benign nodules found with the proposed approach is statistically signifi-
cant (as shown in Table 2). Also, Table 2 shows that no significant difference is
found if the growth rate is measured without the data alignment step. Figure 5
shows volumetric changes for 14 malignant and 13 benign nodules. It is obvious
that the growth rate of the malignant nodules is considerably higher than the
growth rate of the benign nodules, and this encourages to use the estimated
growth rate as a discriminatory feature.

A traditional Bayes classifier based on the analysis of the growth rate of both
benign and malignant nodules for 27 patients diagnosed 14 and 13 patients as
malignant and benign, respectively. For simplicity, this classifier used a multivari-
ate Gaussian model of the growth rate with the rates at 3, 6, 9, and 12 months
as four discriminant features. The same patients were diagnosed by biopsy (the
ground truth) showing that the classification was 100% correct. Therefore, the
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Table 2. Growth rate statistics for 14 patients with malignant nodules and 13 patients
with benign nodules (p — statistical significance; p — average rate, %; o — standard
deviation, %).

With the proposed registration|Without the registration
Scanning [Malignant|Benign Malignant |Benign

period |pum| oM |pB|oB p knv| oM |BB|OB| P
3 months | 22| 16 [0.9/0.7 1077 5.6/ 4.8 [2.8/1.9] 0.1
6 months |49 | 20 [2.9]|2.3 1077 11| 6.6 |8.4/5.1| 0.3
9 months | 91| 29 |4.5|3.8 1077 24| 9.3 [17|11] 0.1
12 months|140| 32 |5.4|4.3 1077 30| 11 [20(16] 0.1

proposed image analysis techniques could be a promising supplement to the
current technologies for diagnosing lung cancer.

4 Conclusions

We introduced a new approach for registering 3D spiral LDCT images that com-
bines an initial affine global alignment of one scan (the target) to another scan
(the reference) using the learned prior appearance model and subsequent local
alignments that account for more intricate deformations. Preliminary results on
27 patients show the registration could lead to accurate diagnosis and identifica-
tion of temporal development of detected pulmonary nodules. Our present C++
implementation on the Intel dual processor (3GHz each) with 8 GB memory and
1.5 TB hard drive with RAID technology takes about 330 sec for processing 182
LDCT slices of size 512x512 pixels each, i.e about 1.8 sec per slice. Our future
work will focus on testing the proposed approach on more diverse data sets.
We have already started to collect the data from additional 200 patients with
different types of pulmonary nodules (e.g., ground glass, cavity, etc), in order to
better measure the accuracy and limitations of the proposed framework.

Acknowledgement: This research work was supported in part by a grant
from the Kentucky Science and Engineering Foundation as per Grant Agreement
# KSEF-1645-RDE-011 with the Kentucky Science and Technology Corpora-
tion.
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Abstract. We develop a framework of computerized generating solid
pulmonary nodules in real chest helical computed tomography (CT)
images. Spheres with random deformations are used to model nodule
shapes. The nodule density is represented by a uniform signal with ad-
ditive zero mean Gaussian noise. The insertion of synthetic nodules into
real CT images is formulated as « blending between foreground nod-
ules and background pulmonary tissues. The blending factors reflect not
only the partial volume effect but also the smoothing effect in the fil-
tered back projection (FBP) CT reconstruction. A new lesion insertion
scheme based on dual source blending is proposed to blend the image
noise and the lesion object separately for a better noise model. A subjec-
tive evaluation is performed by a human expert; and statistics of simu-
lated nodules and real nodules are compared to give a quantitative anal-
ysis. These validations demonstrate a high level of similarity between the
synthetic nodules and real nodules. An evaluation study of a commer-
cial Computer-aided detection (CAD) system on an objective database
created using this framework is also presented.

1 Introduction

Computer-aided detection (CAD) is a promising tool to assist in lung nodule
detection, and to assess lesion size change over time based on computed tomog-
raphy (CT) scans. The use of CAD may improve the performance of radiologists
in helical CT lung screening. Many techniques for automated nodule detection
and characterization have been developed [1], [2], [3], [4], [5], [6], [7]-
Evaluating these methods is difficult due to the lack of database with large
number of nodules/gold standards. Building real nodule database with expert
opinions as gold standard [8] suffers from several drawbacks, especially inaccurate
volume definition. Physical nodule phantoms can give accurate volume definition,
but it is difficult to create large amount of nodules with different characteristics.
Compared to building real nodule CT database and making physical phan-
toms, computerized generation of synthetic lesions with known characteristics
offers a powerful tool for CAD evaluation. A computerized nodule generation
method was reported by Raffy et al, where the nodules were modelled as ellip-
soids, and the insertion was a direct replacement followed by a smoothing [9].
In our previous work [10], we simulated nodules using deformed spheres, and
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Fig. 1. various nodule shapes created using TPS deformations.

inserted the synthetic nodules into real CT images using ‘weighted averaging’
between nodules and the background images. Multiple sclerosis lesion phantoms
in the magnetic resonance (MR) images were created by Rexilius et al: three
different shapes were created to model lesions, each lesion was inserted into MR
images using a ‘linear combination’ of the lesion and the MR scans [11].

In this work, we develop a framework for simulating solid nodules in helical
CT images. The simulation method is detailed in Sect. 2, the model validation is
described in Sect. 3, an application for CAD evaluation is presented in Sect. 4,
and the results are given in Sect. 5.

2 Materials and Methods

A typical pulmonary nodule is about 2mm to 30mm, takes a sphere-like shape.
The density of the major core part is similar to muscle and vessel; near the nodule
border, the density attenuates gradually until merging into the background. We
concentrate on modeling the following characteristics of pulmonary nodules: 1)
shape; 2) size; 3) core density; 4) density attenuation on the border.

2.1 Nodule shape/size modeling

Nodule shapes are modeled using unit spheres with randomly generated high
dimensional deformations. We adopt the thin-plate spline (TPS) [12] as the
non-rigid mapping to do the deformations. TPS deformations can be expressed
as:

T =T-d+k-c (1)

Here the T is n X 4 matrix in which each row is homogeneous coordinate rep-
resentation of an original control point. d is 4 x 4 affine transform matrix. k
is a n x n matrix depending on control points. ¢ is n x 4 matrix in which the
first column elements are all zeros, and the remaining three columns consist of
randomly distributed deformation coefficients.

Experiments showed that this model is able to generate highly realistic nodule
shapes, by tuning the random distribution parameters. In this work, normal
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Fig. 2. Nodule density analysis. First row: original image; segmented nodule; signed
distance. Second row: histogram of core density; density mean of different layer (indi-
cated by distance values); density variance of different layer.

distribution is used to create deformation coefficients in c. Some examples of
synthetic nodule shapes created are illustrated in Fig. 1.

The deformed unit sphere can be easily scaled, rotated, skewed by applying
further affine transform by introducing d.

2.2 Nodule density modeling

Density distribution is analyzed for selected real solid nodules with varying sizes,
shapes, CT protocols. Only isolated nodules are used, as the non-isolated nodules
are difficult to segment, thus, affect the estimation. 100 real nodules from 18 CT
exams (0.6-1.3mm collimations, 20-120mAs exposure) are selected.

It is important to distinguish the nodule core part and the volume average
layer (due to partial volume effect, reconstruction smoothing effect). Each nodule
is analyzed layer by layer from background to the center using a 3D distance
transform [13], with the border as feature points, see Fig. 2. The exterior part is
set to negative. For each pixel, the distance value indicates the layer — how far
it is from the nodule border, and in which direction — toward or away. Note that
the variance estimated for the background and volume average layer in Fig. 2 is
not valid, due to the structure noise in the background, and the fast changing
density in the transition layer.

It has been showed that the density of each individual core follows an approx-
imate Gaussian distribution, but the means and variances vary across nodules
and cases. For filtered back projection (FBP), the noise variance in CT images is
a slowly varying spatial function [14]. In this work, stochastic noise for each sim-
ulated nodule is represented by additive Gaussian noise, and the noise variance
is estimated from a neighboring structure in real CT images with water-like
attenuation, either nearby vessels or chest walls. We represent the density of
nodule core as I, = I, + N,(0,0,), with I, being the nodule density, I, being
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object density, N, being the zero mean Gaussian noise. For volume average lay-
ers, there is a gradual density reduction from interior layers to exterior layers.
The thickness of volume average layers is related to reconstruction kernels, and
is also estimated. The modeling of volume average layer is described later.

2.3 Nodule insertion using dual source a blending

In this work, inserting synthetic lesions into real images is newly formulated as
a blending, a common technique in computer graphics [15]. Given source and
destination images, we can control blending on a pixel by pixel basis. Specifically,
cach pixel of the synthetic nodule is the source with blending factor «, and pixel
of the CT scan at corresponding location is the destination with a blending
factor 1 — . Note that the blending factor is a function of pixel positions.

The first step is the rasterization of the continuous nodule shape in digital
space with higher resolution (for better accuracy) than the original scan. The
cuboid region of interest (ROI) need to include both the core and the volume
averaging layer. This step leads to a binary representation of the synthetic shape
with 1 for interior, and 0 for exterior. The volume of the nodule is the total
number of the interior pixels multiplied by the volume of each pixel.

The second step is to calculate the a. We simulate the partial volume effect
using « channel antialiasing. « value for a pixel is set to be a number between 0
and 1 that is the percentage of that pixel covered by the nodule. A pixel in ROI
with the original resolution corresponds to a larger cuboid in the high resolution
binary image, and the « value should be the percentage of that cuboid covered
by the nodule — this is implemented by rasterization of the cuboid in the high
resolution space, trilinear interpolation in the binary image, and averaging over
the cuboid. This results in volume average layer with a single pixel thickness.
The volume average layer can be more than a single pixel layer, depending on
the reconstruction kernel used in FBP. To simulate this smoothing effect, we
add a Gaussian smoothing on the binary image, so that interpolation occurs on
a smoothed gray scale image. The kernel size is chosen roughly as the thickness
of the transition layer.

The third step is to do the blending. Given the « value for each pixel of the
ROI in the original CT image resolution, the blending can be described as

I=al,+(1-a) (2)

where [ is the final density, I, the nodule density, I the background density.
Similar technique were reported [10], [11], but not formulated as « blending.
This single source a blending gives us a better solution than direct smoothing
[9], but the volume average layer is still visually artificial — obviously less noisy
than both the nodule core part, and the background. The explanation comes
from the following analysis.

Similar to the representation of nodule density as I, = I, + N,(0,0,); we
can also describe the background as I, = I, + Ny(0, o), with I, the background
density, I, the background density without noise, N; the zero mean Gaussian
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noise. (Note that this formula is just for convenience of analysis, it does not mean
we can explicitly separate the true signal and the noise for the background. The
reason we can model a solid nodule explicitly using a constant density with
additive Gaussian noise is that we can reasonably assume that a solid nodule
has a similar density at the major core; this assumption obviously does not hold
for complicated lung field.) Then formula (2) becomes

I=I+n; with I=al,+(1—-a)l, n=aN,+(1-a)N, (3)

with I being the blending results without noise, and n is the combined noise
after the blending. The mean and the variance of the combined noise are
E(n)=0; o2=ad24+(1-a)0} (4)
By assuming 0, = 0, = o (due to the slow changing of noise variance spa-
tially), the above formula becomes

o =[0? + (1 - a)’o? (5)

With « € [0,1], we have 02 < o2. This means that the noise level will be

reduced using the above single source blending method. The worst case is that
02 =0?/2 when a = 0.5.

To compensate for this undesired effect, we propose a new way of inserting
synthetic nodule by using separate blending for object and noise, so called 'dual
source blending’ in computer graphics [15]. In this scheme, the nodule object and
the noise part are treated as two separate source images, and have different but
dependent blending factors. This new dual source blending for lesion insertion
can be described as

I=al,+ &N, + (1 —a)l, (6)
where « the original source blending factor, ¢ the new source blending factor
introduced specific for noise part. This formula can be extended as

I=I4n; with I=al,+(1—-a)l,, n=dN,+(1-a)N, (7)

with I part being same as before, but the combined noise part being changed,
compared to formula (3). By assuming o, = 0, = 0, the mean and variance of
the blended noise are

BE(n)=0; o =14+ (1-a)’o? ®)

To attain same noise levels across core part, volume average layer, and back-
ground, we need 02 = 02, i.e., 4> + (1 — a)? = 1. We can set

d=+1-(1-a)? 9)
By using dual source blending with blending factors satisfying formula (9), we

can maintain the noise level before and after the insertion, under the assumption
0o =0p =0.
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Simulated

Fig. 3. Illustration of nodule simulation result.

This object insertion method can be easily applied to nodule ‘cut and paste’
procedure in which a real nodule is ‘cut’ from its original position, and ‘paste’
into desired positions. This ‘cut’ step is actually a segmentation processing; and
the ‘paste’ step is an object insertion procedure. The proposed dual source o
blending technique is very suitable for ‘pasting’ nodules. This ‘cut and paste’
technique can create ‘new’ nodules, but is relatively restricted compared to the
synthetic model presented in this work.

3 Model Validation

The synthetic nodules simulated from this model were evaluated qualitatively
and quantitatively with three studies. First, an expert radiologist carefully re-
viewed a randomly mixed set of 200 nodules (100 real + 100 synthetic) and
provided, for each nodule, a 1 — 10 scale visual rating (1 = not real, 10 = def-
initely real). Second, the radiologist then rated another random mixed set of
20 nodule cases (10 real + 10 synthetic, with 2 — 10 nodules in each case) on
a case by case basis. The ratings were compared between the simulated nodule
group and real nodule group. Third, the correlation coefficients of the density
attenuation profiles for 20 real nodules and 20 similar sized synthetic nodules
were calculated to provide a quantitative measurement of the similarities.

4 Applications for CAD evaluation

A commercial CAD system for automatic lung nodule detection and volume
measurement was tested using computer-simulated nodules of various sizes and
different contexts (isolated and juxta-vascular) inserted into helical CT exams
with different dosages. Two normal CT chest cases (1 low dose = 20mAs /
1 regular dose = 120mAs; both 1.25mm collimation) were used as bases for
simulation. For each case, two groups (isolated and juxta-vascular) of nodules
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with a certain diameter and random shape were inserted. Each group included
50 nodules. Different nodule diameters (4,5, 6,8,10mm) were used. The CAD
detection and volume measurement results were scored against the truth.

5 Results

In the model validation studies, 89/100 real nodules and 86/100 synthetic nod-
ules were rated highly realistic (ratings > 7) in the first study, as were 9/10
real cases and 8/10 synthetic cases in the second study, showing no significant
statistical difference (Fisher exact test, p > 0.674). The correlation coefficients
of attenuation profiles between simulated and real nodules showed a mean of
0.95 and standard deviation of 0.03.

With regard to CAD evaluation, the CAD detection rates were all 100%
except one sub-group (4mm low dose, 98%). The volume measurement errors
were similar for different size groups (6 — 10mm: mean < 2.0%, std. < 2.3%;
4 — 5mm: mean < 3%, std. < 5%). For simulated juxta-vascular nodules, the
detection rate gradually deteriorated as nodule size decreased (6 —10mm: 96+ %;
5mm: 86 + %; and 4mm: 73 + %), as did the volume measurement errors (6 —
10mm: mean < 4.2%, std. < 10%; 4 —5mm: mean < 6.8%, std. < 14%). Overall,
the CAD performance (detection or volume measurement) was not significantly
affected by the different dosages.

6 Discussion

In the literature, the shape of nodules (lesions) was usually represented by sim-
ple shapes; the density distribution and attenuation profiles have not been thor-
oughly investigated; and how to merge the simulated nodule with the background
has not been properly solved, especially the noise synthesis.

In this work, by applying randomly generated high dimensional deformations
on spheres, we can create very realistic nodule shapes; dissecting nodules layer by
layer using distance transform to investigate density distribution and attenuation
profiles forms a solid base for simulating the density and the volume average
layer; the newly formulated o blending framework for lesion insertion gives a
well-understood description of the merging between nodule and background for
each pixel. Additionally, the newly designed dual source a blending technique for
lesion insertion is able to maintain the noise level across the lesion, the volume
average layer, and the background, thus, makes the inserted nodule look more
realistic. The Validation demonstrates a high level of similarity between the
synthetic nodules and real nodules.

Using the proposed technique, it is possible to conduct a flexible performance
evaluation of a CAD system on nodules with different sizes, contexts, shapes,
densities, in CT images with different dosages.

The techniques presented in this work, including shape simulation using ran-
domly deformed sphere, object density analysis using distance transform, object
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insertion based on dual source a blending, can be easily extended for simu-
lating other lesions, such as colon polyps, mass or calcs in digital mammogra-
phy/tomosynthesis.

Although the deformed nodule shapes presented in this paper are very real-
istic, they only represent a small fraction of the possible shapes of real nodules,
for example, modeling of highly spiculated nodules, partly solid nodules are not
discussed. The main target of this work is to simulate nodules that are most
suitable for early detection and accurate estimation of growth — small, some-
what round, solid nodules probably occur most often for early stage pulmonary
nodules.

7 Conclusions

We proposed a new simulation model to insert synthetic lung nodules, with
shapes and density statistics similar to real nodules, into normal CT chest ex-
ams. Nodule shapes were modeled using spheres with added random non-linear
deformations. Nodule density and attenuation profiles were analyzed on real
nodule samples. The volume average layers were simulated using a dual source
a blending between synthesized nodule and real CT background. The synthetic
nodules simulated from this model were evaluated qualitatively and quantita-
tively. These Validation studies demonstrated a high level of similarity between
the synthetic nodules and real nodules.
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Abstract. In order to cope with the problems caused by breathing mo-
tion, it would be beneficial for many applications to incorporate prior
knowledge of respiratory motion. In this paper, we present the extrac-
tion, modeling, and prediction of respiratory motion based on inhale-
exhale pairs of CT images. Intra- and inter-patient motion models of the
lungs are built and adapted to unseen data by the use of sparse mo-
tion indicators. The created models are thereby represented as a linear
model by applying Principal Component Analysis (PCA) on the covari-
ance of motion vectors of corresponding landmarks. For model adapta-
tion, diaphragm and rib-cage are investigated as model stimulators and
compared to a systematical selection of landmarks holding most of the
model’s variability. While the diaphragm motion correlates well with
the breathing motion achieving an average estimation error of 3.0 mm
for the intra- and 4.1 mm for the inter-patient models in average, the
predictability of breathing based on the rib-cage motion is significantly
worse. Using both diaphragm and rib-cage as stimulators, we obtained
an average estimation error of 2.8 mm for the intra- and 3.7 mm for the
inter-patient models improving prediction.

1 Introduction

Respiratory motion is a key issue in radiation therapy, tumor ablation, and other
treatments of the thorax and upper abdomen [1] but also for data acquisition.
Since breathing motion causes a significant organ movement and deformation,
an accurate knowledge of the localisation of the object in focus is difficult to
obtain. However, a precise prediction of the structures of interest would be highly
desirable for many applications, e.g., for dose reduction of healthy tissue during
radiotherapy treatment. One approach to reduce the uncertainties caused by
breathing is to use prior knowledge of the respiratory motion as, e.g., in the
form of breathing models. In contrast to biomechanical models [2, 3] that aim a
physically-based modeling of the lung, our goal is to build a general breathing
model from an ensemble of motion fields extracted, e.g., from 4D-CT or 4D-MR,
and individualize this general model using sparse motion indicators to obtain a
dense motion field for the organ under investigation.

* We thank K. Franks, J.P. Bissonette, T. Purdie, and A. Bezjak, Radiation Medicine
Program, Princess Margaret Hospital, Toronto, Canada for all image data.
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Little work has been presented for building motion models based on extracted
motion fields from 4D image data while not considering tissue properties. Ad-
mittedly, in many cases the generated models were patient-specific, e.g., [4, 5],
which means that in a clinical scenario, motion information can only be incorpo-
rated if images of the patient are already available or additionally acquired. In
contrast to patient-specific approaches, Sundaram et al. [6] created a dynamic
model of average lung deformation also registering between subjects. However,
the method did not address the clinically relevant case of adapting a learned
general model to a certain patient. Motion model adaptation of an inter-subject
model by the use of sparse motion information has been recently presented for
liver deformation to predict the drift of the exhalation position of corresponding
points inside the liver [7].

In this paper, we address the problem of extracting, modeling and estimating
breathing motion based on inhale-exhale pairs of CT images. We do not only
deal with intra-patient model building as well as its adaptation to estimate
breathing motion on different days throughout treatment, but also build inter-
subject models to predict patient-specific motion learned from a general model.

Section 2.1 introduces the available image data. Based on the motion field ex-
traction introduced in Sect. 2.2, motion model building is explained in Sect. 2.3.
The adaptation of our motion models to unseen data based on sparse motion
indicators is presented in Sect. 2.4. Systematic selection of regions providing
sparse motion information is explained in Sect. 2.5. Finally, performance of our
motion models is presented in Sect. 3.

2 Methods

2.1 Image Data

Inhale and exhale thorax CT images of seven patients all suffering from lung
cancer were available over several weeks of treatment during radiotherapy. For
each patient, image data of up to seven weeks plus two weeks of preliminary
examination was acquired. Thus, this image data captures the variability in
breathing motion throughout different weeks of treatment. Due to the fact that
all images where acquired at breath hold, motion artifacts caused by breathing
were not present. All images had an in-plane resolution of 0.85-0.97 mm and
a slice thickness of 2.5 mm. Since the images were acquired for radiotherapy
planning where the focus was set on the trajectory of the tumor, not all cases
show the lungs entirely. These cases were removed from further investigation.

2.2 Motion Field Extraction

Lung motion fields are derived from inhale-exhale images using a surface-based
tracking technique where the surface is represented as a triangulated mesh. By
propagating a topologically identical patient-specific lung surface mesh from
inhale to exhale, anatomical point correspondences are assumed to be preserved.



FIRST INTERNATIONAL WORKSHOP ON -55-

PULMONARY IMAGE PROCESSING

The trajectories of corresponding points of the adapted meshes thus provide
a sparse motion field. A continuous description of the sparse motion field is
finally obtained by interpolation using thin-plate-splines [8]. For the extraction
of motion fields from 4D-CT data an abundant amount of other methods exist.
In [9], we have recently compared surface-based tracking to three other common
techniques. Mesh propagation extracts motion fields that provide an accuracy
to manually set landmarks of approximately the voxel size. In a qualitative
analysis, the motion fields show plausible characteristics also similar to the other
methods. Most prominent advantages of surface-tracking are its ability to cope
with discontinuities in motion fields, its low computational cost, and the fact
that it directly provides a segmentation in all phases.

Patient-specific lung surface models for motion field extraction are obtained
by selecting one chosen reference inhale image per patient and apply a trian-
gulation of the thresholded image. These meshes cover the outer border of the
lung lobes and also the surfaces of the bronchial and pulmonary vessel tree as
well as the tumor surfaces [8]. By adapting the generated patient-specific refer-
ence lung mesh to inhale and exhale images over all weeks of treatment, vertex
correspondences are preserved for all images of the same patient.

In addition to the lung motion field, the movement of the rib-cage is ex-
tracted. For that purpose, a general rib-cage surface model [10] is automati-
cally positioned in all inhale images, adapted, and finally propagated to the
corresponding exhale image. Since all ribs and vertebrae are labeled separately,
motion fields can be easily assigned to each individual structure.

For both lung and rib-cage, mesh adaptation is performed using an iterative
shape-constrained deformable surface model method [11]. In each iteration, the
concordance of model and object boundary in the image is optimized. An appro-
priate parameter setting for lung surface mesh propagation can be found in [8].
Figure 1 shows the adapted surface meshes of lung and rib-cage in one data set.

2.3 Motion Modeling

The proposed motion models capture the variability in motion of a given learning
set by applying principal component analysis (PCA) on the covariance matrix
of the motion fields. Since the key issue for model building is to establish cor-
responding landmarks, this aspect will be explained separately for intra- and
inter-patient motion models in detail below.

Suppose we have a set of M motion fields denoted as vi,...,v)s. Each v;
contains the components of N motion vectors a; defined at N corresponding
landmark positions v; = [a1i$,a1iy,a1iz, ... ,aNi$,aNiy,aNiz]T. After aligning
our training sets, averaging all vectors, and applying PCA on the covariance
matrix, we obtain a mean motion field ¥ and its principal modes of variation ¢y,
covered in the matrix ®. Thus, we can express a given motion field v; as

v, = \7+‘I>b, (1)

where b; is the weight vector.
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Fig. 1. Extracted lung surface mesh and adapted rib-cage shown in one slice and as
surface rendering. Coloring in image slice indicates labeling of individual structures.

Intra Patient Since a topologically identical mesh is adapted to all images of
the same patient as explained in Sect. 2.2, corresponding vertices are assumed
to provide the correspondences of our intra-patient motion model.
Inter Patient Motion field extraction was based on patient specific surface
meshes. Thus, vertex correspondences between meshes of different patients were
not given. In order to establish inter-subject correspondences, a model of the
outer surfaces of the lung [12] is additionally adapted to all data sets. By adapt-
ing a topologically identical surface model, we again assume anatomical point
correspondences to be preserved. However, in order to not only establish corre-
spondences on the outer surface of the lung but also in the inside, we moreover
define a cartesian grid inside the lung mesh. A patient-specific grid inside the
lung is obtained by applying a thin-plate spline deformation field calculated from
corresponding points of individualized surface and lung model to the grid points.
Figure 2 illustrates the definition of inter-subject correspondences.

In case of the rib-cage, corresponding landmarks are obtained for both intra-
and inter-patient models from corresponding mesh vertices since the same model
was adapted to all patients.

e

(a) Reference grid of lung model (b) Patient individualized grid

~

Fig. 2. Establishing inter-patient correspondences. Reference cartesian is deformed by
calculated thin-plate spline deformation field which uses corresponding vertices of the
outer lung surfaces. Examplarily, warping is shown for two-dimensional contour.
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2.4 Motion Model Adaptation

The task of estimating the patient’s motion field v under the assumption of
sparse motion indicators expressed as v; can be modeled as a conditional distri-
bution p(v,|vs) where v, are the motion vectors of the vertices to be estimated.
We are interested in the maximum likelihood estimation of the conditional dis-
tribution under the condition that the motion of a small set of landmarks is
known. For that purpose, we partition the motion field v into to two disjoint
subsets v, and v; resulting in
v(l
v = (Vb> (2)

and equivalent partitions for the mean vector ¥ and the covariance matrix X

— Va Eaa 2al7
v=|_ 3= . 3
(Vb> (Eba Ebb) ®)
The maximum likelihood estimate ¥,); of the conditional distribution given v;
can be calculated as [13]

Valp = Vo + EabEb_bl(Vb — V). (4)

Note that usually, E,:bl is not invertible owing to multi-collinearity in the land-
mark positions and unreliable due to chance covariance in a limited training
set. Therefore, we apply some regularization. In this case, we perform a ridge
regression [14] by replacing Egbl with f),;)l = Z;bl + I, where 7 is a positive
and typically small constant.

2.5 Landmark Selection

For many clinical applications, an indication of optimal positions for sparse mo-
tion indicators is of special interest, e.g., in case of MRI navigator images. As-
sume that we were able to place motion indicators at arbitrary positions inside
the lung neglecting any practical limitations. Then the question arises what will
be the optimal choice for indicator positions? We tackle the problem in an itera-
tive procedure using the properties of our created motion model. In order to find
positions with most predictive power, we try out any motion vector as motion
predictor and select the corresponding landmark position that belongs to the
motion vector which reduces the variance of the model more than others. After
calculating the modes invariant with respect to that chosen motion vector, we
rerun the selection.

For the pointwise selection, we follow the formulation given in [15], where
the variability of the weight vectors b; before and after creating the invariant
modes are compared.

Assuming the same partioning into two disjoint subsets as derived for the
mean and covariance in Eq. 3 also for the corresponding matrix ® containing
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the eigenvectors, we obtain:

&,D®! &, D] L
T a a a b . a
Z=2oDbe" = (‘IJbDQZ 'I>bD<I'bT) ith &= (@b) ' )

The diagonal matrix of eigenvalues is denoted as D.
Following [15], we express the invariant mode b; by

b; = b; — Ry®,b; = (I - Ry@,)b;, (6)

with Ry, = D®][®,D®]] L.

Comparing the variability of the weight vectors before and after creating
the invariant mode with respect to the stimulator expressed as vy, the points
with maximal predictive power can be found. Note that in this case v; contains
the motion vector corresponding to one landmark position. When applying this
procedure iteratively, the k best predictors can be found.

3 Results

As shown in [9], the motion fields extracted as in Sect. 2.2 provide a landmark
accuracy of about the voxel size. Thus, for the following evaluation of our motion
models, we assume the extracted motion fields as our ground truth. While this
enables us to evaluate the performance of our models at a few thousand discrete
positions meaning the mesh vertices, it has to be noted that there might be a
slight bias compared to landmarks set by experts.

For evaluation of our motion models, we are interested in the possibility to
predict inhale-exhale motion fields of the lungs. We compare the prediction of
anatomical related regions to systematic landmark selection from Sect. 2.5. In
each case prediction is performed as described in Sect. 2.4. As anatomical related
regions, we focus on the main breathing motors which are diaphragm and rib-
cage. The diaphragm motion is extracted by manually labelling the dome of the
surfaces close to the diaphragm on all lung models. As stimulators for model
adaptation as described in Sect. 2.4, we then use all motion vectors belonging
to the vertices of the labelled surfaces. In case of the rib-cage, we focus on the
rib motion since there is almost no spine motion.

Intra patient motion models are evaluated in a leave-one-out study. In
each case, one week is chosen and a motion model is built out of all remaining
weeks and adapted to the 'unseen’ motion field. The estimated motion field is
then compared to the respective extracted motion field and the error at mesh
vertices is evaluated. The results when using diaphragm and rib-cage as model
stimulators are given in Tab. 1. By comparing the prediction power of the respec-
tive anatomical region to the mean motion model v, it can be seen that model
stimulation using the diaphragm denoted as PC Apy 4 significantly improves the
estimation while the rib-cage (PC Arc) even worsens the prediction. However,
using both diaphragm and rib motion (PCAgcp) as model stimulators yields
almost the optimal parameter fit with an error of 2.8 mm in average. The best
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possible prediction that can be achieved with our model is given for compari-
son by projecting the true motion field in the PCA space. Figure 3 shows the
prediction in the sagittal view for two selected cases.

Inter patient motion models are evaluated in a similar leave-one-out study.
Motion models of all patients besides the one under consideration are built and
adapted to all weeks of the corresponding patient with results given in Tab. 1.
Although we observed significant differences in breathing patterns between pa-
tients, there have to be similarities in the respective motion fields which can
be seen from the fact that the mean model already compensates about 40 % of
the breathing motion. In case of the inter-patient model, we took into account
20 eigenvectors that correspond to the largest eigenvalues covering about 98%
of the variance. Again, the prediction using the diaphragm is much better than
using the rib-cage with 4.1 mm in average compared to 7.4 mm.

When applying landmark selection from Sect. 2.5 on both intra- and inter-
patient models, the predictive power of the first N-landmarks was investigated.
In each case, we additionally took all neighboring vertices into account to be less
sensitive to the exact landmark position. Having motion information only at the
positions of the first N=3 selected landmarks including their neighbors yields an
error of 4.0 (5.8) mm in average for intra-(inter-) patient models and for N=>5
and N=7 an error of 3.5 (5.1) mm and 3.0 (4.8) mm, respectively. A typical
distribution for N=5 is given in Fig. 4. For many cases, it could be observed
that the first selected landmark was located close to the diaphragm while the
second one in the anterior part of the corresponding other upper lung.

Fig. 3. Result of motion estimation shown in three orthogonal slices for Patient 3 using
the inter-subject motion model and assuming the motion of the dome of the diaphragm
to be known. Inhale contour is shown blue, red exhale, and yellow estimation.

4 Conclusion

Breathing motion is a complicated factor in several applications working on the
thorax or upper abdomen. In many cases, the treatment would benefit from
prior knowledge of the organ deformation and location. Although latest image
devices are able to acquire dynamic images covering the respiratory motion, e.g.,
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Table 1. Result of intra- and inter-patient motion models. Approximation of inhale-
exhale motion by model in leave-one-out test. All values are given in millimeters. Per-
formance of mean motion model as well as PCA model with optimal parameter fit
indicates model quality. Prediction error is given when using different model stimula-
tors. Mean motion of entire lung and respective regions presented for comparison (m,
mpra, mprc). Last row gives mean value of all rows as absolute value and relative to
mean lung motion in percent. For details see text.

| Intra Patient Model |

v PCA |PCApia| PCArc |PCAgcp m MmpraA|Mprc
Pat. 1{4.14+1.2{2.1+0.7/23£0.7[48+1.9|22+0.7 109+ 1.7| 154 | 3.7
Pat. 2{{4.5+14(28+09(4.1+13(49+1.6|3.2+£0.9([12.6+2.4| 23.1 | 9.7
Pat. 3{2.2+05[14+03(1.5+04(2.0£0.5|1.5+£0.4(69+15]| 12.0 | 24
Pat. 4{{4.6+19(1.7+05[1.9+0.6(3.3£1.5|2.0£0.4 [[10.0£4.1| 209 | 34
Pat. 5(4.7+15(|3.3+0.7/40£07{49+£13|39+06|73£22| 11.1 | 4.6
Pat. 6{{4.2+06(3.8+08(4.2+1.2(4.8+0.5|{3.9+1.0(10.8+2.1| 20.2 | 3.2
Pat. 7|({3.24+0.7{3.0+0.8|3.3£1.0{34+£1.4|3.1+1.1(10.0+1.4| 18.7 | 4.1
mean [[3.9 (39.8)|2.6 (26.4)|3.0 (30.6)|4.0 (40.1)|2.8 (28.9) 9.8 173 | 44

| Inter Patient Model |
v PCA |PCApra| PCArc |PCAgcD m mMpra|Mgrc

Pat. 1/{6.3+1.2|3.2+0.5{4.14+0.8|7.0+1.6 |4.1+0.8(10.9+1.7| 15.4 | 3.7
Pat. 2||8.6+1.8|4.3+0.6{6.1+1.0(11.0+3.0{5.0+£0.9(12.6 £2.4] 23.1 | 9.7
Pat. 3{3.6 £0.4|1.8+0.1{27+0.3{50+1.021£0.3|69+15]| 12.0 | 24
Pat. 4/6.7+1.8|2.8+£0.7{3.9+1.0|6.64+2.4|3.6+1.0|10.0+£4.1] 209 | 3.4
Pat. 5[|59+16(25+04(3.14+04|74+08|32+£05|73£22] 11.1 | 46
Pat. 6/{80+1.2|40+1.0{484+1.0{/9.0+2.3|4.6+1.0|10.8+2.1] 20.2 | 3.2
Pat. 7/[4.3£1.0/29+04|4.14+0.5|6.0+0.7]3.6£0.6|10.0+1.4| 18.7 | 4.1

mean |[6.2 (63.3)[3.1 (31.6)|4.1 (41.9)|7.4 (75.8)[3.7 (37.7)|[ 9.8 | 17.3 | 4.4

4D-CT, there is not always a multiphase breathing gated examination available.
Thus, in this paper, we focused on motion model creation from inhale-exhale
pairs of CT data sets and adaptation to 'unseen’ data. Due to the fact that the
images were acquired at breath-hold, no image artifacts caused by breathing were
present. From the extracted motion fields, patient-specific models but also inter-
subject models have been built and compared. For model stimulation, different
sparse motion indicators have been investigated. If the diaphragm motion is
known, we achieved a prediction error of 3.0 (4.1) mm for the intra (inter)-
patient model covered. Using sparse motion information obtained from the rib-
cage is thereby less appropriate. With a systematic selection of landmarks, most
important regions for providing sparse motion information have been found.
Although there are several attempts for patient-specific modeling, it is to the
best of our knowledge the first time that an inter-subject breathing model based
on statistical properties of extract motion fields has been built and adapted to
patient data.
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Since we worked so far on a small size of training data, improvement can
probably be expected when enlarging the amount of patient data. Future stud-
ies will be carried out on multiphase data taking the dynamic properties of
respiration into account.

4 3= 34 5;

# 1 e
: - ) @
(a) First Invariant Mode (b) Selected Points (Front) (c) Selected Points (Top)
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Fig. 4. Systematic point selection. Potential predictive power of each landmark position
displayed on mesh surface (a). Ratio of variance of coefficients b; and b; from Eq. 6
color coded from blue (small) to red (high). Selected first five points color coded from
first (blue) to fifth (red) shown in (b) and (c). First selected point typically close to

diaphragm while second in corresponding other lung.

References

1. Balter, J.M., ten Haken, R.K., Lawrence, T.S., Lam, K.L., Robertson, J.M.: Uncer-
tainties in CT-based radiation therapy treatment planning associated with patient
breathing. International Journal on Radiation Oncology, Biology, Physics 36(1)
(1996) 167-174

2. Villard, P.F., Beuve, M., Shariat, B., Baudet, V., Jaillet, F.: Simulation of lung
behaviour with finite elements: Influence of bio-mechanical parameters. In: Proc.
MEDIVIS. (2005) 9-14

3. Werner, R., Ehrhardt, J., Schmidt, R., Handels, H.: Modeling respiratory lung
motion: a biophysical approach using finite element methods. In: Proc. SPIE.
Volume 6916. (2008) 69160N1-11

4. McClelland, J.R., Blackall, J.M., Tarte, S., et al.: A continuous 4D motion model
from multiple respiratory cycles for use in lung radiotherapy. Medical Physics
33(9) (2006) 3348-3358

5. Zhang, Q., Pevsner, A., Hertanto, A., Hu, Y.C., Rosenzweig, K.E., Ling, C.C.,
Mageras, G.S.: A patient-specific respiratory model of anatomical motion for ra-
diation treatment planning. Medical Physics 34(12) (2007) 4772-4782

6. Sundaram, T.A., Avants, B.B., Gee, J.C.: A dynamic model of average lung defor-
mation using capacity-based reparameterization and shape averaging of lung mr
images. In: Proc. MICCAL Volume 3217. (2004) 1000-1007

7. von Siebenthal, M., Szkely, G., Lomax, A., Cattin, P.: Inter-subject modelling
of liver deformation during radiation therapy. In: Proc. MICCAIL Volume 4791.
(2007) 659-666



10.

11.

12.

13.

14.

15.

FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

. Klinder, T., Lorenz, C., von Berg, J., Renisch, S., Blaffert, T., Ostermann, J.:

4DCT image-based lung motion field extraction and analysis. In: Proc. SPIE
Medical Imaging. Volume 6914. (2008) 69141L1-11

. Vik, T., Kabus, S., von Berg, J., Ens, K., Dries, S., Klinder, T., Lorenz, C.: Val-

idation and comparison of registration methods for free-breathing 4d lung-ct. In:
Proc. SPIE Medical Imaging. Volume 6914. (2008) 69142P1-10

Klinder, T., Lorenz, C., von Berg, J., Dries, S., Blow, T., Ostermann, J.: Auto-
mated model-based rib cage segmentation and labeling in CT images. In: Proc.
MICCAI Volume 4792. (2007) 195-203

Weese, J., Kaus, M., Lorenz, C., et al.: Shape constrained deformable models for
3D medical image segmentation. In: Proc. IPMI. (2001) 380-387

Blaffert, T., Barschdorf, H., von Berg, J., Dries, S., et al.: Lung lobe modeling and
segmentation with individualized surface meshes. In: Proc. SPTIE Medical Imaging.
Volume 6914. (2008) 6914111-10

Bishop, C.M.: Pattern Recognition and Machine Learning. Springer (2006)
Hoerl, A., Kennard, R.: Ridge regression: Biased estimation for nonorthogonal
problems. Technometrics 12(1) (1970) 5567

Hug, J., Brechbiihler, C., Szekely, G.: Model-based initialisation for segmentation.
In: Proc. ECCV. Volume 1843. (2000) 290-306



FIRST INTERNATIONAL WORKSHOP ON -63-
PULMONARY IMAGE PROCESSING

Registration-based lung tissue mechanics
assessment during tidal breathing

Kai Ding!, Kunlin Cao?, Shalmali V. Bodas!, Gary E. Christensen?
Eric A. Hoffman®!, and Joseph M. Reinhardt!

! Department of Biomedical Engineering
2 Department of Electrical and Computer Engineering
3 Department of Radiology
The University of Iowa, Iowa City, IA 52242

{kai-ding, kunlin-cao, shalmalividyadhar-bodas, gary-christensen,
eric-hoffman, joe-reinhardt }Quiowa.edu

Abstract. Lung tissue expansion and contraction can be assessed by ac-
quiring multiple 3D CT images at different lung volumes. Static “breath-
hold” imaging has been shown to produce tissue deformation estimates
that match well with other measures of lung function. However, dynamic
imaging protocols that image the breathing lung may produce more phys-
iologically meaningful estimates of lung function. We use non-linear im-
age registration to match retrospectively reconstructed respiratory-gated
lung “dynamic” CT volumes acquired during tidal breathing. We com-
pare the lung expansion and contraction estimates from the dynamic
acquisitions to regional ventilation assessed by xenon-enhanced CT. The
Jacobian-based lung volume change estimate shows a good agreement
with the xenon-CT (average r? = 0.85) at image pair acquired at 50%
and 75% of the inspiration duration.

1 Introduction

The lungs expand and contract during the respiratory cycle. Lung tissue me-
chanics depends on the material properties of the lung parenchyma and the
mechanical inter-relationships between the lungs, diaphragm, and other parts
of the respiratory system. Pulmonary diseases, such as fibrosis and emphysema,
can change the tissue material properties of lung parenchyma and the associated
lung function.

Lung tissue expansion and contraction can be assessed by acquiring multi-
ple 3D CT images at different lung volumes. Static “breath-hold” imaging has
been shown to produce tissue expansion estimates that match well with other
measures of lung expansion [1]. However, static imaging is not able to observe
kinematic effects, and dynamic imaging protocols that image the breathing lung
may produce more physiologically meaningful estimates of lung function.

Various efforts have been made to non-invasively assess lung function. Guer-
rero et al. have used optical-flow registration to compute lung ventilation from
4D CT [2,3]. Gee et al. have used non-rigid registration to study pulmonary
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kinematics [4] using magnetic resonance (MR) imaging. Christensen et al. have
used image registration to match images across cine-CT sequences and esti-
mate rates of local tissue expansion and contraction [5]. While they were able to
show that their accumulated measurement matched well with the global mea-
surement, they were not able to compare the registration-based measurements
to local measures of regional tissue ventilation. Others have used hyperpolar-
ized gas MR imaging of the lung to assess lung function and to demonstrate
pathophysiological changes [6]. Xenon-enhanced CT (Xe-CT) has been used to
measure regional ventilation by observing the gas wash-in and wash-out rate on
serial CT images [7-9]. All of these approaches have some disadvantages, includ-
ing limited spatial coverage, limited spatial resolution, high cost, or the need for
special equipment or personnel.

We have previously shown a good correlation (linear regression, average
r2 = 0.73) between specific ventilation measured from Xe-CT and specific vol-
ume change assessed by image registration [1]. By applying 3D registration to
CT images of the lung acquired at different levels of inflation (static breath-
hold imaging), we estimate the regional lung expansion from the displacement
field calculated from the image registration. We compared these lung expan-
sion estimates to Xe-CT derived measures of regional ventilation to validate our
measurements and to establish their physiological significance.

However, it is reasonable to think that the static breath-hold scenario does
not fully depict the behavior and function of the moving, breathing lung. Dy-
namic imaging, where images are acquired across the respiratory cycle, may
provide better estimates of lung mechanics, and may more accurately reflect
the behavior of the breathing lung. In this paper we compare registration-based
estimates of lung mechanics derived from dynamic imaging protocols to Xe-CT
estimates of lung ventilation and evaluate the accuracy of the registration applied
in this study.

2 Materials and Methods

2.1 Data Acquisition

Appropriate animal ethics approval was obtained for these protocols from the
University of Iowa Animal Care and Use Committee and the study adhered
to NIH guidelines for animal experimentation. Four adult sheep were used for
experiments. The sheep were anesthetized using intravenous pentobarbital and
mechanically ventilated during experiments. The dynamic respiratory-gated CT
images are acquired with the animals in the supine position using the dynamic
imaging protocol with a pitch of 0.1, slice collimation of 0.6 mm, rotation time of
0.5 sec, slice thickness of 0.75 mm, slice increment of 0.5 mm, 120 kV, 400 mAs,
and kernel B30f. Images are reconstructed retrospectively at 0, 25, 50, 75, and
100% of the inspiration duration and 75, 50 and 25% of the expiration duration
(herein denoted as the T0, T1, T2, T3, T4, T5, T6, and T7 images). Twelve
contiguous axial locations and approximately 40 breaths for Xe-CT studies are
selected from the whole lung volumetric scan performed near end-expiration.
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Images are acquired with the scanner set in ventilation triggering mode with 80
keV energy (for higher Xe signal enhancement), 160 mAs tube current, a 360°
rotation, a 0.33 sec scan time, and 2.4 mm slice thickness. Respiratory gating is
achieved by replacing the standard ECG gating signal with a trigger signal from
a LabView program. Both of the two types of images are acquired with a matrix
of 512 by 512 and without moving the animal between scans, so after acquisition
the data sets are in rigid alignment.

2.2 Image Registration

Inverse consistent linear elastic image registration was applied to register phase
change image pairs [10]. The registration estimates the inverse consistency error
between the forward and reverse transformation, so it provides more accurate
correspondences between two images compared to independent forward and re-
verse transformations. The registration minimizes the cost function defined as:

CZU[CSHV[(IOOh,[1)+CSUu(11 Og,Io)]+ (1)
X[C[C(j(u, ZD) + C]C(;(w, I])} +

plCrec(u) + Crec(w)],

where the forward transformation A is used to deform the image Iy into the shape
of the image I, and the reverse transformation g is used to deform the shape
of I; into that of Iy. The deformed template and target images are denoted by
(Io o h) and (I o g), respectively. The vector displacement function u(z,y, 2)
that maps image Iy to image I; is used to calculate the local lung expansion
using the Jacobian determinant J(z,y, z) defined as:

1+ Oug(x,y,2)  Oua(w,y,2) Oug(2,y,2)
Duy (o 922) Duriry)  Duylegc)
uy, (T,y,2 uy, (T,y,2 uy, (T,y,2
J(x,y, Z) — yazi‘/ 1+ ya Y yazJ ,
Ous (z,y,2) Ous(wy.z) | + Ou:(z,y,2)
Ox dy oz

where ug(z,y, 2) is the 2 component of u(z,y, z), uy(z,y, 2) is the y component
of u(z,vy, 2), and u,(z,y, z) is the z component of u(z,y, z).

The Cgrar term of the cost function defines the symmetric intensity similar-
ity. The Croc term is the inverse consistency constraint or inverse consistency
error cost and is minimized when the forward and reverse transformations are
inverses of each other. The Crg term is used to regularize the forward and re-
verse displacement fields. The functions u, w, @, w are voxel displacement fields
and are related to the forward and reverse transformations by the equations:
h(z) = z + u(x), g(z) = 2+ wx), h 1 (z) = z + @(x), g7 (z) = = + ®(z).
The constants o, x and p are used to enforce/balance the constraints. In our
registrations, we set the weighting constants o = 1, x = 600, and p = 0.00125.
The parameters were made on the basis of pilot experiments, previous work and
experience.
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The Jacobian measures the differential expansion at position (z,y, z) in the
image I;. If the Jacobian is greater than one, there is local tissue expansion; if
the Jacobian is less than one, there is local tissue contraction (Figure 1).

In our study, we register 70 to 71, T1to T2, ..., and 76 to 77 in the dynamic
respiratory-gated image sequence and thus acquire seven transformation pairs.

Fig. 1. Color-coded maps showing (a) the Jacobian of the image registration
transformation (unitless) for approximately the same anatomic slice computed
from the 70 — T'1 inspiration image pair and (b) the T4 — T'5 expiration image
pair. Note that the color scales are different for (a) and (b). Red regions on
the inspiration image (a) are regions that have high expansion while dark blue
regions on the expiration image (b) have high contraction.

2.3 Assessment of Image Registration Accuracy

For each dynamic respiratory-gated image sequence, 20 anatomic landmarks
were matched across all eight image T0, ..., T'7. The selected landmarks were
recognizable branchpoints of the vascular and airway branches. For each land-
mark, the actual landmark position was compared to the registration-derived
estimate of landmark position and the error was calculated.

2.4 Jacobian-Based Lung Expansion Compared to Lung Ventilation

Xe-CT estimates of specific ventilation (sV) are computed using the “time-series
image analysis” (TSIA) software described in [9]. To compare the Jacobian values
with the sV, we must identify corresponding regions in the two images. The Xe-
CT has only twelve slices of axial coverage and the data sets are acquired in rigid
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alignment as described in Section 2.1, so we register the twelve-slice Xe-CT data
to the T0 whole-volume dynamic respiratory-gated CT data using rigid affine
registration as shown in Figure 2. We subdivide the Xe-CT data into 30 slabs
along the y (ventral-dorsal) axis. We track the deformation of each slab across
the sequence of volume images (i.e., from 70 to T'1 to T2, etc.) and compare the
average Jacobian within each slab to the corresponding average sV measurement
in the Xe-CT images.

Fig. 2. Example of the result of affine registration between Xe-CT data and
dynamic respiratory-gated CT data. (a) T0 whole-volume dynamic respiratory-
gated CT data. (b) Fused image. (c¢) Deformed first breath of the Xe-CT data.

3 Results

3.1 Registration Accuracy

Figure 3a-b shows the projection of the manually-selected landmark locations
onto coronal and sagittal slices for one animal. Figure 4 shows the registration
accuracy as assessed by predicting the motion of the 20 manually-defined land-
marks across seven phase change pairs. Overall the registration accuracy is on
the order of 1 mm, or about 2 voxels.

3.2 Lung Expansion and Xe-CT Estimates of sV

Figure 5a shows the average Jacobian vs. lung height for all phase change pairs.
Figure 5b shows the average sV vs. lung height calculated from the Xenon-CT
study. Figure 6 shows average Jacobian vs. average sV at the 70 to T'1 inspiration
phase change pair and 74 to T'5 expiration phase change pair. The figure gives
the equation of the linear regression line with 2 values and 95% confidence for
the linear fits between average sV and the average Jacobian. Figure 7 shows the
correlation coefficients 72 from the linear regression of average Jacobian and sV
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Fig. 3. Manually-selected landmark locations projected onto (a) a coronal slice
and (b) a sagittal slice for one animal at TO breathing phase.
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Fig. 4. Registration accuracy by mean + standard deviation of landmark errors
for each phase change pair and for each animal.
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for each phase change pair and each animal. The phase change pair 72 to T'3
shows the highest average correlation r? = 0.85 among all phase change pairs.

.05

IS

Average Jacobian

.95

Average Specific Ventilation, 1/min

e
@
N
8

Lung H;?gh!, cm
(a) (b)

Fig. 5. Example of Jacobian and sV measurements vs. lung height for one ani-
mal. (a) Average Jacobian values for all phase change pairs and (b) average sV
vs. lung height. Lung height is 0 cm is the most dorsal position and positive
heights move toward the ventral direction.
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Fig. 6. Examples of scatter plot of average sV and average Jacobian for one
animal with linear regression with 95% confidence interval for (a) T0 to T1
phase change pair and (b) T4 to T5 phase change pair.

4 Discussion and Summary

We have calculated estimates of lung expansion from the Jacobian of the reg-
istration deformation field during tidal breathing for respiratory phase change
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Fig. 7. Correlation coefficients r2 from the linear regression of average Jacobian
and sV for each phase change pair and for each animal.

pairs. The Jacobian values were compared to the Xe-CT based measures of spe-
cific ventilation. The correlation to the Xe-CT sV is higher for the Jacobian
calculated from the dynamic respiratory-gated images (72 = 0.84) than for the
static breath-hold images (r? = 0.74) as we reported [1]. The linear regression
relationship in Figure 7 shows a wide range between animals and phases. We
suspect it is caused by the natural anatomical difference between animals. Fur-
ther more, since we used time based respiratory gating, the lung expand and
contract differently between each phase change pair. For example, the lungs do
not expand as much in 7'3 to T4 phase change pair as in 72 to T'3 phase change
pair. It would be interesting to determine if pressure based respiratory gating
method will give better result.

The average registration error was about 1 mm in the phase change image
pairs. Since the landmarks in these experiments were manually defined by picking
anatomic features on a computer display, some component of this error is likely
attributable to human error.

Since the Xe-CT data is collected over several breaths during tidal breath-
ing, it is reasonable to expect that the Jacobian calculated from the dynamic
respiratory-gated volume images would more closely reflect the ventilation pat-
terns measured by the Xe-CT. The moving, breathing lung has mass, inertia,
and hysteresis, and the true dynamics of the respiratory system are probably
better revealed using images acquired across free breathing. Figure 8 shows the
different arrival phases for different regions of the lung when largest expansion
and largest contraction occur. Most of the lung regions will have the largest
expansion at the middle phase (T'1 to T2 or 25% to 50% of the inspiration du-
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ration) and the largest contraction at the beginning phase (T4 to T'5 or 100% to
75% of the expiration duration). It shows the lung does not expand or contract
uniformly along the phases.

Fig. 8. (a) Color coded image showing the (a) the phase point when largest
expansion occur and (b) the largest contraction occur. Note the color scales are
different for (a) and (b).

Additional work is needed to validate these methods before translation to use
in humans. For imaging humans during normal respiration, the dynamic imaging
may pose some challenges. The retrospectively reconstructed respiratory-gated
images require regular and repeatable breathing patterns, so the subject must be
trained to breath properly before images are acquired. In addition, since image
data is gathered over several breaths and then reconstructed at different phases,
the dynamic imaging will deliver more radiation dose than a single pair of breath-
hold scans. The development of low dose imaging and/or prospective respiratory-
gating may be able to reduce the radiation exposure. With the validation of
the best correlated phase change pair during tidal breathing, the subject will
only need to be scanned at two certain phases and the radiation dose will be
significantly reduced.

If these methods can eventually be extended to humans, they would provide
important new tools for studying the lung. Xe-CT requires the use of expensive
xenon gas and the associated hardware to control delivery of the gas and harvest
the gas from expired air for recycling. In addition, it is known that xenon gas
has a strong anesthetic effect that must be carefully monitored. Finally, Xe-CT
imaging protocols require high temporal resolution imaging, so typically axial
coverage is limited to just a few slices at a time. However, if a registration-based
analysis of images acquired during tidal breathing could be registered across
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respiratory phase, high-resolution maps of lung expansion could be produced for
the entire lung with low cost and dose.
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Abstract. The estimation of lung ventilation would allow to prevent
high functional lung regions from radiation injuries during radiation ther-
apy of lung cancer. As 4D-CT images are a standard procedure for radi-
ation therapy planning, the usage of these images for the additional lung
ventilation estimation would be advantageous over other imaging meth-
ods specifically performed for ventilation estimation only. This would re-
quire both a registration of images of different respiratory phases yielding
deformation vector fields and a suitable metric of ventilation estimation
based on the deformation vector fields. We apply two different image
registration methods and two different metrics to a set of 4D-CT images
and compare them with each other and with a global reference measure
based on independent lung volume measures from image segmentation.

1 Introduction

In radiation therapy planning of lung tumors it would be advantageous to con-
sider spatial information of lung function (e.g., ventilation) to prevent high func-
tional lung regions from radiation injury and achieve better quality of life. The
current standard of care for ventilation assessment is nuclear medicine (NM)
imaging [1, 2]. Recent techniques based on oxygen-enhanced magnetic resonance
(MR) imaging utilize hyperpolarized noble gases (e.g., 12°Xe) [3,4]. Images ac-
quired with NM techniques suffer from a low spatial resolution. Also, for both of
NM and MR techniques, there are issues including a long scan time, high costs,
and low availability in radiotherapy departments. More recently, several groups
[5-8] have employed four-dimensional (4D) CT images [9, 10] for ventilation as-
sessment. Four-dimensional CT images for treatment planning can be used for
ventilation assessment as well, thus not requiring any additional imaging ses-
sions. Therefore, the 4D-CT-based approach potentially has several advantages
over NM or MR technique as it is free, fast, available, and of high spatial reso-
lution. However, the accuracy is dependent on image registration algorithms as

* We are grateful to an anonymous reviewer for helpul comments on our manuscript.
Also, we thank Cristian Lorenz from Philips Research Europe — Hamburg for fruitful
discussions.
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well as of the metrics for ventilation. Several investigators demonstrated varia-
tions in registration results between algorithms [7,11,12]. In the previous work,
we showed apparent discrepancies in deformation vector fields (DVFs) and ven-
tilation images calculated by different registration algorithms [8]. There have
been two different metrics used for ventilation assessment based on the DVFs.
Guerrero et al. have employed difference in Hounsfield units (HU) as a metric of
ventilation, and showed good agreements between global measures of ventilation
(i-e., tidal volume) for patient data calculated using this method and those of
manual measurements [6]. Reinhardt et al. have used the Jacobian determinant
and demonstrated good agreements between local ventilation for sheep data de-
termined by this approach and Xe-CT [5].

The contribution of the current work is to compare two different image reg-
istration methods with each other, both applied to 4D-CT and to also apply
both of the reported metrics to estimate ventilation from the resulting DVFs
on a set of four human 4D-CT scans. In addition, we compare our ventilation
metrics with the relative change in lung volume for each phase transition taken
from independent lung segmentation of each CT volume. Jacobian and relative
volume change should be equal by definition — however, from a technical point
of view this is not trivial and worth to show. Moreover, it can be considered as
a necessary condition for a reliable ventilation estimation.

2 Methods

2.1 Data Sets and Image Acquisition

The 4D-CT scans were performed on the GE Discovery ST multislice PET/CT
scanner (GE Medical Systems, Waukesha, WI) in cine mode at Stanford Cancer
Center. Case 1 of the four examined cases was a patient with lung cancer, the
other cases were breast cancer patients not showing lung metastases. During the
CT scan, patient respiratory traces were acquired using the Varian RPM system
(Varian Medical Systems, Palo Alto, CA), with the marker block placed on the
upper abdomen. Scan parameters were set as follows: 0.5 s gantry rotation, 0.45 s
cine interval, and 2.5 mm slice thickness. Each image reconstruction took 360 deg
of data. The projection images were retrospectively sorted into ten respiratory
phase-based bins of 3D CT image data (i.e., from 0% to 90% phase at 10%
intervals). Figure 1 shows coronal views of two exemplary phases of Case 3 and
all ten phase-to-phase subtraction images.

2.2 Registration Schemes

Given two reconstructed phases (one named reference phase, the other template
phase in the following), image registration tries to find a deformation vector field
u : R? — R? such, that the displaced template phase is similar to the reference
phase. In this work, two fundamentally different registration schemes have been
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Fig. 1. Coronal views of reconstructed phases 30% and 80% (first column) and phase-
to-phase subtraction images (remaining columns): row-wise are displayed 10% — 0%,
20% — 10%, ..., 0% — 90%. Motion of diaphragm and vessel tree, particularly in the
lower regions of the lung, is clearly visible. The change in sign for the diaphragm region
occurs when changing from exhalation (0% to 60%) to inhalation (60% to 0%).

employed to estimate u. Whereas the first scheme matches surfaces (lung wall,
vessel tree) followed by a thin-plate-spline interpolation to achieve the dense
DVF, the second scheme is volumetric by itself.

2.3 Surface-based Registration

In the first, surface-based method we automatically determine the lung surface
by a Hounsfield threshold at —650 HU and a marching cube triangulation in
one phase. This surface not only covers the outer lung border but also the inner
structures separating the parenchyma from the larger lung vessels. The number
of triangles of this iso-surface ranges from 38,000 to 87,000. The method of de-
formable surface models [13] is now applied on this iso-surface of the lungs to
adapt it to the second phase by minimizing the energy term E = Fept + aFipnt.
The external energy F.,; drives the mesh towards the surface points obtained in
a surface detection step. The internal energy Ej,; restricts the flexibility by pe-
nalizing differences from the shape model. A number of such minimization steps
is iteratively performed on the mesh. Details on the candidate point selection
and on the calculation of the external energy can be found in [14]. The internal

energy

Ei =7y > ((vj=vi) = sR(¥; — %)) 1)

J kEN(j)

preserves shape similarity of all mesh vertices v; to the model vertices V; from
the initial iso-surface. N (j) is the set of neighbors of vertex j. The neighboring
vertices are those connected by a single triangle edge. The scaling factor s and
the rotational matrix R are determined by a closed-form point-based registration
method based on a singular value decomposition prior to calculation of (1) to
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allow a similarity transformation (rigid transformation plus isotropic scaling)
without effecting the internal energy.

By use of all vertex deformation vectors of the deformable surface, we con-
struct a coarse displacement field for the lungs. Interpolation by thin-plate-
splines on a subset of these vertices is used to create a dense field from it. The
subset is obtained by replacing all vertices having a neighbor closer than 10 mm.
Further details on this shape-tracking method, the impact of its parameters, and
its computational performance are given in [14].

2.4 Volume-based Registration

The volumetric registration tries to find a DVF such, that the displaced tem-
plate phase minimizes both a certain similarity measure D and a regularizing
term S. By adding a regularizing term, the registration problem is well-posed.
For D we choose the popular sum of squared differences while for S an elastic
regularizer [15] based on the Navier-Lamé equation is employed. The elastic reg-
ularizer assumes that the underlying images can be characterized as an elastic
and compressible material. Its properties are modeled by the so-called Lamé
constants A, p.

Based on calculus of variations we arrive at a system of non-linear partial
differential equations to be solved,

pAu+ (u+ AV - Vu=VT,(R-T,), (2)

with T, and R corresponding to the displaced template phase and the reference
phase, respectively.

For the discretization of (2) finite differences in conjunction with Neumann
boundary conditions have been chosen. The resulting system of linear equa-
tions consists on one hand of a sparse, symmetric and highly structured matrix
arising from the regularizer and, on the other hand, of a so-called force vec-
tor corresponding to the similarity measure. By nature, the larger the contrast
of misaligned image structures is, the larger the modulus of the force vector is.
Therefore, in CT images bone structures get typically perfectly matched whereas
soft tissue may be not aligned. This holds particularly for the lung-rib interface
with on the one side the parenchyma following the breathing motion and on
the other side the ribs staying in place or even moving in opposite direction. To
circumvent mis-alignment of parenchymal structures we added a simple masking
of the force vector. For every voxel with Hounsfield value above 0 HU in the ref-
erence phase, the force vector is set to zero for this voxel position. This results
in a lung deformation which is not influenced by mis-alignment of the rib cage.

The corrected linear system of equations is then linearized and iteratively
solved by a conjugate gradient scheme. The whole registration method is em-
bedded into a multi-resolution setting (typical image pyramid has a resolution
of 512 x 512 x 136 at level 0, 256 x 256 x 136 at level 1, 128 x 128 x 68 at
level 2 etc.; registration is executed on levels 4 to 1) and preceeded by an affine
pre-registration.
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3 Evaluation

For the datasets considered in this work no ground-truth such as nuclear medicine
data or annotated landmark positions was available. But both registration meth-
ods have been previously validated with a method reported in [8]. For that
validation similar CT scans with known annotated landmark positions were
used. Unlike the current study, ten biphasic thorax CT data sets (max in-
hale and max exhale reconstructions only) were used. Two independent ex-
perts set corresponding landmark pairs (18-20 pairs) at vessel- and bronchi-
bifurcations in all images. The landmark positions at one state were trans-
formed using the DVFs obtained from the two registration methods and com-
pared to the reference landmarks. For the validation the average Euclidean dis-
tance before and after registration have been compared. Given an average er-
ror of 5.99 mm =+ 3.97 mm before registration, both methods showed a reduced
error in all testcases (2.50 mm + 2.16 mm for the surface-based method and
2.28 mm =+ 1.87 mm for the volumetric method). Taking into account the rela-
tively large difference between max inhale and max exhale state in that previous
study, we expect a more accurate result and smaller registration errors for the
consecutive registration in 10% steps given in the 4D-CT datasets investigated
in this work.

To analyze the DVFs restricted to the lung, segmentation of the lung is
required. For this purpose we use the segmentation scheme reported in [16].
The segmentation provides a binary mask of the lung but with the vessel tree
excluded. To evaluate the segmentation result, we computed the total lung mass
at each respiratory phase by integrating the density p = (HU + 1000)/1000
over the segmented lung. Then, the lung mass at each phase is subtracted from
their mean (mean lung mass is 593 g, 558 g, 580 g, 628 g for patients 1 to 4,
respectively). From these absolute differences, for patient 1 to 4 a mean error
of 82¢g £ 66¢g, 11.0g £ 45¢g, 145 ¢g £ 6.2 g, 6.5 g £ 3.7 g, respectively,
result. Each DVF (restricted to those parenchyma voxels having a Hounsfield
value above —1000 HU) is analyzed using the two different metrics:

1. Jacobian analysis. Given two phases, the corresponding DVF u maps each
position in the reference phase onto the corresponding position in the tem-
plate phase. Thus, the determinant of the Jacobian of x + u(z) represents
the local volume change at position z between reference phase and template
phase,

AVjae(z) := det(V(z 4+ u(z))) — 1. 3)

A value of zero indicates local volume preservation whereas a positive (neg-
ative) value corresponds to local expansion (contraction).

2. Hounsfield analysis. Given two phases and the corresponding DVF u, a
local change in lung volume can be estimated from the relative difference of
corresponding Hounsfield values (cf. [6]). By denoting a Hounsfield value at
position z in phase i as HU,(z) the metric is defined by

HUi(z + u(z)) — HUip1 (2)
HU; 1 (2)(HU; (z + u(zx)) + 1000)

AViu(z) = 1000 4)
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Again, a positive (negative) value indicates local expansion (contraction).
Note that the images have been smoothed with a Gaussian kernel before
computing AVyy.

Moreover, the lung segmentation [16] of each phase was used to compute the
lung volume and from that the relative change in lung volume for each phase
transition. This we took as a global reference value for our volume change esti-
mates.

4 Results

Without any further parameter tuning, both methods have been successfully
applied to the four patient cases with ten phases each. The quality of registration
has been assessed by visually inspecting each residual image (i.e., the subtraction
image obtained after registration). Almost all registrations indicate an optimal
match of lung wall and diaphragm. In addition, in most cases the vessel-tree
has been correctly aligned. The results for method 2 are slightly better than for
method 1 which can be explained by the volumetric nature of method 2 (see
Figure 2 for an exemplary view). For outer-lung regions such as spine or rib cage
the residual images from both methods indicate a worse alignment compared
to the subtraction images obtained before registration (compare with Figure 1).
This is based in method 1 on the extraction of the lung surface only and in
method 2 on the threshold applied on the force vector.

According to Section 3 the resulting DVFs are analyzed using two different
metrics to estimate the local change in lung volume (see second and third col-
umn of Figure 2 for exemplary views). By using the lung segmentation of each
phase, the values AVj,e and AVhy are integrated within the lung (displayed
in Figure 3). Dependent on the patient case these relative volume changes lie
between —7% for exhalation and +11% for inhalation.

Finally, the volume change estimates from both registration methods and
both analysis metrics are compared with our global reference segmentation (de-
picted red in Figure 3). A quantitative comparison is provided by Table 1. Here,
for each registration method and each analysis metric the absolute difference be-
tween estimated volume change and segmentation-based volume change is given
in percentage. Overall, the Jacobian analysis yields an error in volume change es-
timation of 0.8% and 0.4% for method 1 and 2, respectively, while the estimation
error of the Hounsfield analysis is larger (1.4% and 0.9%).

5 Discussion and Conclusion

We have applied two fully independent image registration methods to 4D-CT
lung scans. The resulting DVFs for each phase-to-phase transition are analyzed
with two different metrics in order to estimate local lung ventilation. An overall
inspection reveals similar estimates of Jacobian and Hounsfield analysis.
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Fig. 2. For the same coronal view as in Figure 1, residual (left), Jacobian analysis
(center), and Hounsfield analysis (right) are investigated after registration of 90% onto
80% phase with method 1 (top) and method 2 (bottom). Note that the two metrics
are analyzed and visualized within the lung only — white regions belong to either the
vessel tree or are outside the lung.

For a quantitative inspection we integrated these estimates over the lung
and compared this estimated change of lung volume to that arising from an
independent lung segmentation. Our results show that for both registration
methods the volume change estimated by Jacobian analysis agrees well with
the segmentation-based volume change (mean deviation of 0.8% and 0.4%). The
Hounsfield analysis as the second investigated metric indicates a less optimal
result (mean deviation of 1.4% and 0.9%). Since this metric is sensitive to local
changes in the DVF but also to imaging- or reconstruction-related artifacts, a
concluding rating is difficult. For a deeper insight, beside the global comparisons
a point-based comparison between Jacobian and Hounsfield analysis seems to be
worthwhile.

Table 1. Mean and standard deviation of absolute difference (in %) between estimated
volume change and segmentation-based volume change.

Case Jacobian analysis Hounsfield analysis
method 1 method 2 method 1 method 2
1 0.84 £0.75 0.54 £ 0.48 1.75 £ 1.57 1.26 + 1.59
2 0.74 £0.48 0.47 £0.42 1.29 +£1.55 1.08 +£1.04
3 1.09 £0.61 0.26 £ 0.29 1.59 £ 1.09 0.70 £ 0.94
4 0.50 £0.29 0.35 £0.25 0.91 £0.72 0.54 = 0.50
mean 0.79 £ 0.53 0.41 £ 0.36 1.38 +1.23 0.89 £ 1.02
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Fig. 3. Volume changes (in %) for each patient case and for each phase-to-phase transi-
tion obtained by either Jacobian analysis (dashed) or HU subtraction analysis (dotted)
for method 1 (green) and method 2 (blue). For comparison, the volume change derived
by a lung segmentation is depicted (red).
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Abstract. Respiratory motion introduces uncertainties when planning
and delivering radiotherapy treatment to lung cancer patients. Cone-
beam projections potentially constitute a valuable source of motion in-
formation that could serve for motion compensated reconstruction and to
learn the relationship between internal motion and respiratory correlated
signals. We propose a method for respiratory motion estimation directly
from cone-beam projections by including prior knowledge about the pa-
tient’s breathing motion. The method requires that a four-dimensional
computed tomography is available from which a patient specific model
is constructed. Each cone-beam projection is compared to cone-beam
projection views of the model and motion estimation is accomplished by
optimizing the model parameters with respect to a similarity measure.
Experiments on simulated data show satisfying results. Experiments on
real cone-beam projections are currently being undertaken in order to
confirm these observations.

1 Introduction

External beam radiotherapy is the primary treatment modality for patients with
non-operable lung cancer. Respiratory motion introduces uncertainties during
imaging, treatment planning and treatment delivery [1]. To reduce respiratory
motion induced image artifacts, respiratory-correlated acquisition techniques
have been developed resulting in four-dimensional computed tomography im-
ages (4DCT). These images provide additional information about tumor and
organ-at-risk position and trajectory that can be incorporated in the treat-
ment planning process. To account for respiratory motion additional margins
are considered during treatment planning and treatment delivery methods such
as breath-hold and gating methods have been developed. These methods often
use an external respiratory correlated signal such as lung air flow or abdominal
height as a surrogate for tumor motion during the actual treatment. Changes of
the respiratory motion over the duration of the treatment have been reported [2]
and may influence the relationship between tumor motion and surrogate. Recent
developments have made cone-beam CT (CBCT) mounted on the linear accelera-
tor [3] available, which makes it possible to acquire patient images in treatment
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position just prior to treatment. As with conventional CT, three-dimensional
(3D) CBCT is heavily influenced by respiratory motion. Respiratory correlated
CBCT [4] reduces respiratory motion artifacts. However, seeing only a subset of
the CB projections is used to reconstruct each 3D CBCT image, the resulting
image quality is lower. Motion compensated CB reconstruction techniques [5],
[6] have been proposed enabling the use of all the acquired projections. These
methods however require knowledge of the motion present during CB acquisition.

CB projections are potentially a valuable source of motion information that
could be used for motion compensated reconstruction and to study the rela-
tionship between an external surrogate signal and tumor motion. Zijp et al. [7]
proposed a fast and robust method to extract the breathing phase from a se-
quence of CB projections of the thorax. The method produces a breathing signal
from which the phase can be derived and has been successfully applied for respi-
ratory correlated CB reconstruction [4]. Zeng et al. [8] proposed a method for 3D
motion estimation from a sequence of CB projections. A B-spline deformation
model is used to deform a reference CT volume to match the motion observed in
the CB projections. The applied deformations are optimized by computing the
similarity between the CB projection views of the deformed volume and the CB
projection sequence. Optimization of the numerous parameters of the B-spline
deformation model was regularized by introducing spatial and temporal motion
roughness penalties and an aperiodicity penalty for the estimated breathing mo-
tion. Results on simulated data were encouraging, demonstrating the feasibility
of the approach.

We propose a method for estimating 3D respiratory motion from a CB projec-
tion sequence by incorporating prior knowledge about the patient’s respiratory
motion. The proposed method requires that a 4DCT image of the patient is
available at CB acquisition time. From this image the respiratory motion is es-
timated using deformable registration. The motion estimation is incorporated
into a patient specific motion model with two parameters: the breathing phase
and amplitude. For each CB projection, the 3D motion estimation comes down
to finding the model parameters for which the modeled CB projection view best
matches the CB projection with respect to a similarity measure. In the next sec-
tion the images used and the construction of the patient specific motion model
are discussed. Next the proposed cost function and optimization scheme are de-
tailed. Section 3 contains the experiments performed to test the proposed method
and the results for these experiments. Section 4 focuses on known limitations and
issues related to the chosen approach and outlines future work.

2 Materials and Methods

2.1 4DCT and Deformable Registration

The images used for this study are part of a freely available data set [9]. It
consists of a 4DCT image of the thorax composed of 10 3DCT images represent-
ing different phases of the respiratory cycle.The data set is completed by 400
anatomical landmarks (40 in each 3DCT image) identified by medical experts.
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Each of the 3DCT images will be referred to as a phase of the 4DCT. Deforma-
tions between the phases were estimated by deformably registering them to one
particular phase, arbitrarily chosen to be the end-inhalation phase. Registration
was performed using the demons algorithm [10], of which its effectiveness on CT
images of the thorax was verified in earlier work by our group [11]. The accuracy
of the registrations was assessed using the landmarks provided with the data
set. The phase to phase displacements of 40 anatomical points, as estimated by
medical experts, were compared to the displacements given by the registration
results. The average registration error was thus estimated to be 1.2mm with a
standard deviation of 0.4mm. The maximum misalignment for these landmarks
was found to be 2.6mm.

2.2 Patient Model

Using the registration results obtained above, we can construct a patient specific
motion model. The proposed model is composed of a reference image I,..y and
a deformation model T'. I,y should be warped using the deformation model T'
to obtain a modeled breathing state S. There are at least two ways of warping
an image with a deformation field: you can obtain the target through either
backward or forward mapping of the source. Suppose we have a source volume I
and a target volume J. In addition suppose we have estimated the displacements
of voxels of I to their corresponding positions in J and inversely. We can obtain
J through backwards mapping of the source voxels:

J(x) = I(x+ Dy-1(x)) - ey

where D;_,1(x) represents the displacement necessary to map a voxel with po-
sition x in the target space to its corresponding position in the source space.
J is thus obtained by fetching for each voxel position of J its corresponding
(interpolated) value in I. The second possibility is through forward mapping:

J(x+ Dr—j(x)) = I(x) - 2)

where this time Dy_, ;(x) represents the displacement necessary to map a voxel
with position x in the source space to its corresponding position in the target
space. J is obtained by adding for each voxel position of I, a contribution to the
neighboring voxels of its corresponding position in J. If not explicitly taken into
account, forward mapping can lead to holes in the target image, i.e. voxels for
which no contribution was added. Backwards mapping is usually preferred as it
allows for a more efficient implementation.

The reference image for the proposed model is the mean-position image
(MPI), which we define as the image in which all structures appear at their
time-weighted mean position. This concept was also used by Wolthaus et al. [12]
for the definition of the mid-ventilation phase. Note that due to hysteresis of the
respiratory motion, the mean position of a moving structure does not necessar-
ily lie on the trajectory of that structure. It was obtained in the following way.
For each voxel of the end-inhalation used as reference image for the registrations
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described in Section 2.1, we calculated the mean of the deformation vectors map-
ping this voxel to its positions in the other phases (including a zero vector to
account for the position of the voxel in the end-inhalation phase itself). The end-
inhalation phase was then deformed using this mean deformation field, through
backwards mapping. This requires the inversion of the mean deformation field.
The Figure 1 shows a graphical representation of the MPI.

The second element in the patient model is the deformation model T" allowing
Irep to be warped to a different breathing state. As we want to incorporate the
phase to phase deformations observed in the 4DCT image, 7" should at least be
able to reach these states. The deformations between the MPI and the phases of
the 4ADCT were again estimated through deformable registration. It was preferred
to re-estimated the deformations to avoid accumulating errors by composing the
previously obtained deformation fields. The resulting deformation fields were
combined to form a 4D vector image, the fourth dimension being the breathing
phase 9. This vector image was recursively filtered to obtain a 4D continuous
cubic B-spline representation [13], denoted by T'(x,9). In addition to modelling
the phase to phase deformations, a second model parameter o was introduced
to allow inter- and intracyle variations of the deformations. a can be interpreted
as an instantaneous amplitude, linearly scaling the displacements of all voxels
given by T for a certain value of 9.

Fig. 1. (a) Schematic 2D representation of the construction of the MPI. A reference
phase of the 4DCT (Ref) is registered to all other phases. For each voxel the estimated
displacements are averaged (bold arrow) and after inversion used to obtain Ir.y(x)
through backwards mapping of the reference phase. (b) Schematic 2D representation
of the patient model. An anatomical point of I,..s is shown at its time-weighted mean
position x. Its corresponding position in the phases of the 4DCT was estimated through
deformable registration. Interpolating these positions yields the closed contour repre-
sented in bold, which can be interpreted as an estimated trajectory. T'(x,) will map
x on this trajectory, whereas aT'(x,9) can map x to any breathing state Sy (x) in
the plane of the ellipse.
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Backwards mapping I,..; using 7" would require to use the deformations defined
from the space of the phases of the 4DCT (the target volumes) to Ir.¢ (the source
volume). In this case interpolating these deformation fields with a cubic spline
would be interpolating the end point of vectors which have different starting
positions. Similarly, when scaling the deformations by «, one should scale the
deformations defined from I,..y to the phases of the 4DCT. Tests were performed
performed with both backwards and forward mapping and showed very little
difference to the resulting target volumes and especially to their CB projection
view. This is due to the fact that the deformation fields vary quite smoothly in
space. In this work forward mapping was used when warping I,.s to S. With
T'(x, ) representing the deformation given by the cubic spline for a phase ¥ on
position x, we can represent a model breathing state S through forward mapping
as:

S+ aT(x, 1)) = Lo (x) . 3)

We will use Sy o to represent the image that is the result of deforming I,..s
through forward mapping using the deformations as given by aT'(x,1). The
phase parameter ¢ € [0, 1], goes through all breathing phases from the end-
exhale phase to end-inhale and back to end-exhale when rising from 0 to 1. For
the parameters at values « = 1 and ¥ = 0,0.1,0.2,... the modeled breathing
states correspond to the phases of the 4DCT. For a@ = 0, I,y is found. The
right panel of Figure 1 shows a schematic representation of the proposed patient
model.

2.3 Cost Function and Optimization

In order to compare the 3D modeled breathing state Sy o to a CB projection pg
taken from a projection angle ¢, we calculate its CB projection view. Let Ay de-
note the ideal CB projection operator from a projection angle ¢. The projection
operator Ag, was made to simulate the geometry of the Elekta Synergy. Figure 2
shows the modeled CB projection view of I,..r. For comparison we also show a
CB projection of the same patient acquired on the Elekta Synergy. The hori-
zontal object present in the CB projection is a reinforcement of the treatment
table. For each CB projection can define the optimization problem as follows:

(5,0)s = arg max(F(pg, AsSo.0)) @

where 9 and & represent the estimated model parameters, F(.,.) is a similarity
measure for which we assumed that higher values correspond to higher similarity.
The optimization is performed in the space of the model parameters with respect
to the similarity measure between the real projection and the modeled projection
view. We used mutual information as similarity measure [14]. The cost function
was handed to a Powell optimization strategy [15]. Each subsequent optimization
was initialized with the model parameters found for the previous CB projection.
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(a) (b)

Fig. 2. (a) CB projection view of I.; and (b) CB projection of the same patient
acquired on the Elekta Synergy.

3 Experiments and Results

Validation of the motion estimation on real CB sequences is difficult as no ground
truth is available. In this work experiments were performed on a simulated se-
quence of CB projections. We randomly generated a continuous phase signal
with a varying period using the statistical properties reported for the breathing
period by George et al. [16]. This resulted in a breathing period that varied
between 2.2s and 5.6s. The phase was not limited to linear functions of time,
allowing for intracycle breath rate variations. The continuous amplitude signal
a was randomly generated using a lognormal random number generator, and
was limited to slow variations in time and values close to one. The thus obtained
amplitude signal varied between 0.88 and 1.21. These parameter values were fed
to the patient model and the CB projection views were calculated every 0.6°,
twice per second and starting from the right lateral side of the patient. This
is in good correspondence with actual CB acquisition parameters. We ran the
proposed method for the first 150 projections, which amounts to 30 seconds of
scanning time over an angle of 90°. The optimization for the first projection
was initialized with ¥ = 0 and o = 1 which was close to the generated val-
ues ¥ = 0.02, « = 1.1. It is our opinion that including a second parameter to
account for the inter- and intracycle variations of amplitude extents the grasp
of the method and makes the estimation of the phase more robust. To verify
this we ran the optimization a second time on the same generated CB projec-
tion sequence but now fixing the amplitude of the patient model to one. The
phase estimated using this method will be noted as 9. Results obtained through
this method will be referred to as estimated using a phase based model (PhM),
as opposed to using the phase-amplitude based model (PhAM). The generated
phase signal and amplitude signal of the simulated CB sequence and their esti-
mated values are shown in Figure 3 in function of the projection number. The
estimation errors are summarized for the whole CB sequence in Table 1. We
also assessed the 3D misalignment for the landmarks discussed in Section 2.1.
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Their 3D positions in the breathing states used to generate the CB sequence
are compared to their estimated positions. Figure 4 shows the misalignment in
function of the projection number while Table 2 summarizes these measures for
the whole CB sequence. Figure 5 shows an example of a generated CB projec-
tion for which difference images where calculated with the CB projection view of
I,.cy and with the estimated CB projections. For this projection (with projection
number 138), estimation errors were around their average value. When running
the optimization with the PhAM, results are accurate for the entire sequence,
yielding acceptable maximum errors and excellent mean errors for parameter
value. Figure 4 shows that the maximum misalignment of up to 16mm was ef-
fectively reduced to below lmm for this experiment. When using the PhM, the
phase estimate showed bad correspondence. With respect to the 3D misalign-
ment, the estimated sequence hardly improved the mean misalignment of the
landmarks with respect to before the optimization.

Table 1. Summary of the estimation errors for the parameter values. The table con-
tains the mean absolute estimation error (ME), its standard deviation (SD) and the

maximum absolute estimation error (MazE). 9 and & represent the estimates of the
model parameters when using a PhAM, ¢ is the phase estimate when PhM.

Parametersy ME  SD  MaxE
9 0.0024 0.0265 0.0350
é 0.0040 0.0001 0.0605
J 0.1109 0.2074 0.4800

Table 2. The 3D position of the landmarks is compared to their position in: I,.s
(before), the estimated sequence when using a PhM and the estimated sequence when
using a PhAM. The table contains the mean of the misalignment ( MeanM ), its standard
deviation (SD) and the maximum misalignment(MazM ).

Method‘MeanM (mm) SD (mm) MaxE (mm)
before 3.8544 2.1760 16.7856
PhM 3.5033 1.7747 12.6477
PhAM 0.0184 0.0366 0.9596

4 Discussion and Conclusions

Motion estimation using a phase-amplitude based model performed well on this
simulated data. It was expected that the estimates when using a PhM would be
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Fig. 3. The randomly generated amplitude signal « (full line) and phase signal ¥
(dashed line) used to generate the CB projection sequence, and the estimated amplitude
@ (plus marks) and phase § (cross marks) when using a PhAM. The phase 9 that was
obtained using a PhM is shown in the same graph (circles).
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Fig. 4. The 3D position of the landmarks is compared to the their position in the
estimated CB projection. The mean and maximum misalignment with the I..; or
before optimization (MeanM 8, MazM &), with the estimated sequence when using a
PhM (MeanM 2, MazM 2), with the estimated sequence when using a PhAM (MeanM
1, MazM 1)
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Fig. 5. Difference images between the generated CB projection and the: (left) CB
projection view of I.r, (middle) modeled CB projection view after optimization using
the PhAM, (right) modeled CB projection view after optimization using the PhM. For
the middle image the windowing was altered the emphasize the present differences.

less accurate since the CB sequence was generated using a PhAM. The phase
estimates when using a PhM were however surprisingly bad. They indicate that
the phase estimation is highly sensitive to even relatively small changes in ampli-
tude. We are currently working on expanding the method for real CB projection
sequences. One major issue is validation as it is hard to quantify the accuracy
of the motion estimation in the absence of a ground truth. Some other remarks
regarding real CB sequences can be made. In order to create CB projection
views from the patient model, one must first be able to accurately reproduce
the CB geometry and place the patient model in the same physical location as
the patient. This can be done by rigidly registering the reconstructed 3D CBCT
volume to for example a phase of the 4DCT. Although this CT-CBCT registra-
tion should not pose a problem, preliminary tests have shown that the method
is highly sensitive to misalignment of the volumes, becoming unpredictable even
for small misalignments. In the experiments performed, the similarity measure
used showed reliable identification of the optimal parameters on the simulated
data, and proved relatively easy to optimize. However several elements could
undermine its efficiency when confronted with real CB data. For example, the
borders of the treatment table will appear in a large part of the CB projections.
Scatter and detector noise, not taken into account by the ideal projection op-
erator, might turn the similarity measure less reliable and harder to optimize.
Finally it is possible that changes of the patient anatomy and breathing motion
over the course of the treatment are too large to remain adequately represented
by the proposed patient model. An example of such changes are baseline shifts
(variations of the mean tumor position), which have been reported for lung tu-
mors [2]. The proposed patient model might not handle well large baseline shifts,
but can in that case be expanded so that they are explicitly taken into account.
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Abstract. This study investigates an unsupervised machine learning approach
for quantitative analysis of pulmonary fissure completeness. The analysis of
pulmonary fissures has traditionally been a subjective task, relying on visual
assessment. Fissure analysis is becoming an important consideration as clinical
studies suggest that fissural completeness significantly correlates with success
of new endobronchial valve therapies for emphysema. Using an unsupervised
clustering approach and 600 fissure samples, three clusters emerged: fissure,
non-fissure, and bronchovascular bundle. The performance of the system was
then evaluated using 84 randomly selected fissure images. The test cases were
also independently contoured by two observers to form a reference standard for
fissural completeness. Analysis of the results showed that there was no
statistically significant difference between the CAD system and the human
observers in calculating fissure percentage completeness (T-Test P > 0.05).
Pair-wise comparisons of CAD-reader and reader-reader assessment of fissure
completeness showed comparable levels of agreement >77%.

Keywords: CAD, Fissure, Emphysema,

1 Introduction

Quantitative Image Analysis (QIA) is an important component in the process of
patient selection and treatment targeting in new emphysema treatments involving
minimally invasive lung volume reduction. One of the new treatments utilizes one-
way endobronchial valves placed in the segmental airways to exclude and deflate an
emphysematous lobe without the need for surgery, thereby allowing other (healthier)
lobes to further expand and improve lung function [1].

The degree of fissure integrity (i.e., completeness) is emerging as a potential
predictor of treatment efficacy (deflation of emphysematous lobe) [2]. An incomplete
pulmonary fissure, as shown in Figure 1, indicates the potential for collateral
ventilation between adjacent lobes, circumventing complete lobar occlusion and lobar
collapse [3,4]. Thus analysis of fissure completeness may play a key role in
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identifying patients who would benefit from the therapy and determining the target
lobe for the endobronchial valve treatment.

Determination of fissural completeness using HRCT imaging has previously been
carried out by visual inspection and subjective grading into three categories:
complete, incomplete, and absent [2,5,6]. This is a tedious and difficult task requiring
review of a large number of images under multi-planar reformats, which has
motivated the development of an automated quantitative system to assess fissure
integrity. A variety of methods have been introduced for fissure detection [7-13], but
none have been used to quantify fissural completeness or proven successful in an
emphysematous lung [14]. In emphysema patients, the lung parenchyma is
inconsistent in structure due to the presence of enlarged air-sacs known as bullae
which lead to fissures that are irregular and indistinct on imaging.

An automated quantitative system could be of tremendous benefit in making
assessment of fissure integrity more discriminative, reproducible, and broadly
applicable. The aim of this pilot study is to demonstrate the feasibility of automated
quantitative assessment of fissure integrity from thin-section CT in emphysema
subjects with abnormal and incomplete pulmonary fissures.

2  Methods

2.1 Image Data Collection

The CT images used in this study were selected at random from a cohort of 486
emphysema subjects from a research database (see cohort demographics in Table 1).
Images were acquired with the following imaging parameters: 120 kVp, 140 to 300
mAs, and a pitch ranging from 0.984 to 1.5. Images were reconstructed with slice
thicknesses ranging from 1 to 3 mm and using standard reconstruction algorithms
(e.g., GE STD, Siemens B30f, Philips B, and Toshiba FC10 filters).

For this pilot study we focused our initial analyses on the left major fissure. The
research database contains 12,391 technologist-drawn and radiologist approved 2D
left major fissure contours from 486 subjects. From these contours samples were
randomly selected to form independent training and test sets.

Table 1. Demographics of 486 emphysema subjects in a research database.

Absolute (Mean + SD) Range
Age (y) 63+7 41-176
PFT TLC (L) 7.62+1.48 34 -12.14
PFT RV (L) 4.83+£1.21 0.86-9.22
CT TLC (L) 6.99 +1.38 3.98 —10.45
CT RV (L) 5.12+1.26 2.29-8.99

Voxels below -910 HU (%) 56.53+ 10.30 30.45 -81.27
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2.2 Image Features

The Hessian matrix of second order partial derivatives (Eq. 1) was used to
characterize the variations in intensity about a point. In our initial implementation the
Hessian matrix was computed in two-dimensions, however, the technique can be
generalized to three-dimensions [13]. The computation has been described in greater
detail by other authors [7,15]. The eigenvalues of the Hessian matrix, &;, k,, are

computed and ranked according to their absolute value |x;| > |x,|. Prior to

computation of the Hessian, Gaussian smoothing was applied to the image with a
kernel with standard deviation ¢ = 1.0 mm.

M

HY (x.) {f f}

fo Sy

Fissures are modeled as faint, plate-like structures (or lines in 2D images) due to
their thin surface and partial volume averaging. &; should correspond to the gradient
change normal to the fissural line (along the first eigenvector). The other orthogonal
eigenvalue ( &, ) should correspond to the second eigenvector in the direction of the

fissure and should be closer to zero. Based on this assumption we compute a
“plateness image” using Equation 2 (see Figure 1).

LY

K

I=1- , where the ratio &,/ k; is expected to be high for fissures. ¥))

Figure 1. Original (on left) and plateness (on right) images with an incomplete left major
fissure indicated by arrows. The fissures appear as faint white lines in the original image and
solid lines in the plateness image. Since there are blood vessels with similar appearance the left
major fissure is marked with an arrow.

Three features are computed for each voxel along the fissure path within a 32 x 32
patch around the voxel from the original CT and plateness images as shown in Table
2. The fissure path is based on a manually drawn contour as described in section 2.1.
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Table 2. Features computed along fissure path in a 32 x 32 patch around the voxel of interest in
the original CT and plateness (gradient-based) images.

Image Feature Range Expected values

Original CT ~ Median gray level 0-255 higher if voxel is a fissure
Plateness 20th centile of histogram 0 -255  higher if voxel is a fissure
Plateness Max run length of voxels 0-32  longer if voxel is a fissure

with intensity > 100

2.3 Classification Model

The classification model was machine-learned using unsupervised k-means clustering.
The number of clusters was set as K=3 based on the premise that three classes are
expected: fissure, non-fissure, bronchovascular bundle (near the hilum).

The classifier was trained using 600 feature samples from among the 12,391
fissure contours in our research database. Each sample (computed from a 32x32
patch) was taken from a different fissure contour (i.e., different CT image) to
minimize dependence between the samples and bias in the classifier. Sample patches
surrounding the learned cluster centers are shown in Figure 2.

Using the cluster centers, a minimum-distance classifier was implemented to
classify each voxel along the fissural path. For each voxel along the path, the three
features are computed in the 32x32 neighborhood and input to the classifier. The
fissural completeness is then calculated as the percentage of pixels along the path

classified as fissure.
- ':! m | a
©

Figure 2. Nine training samples nearest to the learned cluster centers for (a) fissures, (b) non-
fissures, and (c) bronchovascular bundles.

2.4 Experimental Testing

100 HRCT slices were selected at random from our research database. Two human
observers independently reviewed all 100 slices. They were shown the endpoints of
the fissure marked initially by the technologist (which was also used as the input
fissure path to the CAD system). If either one of the observers in the current
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experiment disagreed with the endpoints of these previous contours the case was
rejected. 16 cases were rejected during this process, resulting in 84 CT images which
the observers and CAD system independently analyzed.

The human observers were trained on lung anatomy, software application, and
sensitivity calibration. We did not use radiologists for this pilot study due to the
previous determination that well-trained observers produce similar inter-observer
variability as licensed radiologists [16].

The observers assessed the entire fissural path within each CT image, they marked
portions of the fissure they considered to be intact and left blank the parts of the
fissure they considered to be absent. They also marked portions of the path passing
through vessel bundles (near the hilum) which were excluded from completeness
calculations. The CAD system was also applied to each case and automatically
classified voxels along the fissural path into the same three categories. For each
observer the fissure integrity was then assessed by calculating the percent-
completeness of the fissure:

NFiss

Completeness =
Fiss T N NonFiss

x100 . 3)

where N, = number of voxels classified as fissure and Ny,,ri;s = number of voxels
classified as non-fissure.

The completeness percentage values were then compared pair-wise between
Reader 1, Reader 2, and CAD. The percentages were also converted into a binary
decision of complete or incomplete for each observation. Based on previous studies
involving visual assessment, a completeness percentage of = 90% was considered as a
complete fissure for potential treatment planning [16]. Bland-Altman plots (Figure 5)
were used to quantify statistically significant agreements between treatments. Paired
T tests were also performed to further analyze the agreement between treatments (See
Section 3).

3. Results

Figures 4a-c are scatter plots showing the pair-wise comparisons between Reader 1,
Reader 2, and CAD. Figure 4a compares the two readers, and Figures 4b and 4c
compare CAD against each of the readers. Dashed lines indicate 90% fissural
completeness. Points above/right of these lines (in the upper right quadrant) represent
agreement on complete fissures, while points in the lower left represent agreement on
incomplete fissures. The upper left and lower right quadrants represent disagreement
between the observers. The numbers, N, shown in each quadrant are the number of
pair-wise observations in each category. For example, in Figure 4a there were 55
fissures where both readers agreed that the fissure was complete, 18 where they
agreed it was incomplete and 6+5=11 where they disagreed. Similar
agreement/disagreement counts are shown for Figures 4b and 4c involving CAD vs
Reader.
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Bland-Altman plots were also used to determine the pair-wise agreement between
fissure completeness scores. All three plots contain a cluster of points with zero
difference at 100% completeness. In each of the Bland-Altman plots, 6 readings were
significantly different (with 95% confidence), leaving a 78-reading agreement for
each comparison. The paired T tests resulted in p values of 0.3401, 0.0863, and
0.3876 for the comparisons between Reader 1 and Reader 2, Reader 1 and CAD, and
Reader 2 and CAD respectively.

Table 3 summarizes the agreement between the three observers. The first row
indicates that all three agree on completeness/incompleteness in 72.6% of the fissures.
In 14.3% of the fissure the two readers agree but CAD does not. In the remaining
cases CAD agrees with one of the readers. Figure 3 shows examples of fissures with
different levels of fissure completeness and observer agreement.

Table 3. Agreement counts between Reader 1, Reader 2, and the CAD system.

Agreement On Fissural Completeness

Readers that agree 290% <90% Total
R1, R2, and CAD 49 12 61 (72.6%)
Only R1 and R2 6 6 12 (14.3%)
Only R1 and CAD 5 2 7 (8.3%)
Only R2 and CAD 3 1 4 (4.8%)

~

/
T
(@) (b)

Figure 3. Original CT images and CAD detected fissures for cases where (a) both readers and
CAD classified the fissure as complete, (b) both readers and CAD classified the fissure as
incomplete, and (c) one reader and CAD classified the fissure as incomplete and the other
reader classified it as complete.

©
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Figure 5. Bland-Altman plot of fissure completeness percentages for (a) Readers 1
and 2, (b) CAD and Reader 1, and (c) CAD and Reader 2.
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4 Discussion

There was good pair-wise agreement for the percentage of fissural completeness, with
no statistically significant differences within any of the three comparisons. When
applying the 90% threshold for completeness CAD had good agreement with each of
the readers (81% and 77% respectively - see Figures 4b,c), although the agreement
between the readers themselves was higher (88% - see Figure 4a). This performance
is particularly encouraging since it involved subjects with emphysema and incomplete
fissures, rather than clearly defined normal fissures as has typically been the case in
previous work on fissure detection. The difficultly of the fissure classification
problem in emphysema subjects is indicated by the agreement levels between the
readers. The scatter plot in Figure 4a shows that even trained readers have quite
different completeness scores in some (difficult) cases.

We developed our prototype system for the left major fissure since its appearance
seems more consistent than the right major or minor fissures. The completed system
will include fissures from the right lung which may necessitate a larger sample size
for classifier training. In this pilot study we used images with a range of CT technical
factors, and further systematic investigation on their influence on features is needed.
We will also continue investigation of supervised machine-learning approaches with
expert-labeled voxels [13].

In future studies we expect improved agreement. For this pilot study we
intentionally focused on a small number of features that were selected a priori and a
simple classification method. Thus we find the results to be very encouraging and
expect the approach to generalize well to larger data sets. Also, we were using only
one CT image per assessment, both in terms of CAD feature calculation and for
reader review. This was done for speed/simplicity of calculation and observer review
in this initial investigation of the feasibility of using CAD to assess abnormal fissures.
Previous fissure detection approaches have used multiple slices (three dimensions)
and lung vasculature data [7-13] to guide fissure detection. We will extend the
features to 3D and the reader evaluation to multiple slices and expect to achieve better
performance and greater agreement. We will also investigate the feature space further
with a labeled training set to determine whether a non-linear classifier is appropriate.

By maintaining a high accuracy for detection of complete and almost complete
fissures we aim to maximize the number of successful outcomes for the
endobronchial valve treatment [1,2].

5 Conclusion

The CAD prototype system showed good agreement with human observers in
computing the percentage of fissure completeness and in classifying the fissures as
complete or incomplete. The pair-wise agreement between CAD and each reader was
comparable to that between the readers themselves. This work is one of the first
efforts to specifically detect abnormal/incomplete fissures in subjects with
emphysema and has important clinical applications in targeting of endobronchial
valve treatments. The results are very encouraging for a challenging problem and we
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expect the extension of the features to three-dimensions will yield further
improvements in performance.
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Abstract. Segmenting airway and vascular trees in CT volume images
plays a fundamental role in pulmonary image analysis. However, accurate
assessment of complete tree morphology is difficult due to their complex
nature. In this paper, we extend an optimal graph search based tech-
nique to identifying tree-structured airways and lung vessels with one or
more interrelated surfaces. Based on a pre-segmentation that preserves
the object topologies, our approach utilizes the 3D medial axes to re-
sample the volume image and construct a geometric graph. By designing
appropriate cost functions, the segmentation of both airways and vessels
is performed across tree bifurcations in a single optimization process for
the entire tree. Segmentation results of double surfaces for airways and
single surface for vascular trees are presented.

1 Introduction

The airway and blood vessels are two major components of the human lung.
Quantitative assessment of both the airway and vascular trees provides impor-
tant information for functional understanding of pulmonary anatomy and objec-
tive measures of lung diseases. Due to the large image sizes and highly branching
structure, it is tedious and time-consuming to manually locate individual tree
branches and draw their contours on 2D slices. Furthermore, 2D manual tracing
and image analysis methods may not be as effective and reliable, since they lack
the ability to incorporate 3D information. Hence, developing automated and ac-
curate 3D segmentation methods for lung images is a critical task in pulmonary
image analysis and computer aided diagnosis. Further, airway trees and vessel
trees may have multiple interrelated layers of surfaces for segmentation, some of
which are extremely hard to detect individually. Several techniques have been
proposed to segment the tubular lung objects ([1, 2]), but they cannot guarantee
global optimality.

* This research was supported in part by NSF Grant CCF-0515203 and NIH NIBIB
Grant R01-EB004640-01A2.
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Fig. 1. Illustrating 3D airway and vessel segmentation: (a) The original lung CT image;
(b) the rendered airway inner and outer walls with cross bifurcation segmentation;
(c) the rendered vascular tree.

Wu and Chen [3] reported an optimal graph search based algorithm, which
was extended to multiple surface segmentation by Li et al. [4]. These graph
search based schemes transform the image segmentation problem to computing a
minimum-cost closed set in a derived vertex-weighted graph, and obtain optimal
segmentation. The methods have been successfully applied to non-branching
airway segmentation [4] and MR arterial wall segmentation [4], but it did not
directly extend to segmenting objects with a tubular and tree-like topology such
as airways or blood vessels (see Fig. 1). The methods in [3, 4] are only suitable for
the objects that have a relatively simple topology (e.g., cylindrical or spherical).
In these cases, a 3D geometric graph can be built either by unfolding the sought
surfaces to terrain-like surfaces or resampling the image along the normal surface
directions within a narrow band. However, these “simple” methods for building
3D graphs are not directly applicable to objects with complicated structures
since they may cause severe interferences among the resampled vectors and may
fail to intersect (or capture) the sought surfaces.

In this paper, we present a technique for segmenting multiple interrelated
layers of surfaces for airway and vessel trees. Specifically, to address the above-
mentioned drawbacks, we propose a new scheme for building the 3D graphs
for segmenting tubular and tree-structured objects. To overcome the difficulty
of segmenting branching structures, we use medial axes and surface dilation
to guide and produce an effective image resampling. Our graph search on the
resampled images uses task-specific cost functions for airway and vascular trees.
Consequently, we obtain segmentation results of multiple interrelated layers of
surfaces for airway and vessel trees with significantly improved quality.

2 Method

The graph search based algorithms [3,4] solve the segmentation problem by
transforming it to finding a minimum-cost closed set in a directed vertex-weighted
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graph, which is solvable in polynomial time. Our graph search based image seg-
mentation approach consists of the following four major steps:

(1) Pre-segmentation. A pre-segmentation is needed to provide the basic in-
formation about the object’s global structure. It is not necessary for the
pre-segmentation to be locally accurate. However, it is crucial to preserve
the topology of the target object. If the pre-segmentation does not yield a
mesh, we also need to transform the volumetric result into a mesh represen-
tation.

(2) Image resampling. Based on the outcome of the pre-segmentation, the
image is resampled on each vertex of the initial surface mesh, resulting in a
set of vectors (called columns) of voxels. In this paper, the medial axes are
applied to determine the directions and lengths of the resampling columns.

(3) Graph construction. Each voxel in the columns is considered as a node in
the graph. There are three types of edges, representing the relations of voxels
within the same surface or between different surfaces. A cost is assigned to
each node which reflects the certain property of the sought surfaces.

(4) Graph search. Finally, we apply a minimum s-¢ cut algorithm [3, 4] to the
resulting graph to simultaneously search for multiple interrelated surfaces.

For segmenting tubular and tree-structured objects, the most nontrivial task
is to build a vertex-weighted geometric graph to model the volumetric image.
When constructing this graph model, we need to carefully resample the vol-
umetric image so that the following two constraints are satisfied: 1) All the
sought surfaces must be captured by the graph; 2) the relations among the
voxel columns should be consistent with the surface topology specified by the
preliminary mesh from the pre-segmentation, meaning that interferences among
different voxel columns cannot be allowed (more on this later).

2.1 Pre-segmentation

The algorithm we use for the pre-segmentation of pulmonary vascular trees is
based on a hybrid method of the tube enhancement filtering and traversal ap-
proaches [5]. First, the tube enhancement based on the cylindrical shape model
using an eigenvalue of the Hessian matrix serves as a filter to extract vessels.
Then, a traversal step detects the change of signs of those eigenvalues to improve
the vessel’s connectivity. Finally, objects with many branch points are selected
to distinguish between vascular trees and noise components. Airway trees are
pre-segmented using commercially available Pulmonary Workstation PW+ soft-
ware (VIDA Diagnostics, Oakdale, IA). Once a labeled image is generated by the
pre-segmentation, it is transformed into a triangulated mesh using the marching
cube algorithm.

2.2 Image resampling based on medial axes

To segment an optimal surface in the image using the corresponding preliminary
meshed surface, our approach needs to perform a resampling of the image for
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Fig. 2. [llustrating the image resampling: (a) The interferences caused by inappropriate
column lengths, (b) a 2D example of image resampling based on medial axes.

every surface vertex along the normal direction of the meshed surface at that
vertex, resulting in a column of voxels for each vertex. In this process, we seek
to avoid two “bad” situations: (1) The length of a column is too long, so that it
interferes with (intersects) other columns; (2) the length of a column is too short,
so that it fails to capture enough information about the real surface. To avoid
possible interferences among the resampled columns, we need to determine the
proper directions and lengths for the columns. Intuitively, the normal direction
at each mesh vertex is the direction without any bias or prior information about
the location of the real surface.

A medial axis of the preliminary surface is a set of points each of which has
at least two nearest points on the surface [6]. At each mesh vertex, the medial
axis determines the maximum distance that a column can be extended along
the normal direction without any interference with other columns. Although the
exact computation of the medial axis is possible in principle, it is complicated
to implement due to significant algebraic difficulties [6] — approximate solution
can be obtained using computational geometry. Suppose the vertices of the mesh
form a point set .S. We can compute the Voronoi diagram and the dual Delaunay
triangulation of S in 3D [7]. The medial axis is computed by using the poles in the
Delaunay triangulation, which are selected from the centers of the big Delaunay
balls adjacent to vertices. Then we assign a pole to each of the mesh vertices
by selecting the largest pole among the vertex’s k-nearest neighbors, in order
to reduce the impact of possible noise on the surface [7]. Next, the lengths of
the columns are obtained by computing the distances from the mesh vertices to
their corresponding medial axis points (on both the inner and outer medial axes
of the preliminary surface, Fig. 2).

A sought surface may contain very sharp angles at its branches. In such
situations, a medial axis could be very close to the branching portions of the
surface and consequently the columns computed based on the medial axis could
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be quite short, giving very little flexibility to the graph search algorithm. To
avoid this problem, we first grow (dilate) the preliminary surface by a certain
distance, and then compute the columns based on the grown surface and its
medial axes. The distance we used in the experiments is 3 voxels, which should
be depending on the size of the object. With an appropriate value for the growth
distance, we can obtain a set of columns that extend across the sought surfaces.

2.3 Graph search based segmentation

A graph G = (V,E) has a set V of nodes (or vertices) that are connected by
edges in E. In this paper, the nodes in V of G are voxels in the resampled
volumetric image, which are organized by the columns. Each column of nodes
is associated with a vertex of the preliminary mesh, and is sampled along the
normal direction at that vertex. We assign edges to connect neighboring nodes
in G and to ensure the geometric constraints (e.g., the smoothness constraint
and the separation constraints of the surfaces [4]). Generally, the graph G is
constructed in a similar manner as in [4].

Airway tree segmentation The detection of airway outer wall is difficult
since the outer surface is often surrounded by other adjacent tissue with similar
gray scale intensities in CT images. Instead of segmenting the airways section by
section and gluing the branches together afterwards, we consider the airway tree
as a whole and search for both the optimal inner and outer walls simultaneously.

For each sought surface, we construct a graph that is designed to contain that
surface. At each mesh vertex v, there are two columns, corresponding to the in-
ner and outer surfaces, respectively. Denote these two columns at vertex v by
Col;(v) = {n;(v,0),...,n;(v, K — 1)} and Col,(v) = {ny(v,0),...,n,(v, K —1)}.
Within every column, say, C'ol;(v), each node n;(v, k) is connected by a directed
edge to n;(v,k — 1) for k > 1. Between each pair of adjacent columns, a set of
edges is assigned to ensure the smoothness constraint [4] within the surface. Let
v1 and vy be two adjacent vertices on the mesh, and suppose n;(vi, k1) is con-
nected to n;(va, k2) by an inter-column edge. Then the smoothness constraint A
enforces that:

SA<k -k <A (1)

With the smoothness constraint, we avoid any dramatic change of the neigh-
boring voxels on the same surface, which consequently results in smooth surfaces
of the sought medical objects. In the case of double surface detection, another
set of edges, called inter-surface edges, is added to impose the surface separa-
tion constraint [4] between the two surfaces. The inter-surface edges are assigned
between vertices n;(v, k;) and n,(v, ko) for all v € V so that the following sepa-
ration constraint is satisfied:

O <ki—k, <o (2)
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where ' (resp., 6*) specifies the smallest (resp., largest) allowed distance between
the two sought surfaces. (Assume that &',6% > 0.) The separation constraint
ensures that two sought surfaces are not too far away and also not too close to
each other (e.g., they may not be allowed to intersect).

After the graph is constructed with the above three types of edges between
the nodes in the columns, we need to assign a cost function to each of these
nodes. The cost function must reflect the possibility for a voxel (node) to belong
to a certain surface. For airway wall detection, the two surfaces differ from each
other in the direction of intensity change. Since the airway lumen is darker than
the airway wall, the intensity increases from low to high at the inner border.
Conversely, the intensity decreases from high to low at the outer border when
only parenchymal tissue is adjacent. However, this intensity change for the outer
border shall also hold when non-parenchymal surrounding tissue is present. Since
the airway wall is not completely connected to the surrounding tissue, there
ought to be a little gap outside the wall that represents a “lower” intensity.

The cost function we use for airway segmentation is a combination of the first
and second derivative edge detectors and is based on the cost function proposed
in [8]. This is due to the property that the two edge detectors tend to yield the
maximum magnitude on one or the other side of the true edge, causing certain
over-estimate or under-estimate of the airway wall position. Thus, a weighted
sum of the first and second derivatives works better for the accurate border
location. Ideally, a 3D edge detector should be applied in our situation because
of the 3D nature of the image. However, a test of these two edge detectors shows
that the 3D edge detector performs similarly as the 2D one but with a significant
increase of the computational overhead. In order to achieve a higher efficiency,
the 2D edge detector is adopted to build the cost function at each node v

Costoyter (V) = w - I (v) * Mgoper, + (1 — w) - I (v) * Mpgarr (3)

COStinneT ('U) =Ww- It (’U) * MSobelz + (1 — w) . It (1}) * ]V[Mm"r (4)
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where Mgoper, and Mgoper, represent two inversely oriented 2D Sobel templates,
and Mpyqrr represents the 2D Marr template (all in 5 x 5 size). I; (v) isa 5 x 5
gray-scale image template resampled from the 3D image around the node v. As
we did for the resampling of columns, the template is also sampled along the
corresponding vertex’s normal direction (as illustrated in Fig. 3). Thus, the 2D
image template is centered at the node v and is on a plane perpendicular to the
surface. The voxels are sampled at the interval size d; such that

dt = dcol/2 (5)

where d.; is the interval between neighboring voxels in a resampled column.

Vascular trees segmentation For the vascular tree segmentation, the graph
is constructed in the similar manner although there is only one surface to be
detected (the only one visible on CT image). Hence, only the intra-column and
inter-column edges are needed to build the graph. The cost function used for
vascular tree segmentation is the magnitude of gradient computed from the
Gaussian smoothed images.

3 Validation of Pulmonary Image Segmentation

The validation of airway and vascular tree segmentation has been performed
on a set of 6 CT scans of lung CT images. The sizes of the images vary from
512 x 512 x 562 to 512 x 512 x 671, voxel size 0.68 x 0.68 x 0.6mm3, Siemens
Sensation 64-slice MDCT. After an initial surface of the airway inner wall is
extracted (Section 2.1), our graph search approach succeeded in extracting the
outer wall as well as optimizing the location of the inner wall in all 6 cases. An
example of the cross bifurcation segmentation is shown in Fig. 4. To segment
the vascular trees, each connected blood vessel component is filtered out and
labeled with a different number. In comparison with the pre-segmentation results
(which were considered final till now), the graph search captures the wall surfaces
more accurately especially across bifurcations. (See Fig. 5.) While the initial
results show the approach is promising for simultaneously segmenting single-
and multiple-surfaces of pulmonary airway and vascular trees, we understand
that more quantitative evaluation needs to be done in our following work.

4 Discussion and conclusion

In this paper, we extended the optimal graph search based approaches introduced
in [3,4] to segmenting airway and vascular trees in 3D pulmonary CT images.
By using medial axes to guide the resampling, the 3D image is sampled prop-
erly based on the preliminary segmentation. Even though both the airways and
vessels have complicated tree structures (airways with multiple interrelated sur-
faces), our proposed resampling scheme is able to extract sufficient information
from the image data and provide it to the graph search algorithm to identify the
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Fig. 4. Airway segmentation: (a) The inner wall (result of pre-segmentation); (b) dou-
ble surfaces after graph search; (c) the comparison of preliminary result and graph
search result in 2D slices. Note that the inner as well as outer surfaces are smooth and
three-dimensionally accurate across the airway branching.

Fig.5. Vascular tree segmentation results: (a) The original image; (b) the pre-
segmentation; (c) the graph search result showing improved delineation (red arrows).
Note the ability to correctly detect the surface even if the preliminary segmentation
fails locally — as long as the preliminary segmentation is in the vicinity of the desired
surface (white arrow).

optimal surfaces. By applying cost functions with directional information, our
algorithm succeeds in detecting both the inner and outer surfaces of the airway
walls as well as the vascular wall surfaces across bifurcations. As shown by the
examples, the segmentation considerably improved the results of the preliminary
segmentation.
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Abstract. This paper presents a method for improving airway tree seg-
mentation using vessel orientation information. We use the fact that an
airway branch is always accompanied by an artery, with both structures
having similar orientations. This work is based on a voxel classification
airway segmentation method proposed previously. The probability of a
voxel belonging to the airway, from the voxel classification method, is
augmented with an orientation similarity measure as a criterion for re-
gion growing. The orientation similarity measure of a voxel indicates how
similar is the orientation of the surroundings of a voxel, estimated based
on a tube model, is to that of a neighboring vessel. The proposed method
is tested on 20 CT images from different subjects selected randomly from
a lung cancer screening study. Results from our experiments showed that
length of the airway branches segmented using the proposed method are
significantly longer (p = 0.0125) as compared to only using probability
from the voxel classification method.

1 Introduction

It has been shown in various studies that analysis of airways in CT, mainly the
measurement of airway wall thickness, plays a significant role in the analysis of
various lung diseases [1]. Airway tree segmentation plays a critical role in these
studies, offering a starting point for conducting measurements on the airways.
Nevertheless, current available airway segmentation methods are still far from
perfect, limiting the measurements obtainable from these airway analysis studies
to the larger airways that are easier to segment.

Most airway segmentation methods are based on the region growing algo-
rithm [2-6]. The main difficulty in using the region growing algorithm lies in
the fact that there often exist regions that have low contrast between airways
and their surroundings, due to noise or pathologies such as emphysema. These
regions often cause the region growing algorithm to leak into surrounding lung
tissues. Currently there are two approaches to address this problem: explosion
control and use of local image descriptors.
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The idea of explosion control is to stop the segmentation in the low contrast
regions where otherwise leakage would occur, while segmentation continues in
other regions. Strategies for explosion control generally involve heuristic rules
based on geometrical properties of the regions labelled. Some examples of these
geometrical properties are: volume of the regions segmented [2], radius of prop-
agation front [3], cross section area [4] and topology of thinned structure [5].

The second approach makes use of local image information to better dif-
ferentiate between airways and their surroundings, for instance using pattern
recognition techniques [7, 6] or local tube detection [8].

Previously, we have proposed a method for airway segmentation based on
voxel classification and region growing [6]. In this paper, we propose to incor-
porate airway and vessel orientation information to further improve the voxel
classification based method. This is done by using an orientation similarity mea-
sure that is computed from the orientation of a candidate airway voxel and the
orientation of a neighboring vessel. The orientation similarity measure is then
used as an additional criterion in the region growing.

The motivation for our work lies in the fact that every airway branch is
accompanied by an artery. Sonka et al [9] decribed an approach that uses vessels
to improve airway segmentation. The differences however is that our method
uses a segmented vessel tree and the orientation computed from it, while the
work described in [9] uses the proximity of the airway to the vessel, which is
assumed to be a bright object nearby.

2 Vessel-guided airway segmentation

We start by first describing the construction of a voxel classification based air-
way appearance model, which is proposed in a previous work. We then proceed
to explain the way the vessels are extracted and the computations of their orien-
tations. After that, we present the way we compute the orientation of an airway
candidate voxel, and how this is used with the orientation from a neighbor-
ing vessel to form an orientation similarity measure. Finally the segmentation
framework is described, where the airway appearance model and the orientation
similarity measure are used to form a decision function for a region growing
algorithm.

2.1 Airway Appearance Model

An appearance model based on voxel classification is used. We based this ap-
pearance model on [6], where a k** nearest neighborhood (KNN) classifier is
used for differentiating between voxels from airway and non-airway classes. A
brief review on how the model is constructed and used is presented here for the
convenience of the reader. Refer to [6] for details.

Ideally, a gold standard provided by hand-tracing by a human expert should
be used to construct or train the appearance model. However, such a ground
truth of the airway trees is not feasible to obtain due to the extreme amount of
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manual labour involved [5]. Therefore, a surrogate ground truth is used instead,
which is imperfect but easier to obtain. We will refer to this surrogate ground
truth simply as ‘ground truth’ in the following text.

The ground truth is obtained using a simple intensity based interactive re-
gion growing algorithm, where the user is required to provide a seed point and
an intensity threshold. The highest threshold possible without any observable
leakage is selected for each of the images individually. A second segmentation is
produced using a slightly higher threshold. Due to the higher threshold, this ‘ex-
ploded segmentation’ usually has more airway branches and significantly more
leakage. The exploded segmentation is used to exclude potential airways voxels
that were missed by the ground truth from the non-airway class in training the
appearance model.

The airway class then consists of all voxels labelled in the ground truth, but
excluding the trachea and main bronchus. The non-aiway class consists of voxels
surrounding the airways that are within the lung fields and are not marked by
the exploded segmentation.

To ensure approximately independent training samples, only a small per-
centage (5%) of the voxels belonging to the airway class, selected randomly, are
used as training samples. The same number of training samples are also selected
randomly from the non-airway class. To prevent the samples belonging to air-
way class from having a bias towards the larger airway branches, the random
sampling is done such that more samples will be drawn from the the smaller
branches.

An initial set of local image descriptors is first used to compute the fea-
tures of each training sample. This set of features consists of partial derivatives
up to and including the second order, eigenvalues of the Hessian matrix, de-
terminant and gaussian curvature of the Hessian, as well as combinations of
eigenvalues that measure tube, plate and blob (y/AF + A2 + A2, |A2/A1], A3/,
(1A= 1x2])/(IA1]+1A2]), [As]/4/IA1A2]). The partial derivatives of the image are
computed at multiple scales by convolving the image with the partial derivative
of a Gaussian kernel, based on scale space theory [10].

Sequential forward floating feature selection [11] is used to select an optimal
subset of features from the initial set, which maximizes the area under the re-
ceiver operating characteristic (ROC) curve of the KNN classifier. In the feature
selection process, training samples are randomly separated into two equal parts,
a training set and a validation set. The final KNN classifier used is constructed
using the optimal features of all the training samples.

Given a set of optimal features & computed at a particular position in the
image, the posterior probability of  belonging to the airway class is defined as

P(dla) = K412) )

where A is the airway class, K 4(x) is the number of nearest neighbors around
x belonging to the airway class, obtained from a total of K nearest neighbors.
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Fig. 1. Vessel segmentation with thresholding only on intensities (left) and on both
intensities and tubeness measures (right).

2.2 Vessel Orientation

Extraction of vessel orientation involves three steps: vessel tree segmentation,
centerline extraction and orientation computation.

The segmentation of the vessel tree in CT image starts by first segmenting
the lung fields based on thresholding and morphological smoothing [12]. We
then threshold the image with an intensity of ¢, followed by a second threshold
process based on the eigenvalues of the Hessian matrix to remove other high
intensity structures such as airway walls and fissures.

We obtain two measurements based on the eigenvalues [13], given as

_ [l =1
[A1] + [A2]

_ Al =1l

d =
R DAY W

1

where || > |\2| > |A3| are the eigenvalues of the Hessian matrix. Note that
0 < my,mo < 1. Within a solid bright tube structure, A; and A2 correspond
to the principal curvatures along the direction from inside to the outside of the
tube, and A3 corresponds to the principal curvature along the direction of the
tube. Therefore, the eigenvalues within a tube structure will have a relationship
of |A1| & |Az2] > |3, thus resulting in mq ~ 0 and mgy ~ 1.

The second threshold retains voxels with m; < t,,,, and mg > t,,,. Additional
connected component analysis is used to remove small isolated objects (of less
than 20 voxels in size) to obtain the final segmentation. Fig. 1 shows the result
of vessel segmentation with and without thresholding via m; and ms.

The centerlines are extracted from the segmented vessel tree using a 3D
thinning algorithm [14]. Subsequently, the vessel orientation at the centerline
voxels is measured as the eigenvector corresponding to Az. The reason for using
orientation estimated through the Hessian eigen analysis is because it is less
sensitive to noise and inaccuracies in the vessel segmentation, as compared to
the orientation that would be obtained from the skeleton itself.

2.3 Orientation Similarity Measure

The orientation of the airways is extracted using Hessian eigen analysis in the
airway probability image. Let @ = (as, ay,a;) be the orientation of an airway
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candidate voxel and v = (v, vy,v,) be the orientation of the voxel belonging
to the centerline of the vessel that is nearest to it, we defined the orientation
similarity measure as
| <a,v>|
§= ———
[alllvll

where s will be near to 1 only when the orientation of a is similar to v.

2.4 Segmentation Framework

The airway tree is extracted using a region growing algorithm on the airway
probability as described in [6]. The orientation similarity measure is used along
with the airway probability (1) from the KNN classifier, when deciding whether
a voxel belongs to an airway or not.

In region growing on the airway probability, it was often observed that a
whole subtree of the airway is not segmented due to a small amount of voxels
with low airway probability ‘blocking’ the way. This is especially pronounced for
the smaller high generation branches, where 1 or 2 low probability voxels are
sufficient enough to block the entire subtree after them.

We propose to solve this problem by reducing the threshold of the airway
probability in cases of high orientation similarity. To accomplish this, we intro-
duced 3 thresholds: an upper airway probability threshold T, a lower airway
probability threshold 7; and an orientation similarity measure threshold 7. The
decision function for airway is then defined as

17 p('r7y7z) ZT'U/7
. Tu>p(x,y,2z) > T and s(x,y,2) > T, (2)

0, otherwise.

—_

D(p(z,y,2),8(x,y,2)) =

where p(x,y, z) is the airway probability and s(z,y, z) is the orientation similar-
ity measure of the voxel located at (z,y, z). The voxel is labelled as an airway
if D(p(z,y,z),s(z,y,z)) = 1. Suitable values for these thresholds can be found
for instance using cross validation.

2.5 Optimal Threshold Selection

Our method requires the selection of 3 threshold values, T, T} and Ts. Due to the
conservative nature of our ground truth, threshold selection based on measure-
ments such as accuracy or segment overlap would result in an over conservative
segmentation. Instead, we will aim to maximize the total length of branches
segmented, while minimizing the chances of explosion.

A modified fast marching algorithm based on [3] is used to detect possible
explosion and measure the branch length. This algorithm works by constantly
monitoring the propagating front of the fast marching algorithm in a particular
airway branch. The fast marching algorithm is initialized at each branch at
bifurcations, which is detected when there is a discontinuity in the front.
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Different from [3], which uses the minimum radius of the branches from pre-
vious generation for explosion detection, our approach uses the radius of the
current branch after the first N step as reference instead. Explosion is detected
when the ratio between the radius of the current front and the reference radius
exceeded . The number of branches at bifurcations is also monitored, where ex-
plosion is said to occur when the number of branches at a bifurcation exceededed
.

The centroids of all the fronts at each time step of a particular branch are
stored. The branch length can then be computed by summing up all the distances
between the centroids from neighboring time steps. The total branch length is
computed by summing up the length of all branches, excluding the trachea.

3 Results on 20 Low-dose CT Images

Experiments were conducted on 20 low-dose CT images from 20 different sub-
jects enrolled in the Danish Lung Cancer Screening Trial (DLCST), with a voxel
size of 0.78125x0.78125x 1mm (except for one image that has a voxel size of
0.75x0.75x 1mm). The 20 subjects were selected randomly from the screening
study. A two-fold cross validation experiment was conducted, where the 20 sub-
jects were randomly separated into two groups: A and B. Group A was then
used as training set for constructing the classifier that was to be tested on group
B and vice-versa.

3.1 Parameter Settings

A fast implementation of KNN based on approximate nearest neighbor (ANN)
searching [15] is used as the classifier for the appearance model. The error eps is
set to zero to turn off the approximation part of the ANN searching algorithm.
A K of 21 was used for the KNN classifier of the appearance model. The features
are calculated at 7 scales exponentially distributed within a range from 0.5mm
to 3.5mm.

For vessel tree segmentation, t, was set to -600HU, o of lmm was used for
the computation of the Hessian matrix, with both ¢,,, and ¢,,, set to 0.5. In
our experiments, the orientations of the vessels and airways were computed at
a scale of 2mm for the orientation similarity measure. There are two reasons for
this higher scale, as compared to the Imm used in vessel tree segmentation: to
compensate for the noise in the probability image and to make sure that the
scale is large enough such that orientation in the centerline of the vessels can be
estimated reliably.

For threshold selection, the N is set to 2, 5 to 3 and 7 to 5. The airway proba-
bility thresholds T, and T; were varied over 21 different values (with 0 excluded),
which was equivalent to the K used for the KNN classifier. The threshold T
was varied over 21 different values ranging from 0 to 1. A total of 4011 different
combinations of thresholds were tested.
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The thresholds were optimized within the two-fold cross validation experi-
ment, where only images from the training set were involved. Airway probability
for each image was produced by a KNN classifier that was constructed in a leave-
one-out manner. The threshold combination selected was the one that had the
highest total branch length without any explosion detected for all cases.

3.2 Results

Maximum (Max), minimum (Min) and average (Avg) total branch length (mea-
sured in cm), along with true positive rate (TPR = TP/(TP+FN)) and false
discovery rate (FDR = FP/(FP+TP)) of the segmentation results are presented
in Table 1. Results from the best setting, obtained using the threshold selection
process described previously, with airway probability alone and on image inten-
sity alone are also included for comparison purpose. Computation for TPR and
FDR was done with respect to the ground truth described in Sect. 2.1. Note that
FDR does not only indicates false positives (leakage), but also newly discovered
actual airway branches that were missed in the conservative ground truth.

Results from region growing on the image intensity were significantly worse
than the ones that use the airway probability, be it with or without the orienta-
tion similarity criterion. Also during the optimization process, the criterion for
the number of cases with explosion detected needed to be increased to 1. This
was because there were a few images where leakage occurs no matter what inten-
sity threshold was used. In the test results in Table 1, one of the test image was
excluded due to explosion, as shown in Fig. 2(a). Fig. 2(b) shows the best result,
while Fig. 2(c) and Fig. 2(d) shows representative results of region growing with
intensity.

Both segmentation using the airway probability are better than the ground
truth, with more new branches found than missed. Results with orientation sim-
ilarity measure are in general more complete, with more and longer branches,
as indicated in the results in Table 1. A paired t-test performed on the total
branch length calculated from the segmentation results showed that the increase
was significant (p = 0.0125). Examples are shown in Fig. 2(e) and Fig. 2(f).
Fig. 2(g) and Fig. 2(h) show 2 examples where orientation similarity measure
shows obvious improvements visually than the ones without it, with the former
comparable and the later clearly worse than the surrogate ground truth. Exam-
ples where orientation similarity measure performed slightly worse, with either
more obvious leakage or less branches, as compared to using airway probability
alone are also shown in Fig. 2(i) and Fig. 2(j).

4 Discussion and Conclusions

An airway tree segmentation method that augments an airway appearance model
with vessel orientation information is presented. The use of the airway probabil-
ity image makes it possible to determine the orientation of an airway candidate
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Table 1. Results with airway probability and orientation similarity measure (P+S),
with only airway probability (P) and with image intensity (I). The values in brackets
are those with a case excluded due to explosion from region growing on intensity.

[Max(cm) Min(em) Avg(em) TPR(%)  FDR(%)
P+S[381(331) 103(103) 213(209) 97.58(97.62) 19.40(19.17)
P [299(209) 90(90) 186(186) 93.25(93.78) 14.01(14.05)
I | -(366) -(94) -(136) -(36.82)  -(0.37)

voxel using Hessian matrix eigen analysis. The airway orientation of the can-
didate voxel is then compared with the orientation from a vessel nearest to it
to form an orientation similarity measure. This orientation similarity measure
is used to lower the threshold for airway probability during the region growing
process, resulting in a more complete segmentation with longer airway branches.
Results from our experiments showed that augmenting the airway appearance
model with our orientation similarity measure gives better segmentations than
with only the airway appearance model.

The explosion detection based on [3] that was used in our experiments worked
well in general, but was not without problems. There were cases where it was
either too sensitive or failed to detect leakage. Due to this reason, the thresh-
olds obtained and used in our experiments were not really optimal. Tuning the
thresholds manually or employing another explosion criterion may still improve
the results.

It should be noted that we employed explosion detection only in the opti-
mization process. Airway tree segmentations were subsequently generated using
standard region growing on airway probability and orientation similarity. Em-
ploying a smarter region growing algorithm would likely improves the results as
well.

We have showed a way to incorporate vessel orientation information into voxel
classification based segmentation methods. However, the idea of using vessel
orientation can also be useful when applied in combination with other methods,
such as intensity region growing. In this work, we focused on improving the
detection of small airway branches using orientation information extracted at a
single, small scale. A natural extension of this work would be to use automatic
scale selection for computing airway and vessel orientations, which we believe
would further improve the accuracy and sensitivity of the orientation similarity
measure, thus further improve the segmentation results.
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Fig. 2. Surface renderings of the segmentation results. Results from region growing
with intensity are given in (a)-(d). Comparison of segmentation results using airway
probability with (left) and without (right) orientation similarity measure are given in
(e)-(j)- Results from the following pairs of figures are from the same test image: (a) and
(i), (b) and (j), (c) and (f), (d) and (h). The pre-segmented trachea and main bronchus
are shown in white, true positives are show in green, false positives are shown in blue
and false negatives in yellow, all with respect to the surrogate ground truth. (Refer to
the electronic version for colours.)
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Abstract. A texture classification system is described, based on isotropic
polyharmonic B—spline wavelets that identify lung tissue patterns from
high-resolution computed tomography (HRCT) images of patients af-
fected with interstitial lung diseases (ILD). Along with several desir-
able properties for isotropic texture analysis, the nonseparable trans-
form with a quincunx subsambling scheme allows a mean of 94.3% of
correct matches among six lung tissue classes. A comparison with a clas-
sical dyadic transform suggests that the isotropic quincunx transform
is preferable for lung tissue analysis. This is part of work on a tool for
integrating visual and clinical features as diagnostic aid for emergency
radiology.

1 Introduction

The interpretation of high-resolution computed tomography (HRCT) images
of the chest showing patterns associated with interstitial lung diseases (ILDs) is
time—-consuming and requires high clinical expertise due to rare cases and a large
number of different diseases. The diagnosis of ILD is established from the inter-
pretation of several clinical parameters of the patient in addition to radiological
findings [1]. The most common imaging procedure used is the chest x-ray be-
cause of its low cost and weak radiation exposure. However, chest x—rays appear
as normal in a large portion of diseases and are often unspecific where HRCT
of the chest contains essential visual data for the characterization of lung tis-
sue patterns associated with ILDs [2]. HRCT produces three-dimensional (3D)
images of the pulmonary volumes, avoids the superposition of anatomic struc-
tures, and is well suited for the assessment of lung tissue texture. However, the
increase of data volume compared to the chest x—rays makes the interpretation
task more complex. The high spatial resolution generates a large variety of lung
tissue patterns, which induces confusion of diverse pathologic lung tissues. In
addition, the radiologist has to go through the whole stack of slices, which can
result in interpretation errors by omission [3]. In emergency radiology, radiolo-
gists have recourse to a large diversity of imaging modalities such as conventional
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projection radiography, computed tomography (CT), magnetic resonance imag-
ing (MRI), functional imaging (fMRI, PET), and ultrasound applied to different
organs such as the brain, colon, breast, chest, liver, kidney and the vascular and
skeletal systems. They have to provide a first radiological report with ideas on
the diagnosis quickly. Automatic detection and categorization of pathologic lung
tissue patterns can help the radiologists to cope with the complexity and chal-
lenges of interpreting HRCT [4,5]. The suspicious (abnormal) patterns in the
new, non-interpreted HRCT are highlighted to the radiologist with a proposed
tentative diagnostic [6]. The radiologist has to consider the system as a second
opinion for providing a differential diagnosis.

The taxonomy used by radiologists to interpret patterns in HRCT images of-
ten relates to texture properties, which suggest that texture analysis is relevant
for the characterization of ILD which is typically diffuse. Texture analysis in dig-
ital image processing has been an active research domain over more than thirty
years. In [7], texture in digital images is defined as nonfigurative and cellularly
organized areas of pixels. Early examples of texture features are the autocor-
relation function, textural edginess, measurements derived from mathematical
morphology, run-length and gray-level co-occurence matrices, the latter being
the most popular of the lot [7,8]. Unfortunately, building co-occurence matri-
ces from HRCT images where grey-levels are corresponding to Hounsfield Units
(H.U.) with values from ~1000 H.U. (air) to 1500 H.U. (high density bones) is
unrealistic because the number of possible co-occurrences is simply too large to
be stored and estimated reliably. Complementary to the characterization of spa-
tial dependencies, the distribution of grey-levels values can be studied through
statistical measures of grey—level histograms. The Fourier transform has also
been proposed for texture analysis, based on the property that some image pat-
terns (especially, periodic ones) are well described in terms of sinusoidal compo-
nents [8,9]. However, the latter is not appropriate for segmentation because the
Fourier transform is global.

1.1 Dyadic Versus Quincunx Wavelet Frames for Texture Analysis

The multiresolution analysis provided by the wavelet transform (WT) is an at-
tractive solution for texture analysis. The signal under investigation is decom-
posed onto a set of wavelet functions at various scales; i.e., representing details
at different resolutions. For example, in the discrete version with dyadic sub-
sampling the analyzed image is iteratively filtered and subsampled by a factor
of 2 in each dimension. The WT is particularly well suited to compactly rep-
resent piecewise—smooth signals, which partly explains its success in biomedical
imaging applications [10]. Wavelet bases are desirable to perform compact data
representations, as they allow orthogonal decompositions. They have fast imple-
mentations, but have the main drawback to lack translation invariance. Discrete
wavelet frames (DWF), on the other hand, are redundant and offer more flexibil-
ity for image analysis. DWF are truly shift—invariant and can be obtained from
a wavelet basis by removing the subsampling stage of the algorithm and upsam-
pling the filters instead. When compared to the WT, the DWF tends to decrease
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the variability of the estimated texture features thereby improving classification
performance [11].

Although widely deployed, the separable dyadic form of DWF has two major
drawbacks to perform texture analysis. On one hand, the scale-progression is
large as images are downsampled by a factor of 2 (in each dimension) between
two decomposition levels. Relevant information might be padded out when hav-
ing major energy contained in a narrow subband located between two successive
levels of the dyadic transform. Subtle changes in the scale of lung tissue patterns
(i.e. micronodules versus macronodules) might be neglected by the dyadic scale—
progression [12]. On the other hand, separability allows computational efficiency
because wavelet coefficients within each subband can be obtained by successive
one—dimensional (1D) convolutions along the columns and the rows of the im-
age. Unfortunately, this process tends to favor the vertical and the horizontal
directions, and produces a so—called “diagonal” wavelet component, which does
not have a straightforward directional interpretation. Under the assumption that
lung tissue patterns in axial slices of HRCT data do not have privileged direc-
tionalities, neither horizontal, vertical, nor diagonal, the separable transform is
not appropriate for their analysis.

In Section 2.2, we propose the use of isotropic polyharmonic B-spline wavelets
together with a fine scale-progression (equivalent factor of v/2 based on the quin-
cunx subsampling scheme). Beside scale-progression and isotropy we demon-
strate that isotropic polyharmonic B-splines have many other desirable proper-
ties for lung tissue analysis.

1.2 Non—-Separable Wavelets for Biomedical Texture Classification

During the last twenty years, the WT has been utilized widely in biomedical
applications, as well as for the characterization of textures of biomedical tis-
sues [10]. The increased spatial resolution of modern imaging techniques allows
for assessment from anatomical structures to textures of tissues. More recently,
nonseparable wavelet transforms have been used for detection of pathologic tis-
sues with no a priori privileged directionalities in several imaging modalities.

In [13], the quincunx wavelet transform is used for the characterization of
liver tissue in noisy ultrasonic B—scan images. Compared to the classical WT,
the nonseparable transform allows for an increased classification performance.
However, the use of the compacted pyramidal representation of the subbands is
not appropriate to obtain shift—invariant features for classification.

The redundant quincunx wavelet transform along with support vector ma-
chines (SVM) were used in [14] to classify 5 lung tissue patterns associated with
ILDs and achieved 94.3% of global accuracy. Nevertheless, the classification task
is slightly biased since the training set contains an equal number of instances for
each of the five patterns, which is usually not the case in clinical practice.

In [12], grey-level histograms with discrete wavelet frame features were eval-
uated using a k—nearest neighbor classifier. In this paper, we use isotropic poly-
harmonic B-splines as scaling functions to implement a two—dimensional (2D)
redundant quincunx wavelet transform in order to characterize 6 types of lung
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tissue in HRCT data with optimized SVMs. Lung tissue texture classification
using co-occurence matrices, Gabor filters and Tamura texture features was in-
vestigated in [15]. The classification of regions of interest (ROIs) delineated by
the user consitutes the intial steps towards automatic detection of abnormal lung
tissue patterns in the whole HRCT volume.

2 Methods

2.1 Dataset

The dataset used is part of an internal multimedia database of ILD cases con-
taining HRCT images with annotated ROIs created in the Talisman project!.
843 ROIs from healthy and five pathologic lung tissue patterns are selected for
training and testing the classifiers selecting classes with sufficiently high repre-
sentation (see Table 1).

The wavelet frame decompositions with dyadic and quincunx subsampling
are implemented in Java [11,16] as well as optimization of SVMs. The basic
implementation of the SVMs is taken from the open source Java library Weka?.

Table 1. Visual aspect and distribution of the ROIs per class of lung tissue pattern.

visual
aspect
o 3
class healthy emphysema |ground glass fibrosis micronodules|macronodules
# of ROIs 113 93 148 312 155 22
# of patients 11 6 14 28 5 5

2.2 Isotropic Polyharmonic B—Spline Wavelets

As mentioned in Section 1.1, isotropic analysis is preferable for lung texture
characterization. The Laplacian operator plays an important role in image pro-
cessing and is clearly isotropic. Indeed, A = 6% —+ 3%* is rotationally invariant.
The polyharmonic B—spline wavelets implement a multiscale smoothed version
of the Laplacian [16]. This wavelet, at the first decomposition level, can be char-
acterized as

Uy (D7) = A% {6} (x), (1)

L TALISMAN: Texture Analysis of Lung ImageS for Medical diagnostic AssistaNce,
http://www.sim.hcuge.ch/medgift /01_Talisman_EN.htm
2 http://www.cs.waikato.ac.nz/ml/weka/
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where ¢ is an appropriate smoothing (low—pass) function and D = [11;1 —1] is
the quincunx subsampling matrix. The so-called order v tunes the iterate of the
Laplacian operator (comparable to the traditional vanishing moments). Large
values of v reduce the energy of the wavelet coefficients but increase the ringing
effect [17].

2.3 Lung Tissue Classification: Dyadic Versus Quincunx

The quincunx scale—progression is finer compared to dyadic decomposition, with
an equivalent downsampling factor of v/2 instead of 2. Compared to the dyadic
separable case, quincunx subsampling generates only one wavelet subband per
decomposition level (versus three for dyadic). This leads to a direct and easy
interpretation of the subbands; the small number of subbands also breeds small
features spaces, which are preferable for classification.

In summary, using isotropic polyharmonic B-splines as scaling functions have
the following desirable properties for lung tissue analysis:

— rotational invariance
— fine scale progression tunable through ~y
— easy and direct interpretation (one wavelet subband per scale)

2.4 Feature space

In order to build the feature space for further classification of the ROIs, sev-
eral measures are computed from the original image as well as from the wavelet
coefficients of each subband. On the original images, values of pixels belonging
to the ROIs are categorized into 22 bins of grey-level histograms of Hounsfield
Units (H.U.) in [—1050; 600[. The distributions of the wavelet coefficients in each
subband are characterized through the parameters of mixtures of two Gaussians,
which have shown to characterize distributions of wavelet coefficients well in [18].
With fixed means j1 2 = p, the standard-deviations oy o are estimated using
the expectation—maximization (EM) algorithm. Under the assumption that the
global mean of the coefficient values is close to zero (according to the admissi-
bility conditions of wavelets), using two standard—deviations allows a reasonable
fit of the distributions (see Figure 1). The feature vector thus consists of 24 fea-
tures for 8 levels of the quincunx transform. Features are extracted for orders
v = 2,3,4. To compare performances, 4 levels of the classical dyadic trans-
form (using frames as well) were performed using B-Spline wavelets of degree
a = 1,2,3. Indeed, the equivalent order of derivatives 7 corresponds to a + 1.
Using parameters of a mixture of two Gaussians for each subband, the feature
vector contains 36 measures of the dyadic wavelet frames coefficients (more de-
tails can be found in [12]).

3 Results

Feature vectors from 843 ROIs containing healthy and five pathologic lung tissues
are extracted. 674 instances (80%) are randomly drawn from the full dataset and
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Fig. 1. Mixture of two Gaussians (p1,2 = p, o1,2) to modelize the distribution of

wavelet coefficients within one subband.

used to train and optimize the parameters of Support Vector Machines (SVMs)
with Gaussian kernel, which have shown to be effective to categorize texture in
wavelet feature spaces in [19] and in particular lung tissue in [20]. The remain-
ing 169 instances are used for testing. The global experimentation is repeated
30 times and means of the global classification accuracies along with means of
class—specific accuracies are computed. A detailed description of the selection
of the parameters of SVMs and a comparison of 5 common implementations of
classifiers families can be found in [20]. Pairwise comparisons of classification ac-
curacies using dyadic versus quincunx wavelet frames for several orders (a+1,7)
are shown in Table 2.

4 Discussion

Pairwise comparisons shown in Table 2 indicate that quincunx wavelets outper-
form dyadic ones in 91.7% of the comparisons (22 among 24). This global in-
crease in performance is primarily due to the better isotropy properties of these
non-separable wavelets, which is due to their close connection to the Laplacian.
Indeed, the favored directions of the separable transform lead to noisy features
breeding non-homogeneous clusters of instances belonging to the same class in
the feature space, which decreases global classification performance. Although
having influence on global accuracy as well, the finer scale progression allowed
by the quincunx subsampling scheme increases the precision of the classification;
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Table 2. Mean accuracies in % with experiments repeated 30 times. Isotropic polyhar-
monic B-spline wavelets with order v = 3 allowed a mean of 94.3% of correct predic-
tions among the six lung tissue classes with high precision (geometric mean = 89%).

class a=1vy=2la=2,7v=3la=3,7y=4

dyadic 91.1 93.6 92.5
healthy | neunx 959 98.1 92.4
emphysema dyadic 97.2 98.7 97.7
Py quineunx| 100 100 99.7
round glass dyadic 84.2 88.3 86.3
g g quincunx 85.7 89 87.7
. dyadic 95.8 95.2 96.5
fibrosis | ncuns| 965 96.3 94.5
micronodules dyadic 89.8 93.3 88.8
” quincunx 94.1 95.2 91.7
macronodules dyadic 40.3 48 46.9
quincunx 54.2 55.5 48.5
cometric mean dyadic 83.1 86.2 84.8
g quincunx 87.8 89 85.7

lobal mean dyadic | 90.6 £2.6 | 925+ 14 | 91.4+2.2

& quincunx| 93.34+1.6 |94.3+16 | 92+19

i.e., by avoiding confusion between patterns with well-defined object sizes, such
as micro— and macro— nodules.

Global accuracy values are trustworthy for further usage in clinical routine
as the six classes of lung tissue pattern tested allow for diagnosing a wide variety
of ILDs [2]. Compared to other studies on lung tissue analysis in HRCT data,
our system is closer to clinical routine as the distributions of the classes are
realistic contrary to [14] and we include healthy tissue (which is not the case
in [4]). Indeed, healthy tissue is the most difficult to separate from others as the
variety is by far the largest.

5 Conclusion

The ability of dyadic versus quincunx wavelet transforms to analyze lung tissue in
HRCT data were evaluated on a high—quality dataset. Isotropic polyharmonic B—
spline wavelets with optimized order allowed a mean of 94.3% correct predictions
among six lung tissue classes associated with ILDs with high precision. Pairwise
comparisons with a dyadic transform showed that the polyharmonic wavelets
outperforms the classical separable frames 22 times among 24, which suggest
that the latter is more appropriate for lung tissue analysis in HRCT data.

Further work has to be carried out in order to integrate clinical parameters
for classifying the lung tissue regions, in the same way the radiologists interpret
HRCT images. First experiments showed high potential for improving classifi-
cation performances in [21].
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Abstract. Computerised emphysema quantification has received a lot
of research attention due to the mass availability of CT. Yet, to our
knowledge, no existing method is able to recognise all common subtypes
of the disease, a diagnosis routinely given by radiologists. In this pa-
per, we present a HRCT-based Computer Assisted Diagnosis system for
emphysema subtype diagnosis. The system first detects low-attenuation
regions using adaptive density mask, a novel refinement to the classic
density mask method. Detected regions are then classified individually
and results combined in a bottom-up manner to achieve per-patient di-
agnosis and quantification. Expert knowledge necessary for classification
decisions was acquired incrementally using a multi-level Ripple Down
Rules system. Evaluation shows that the multi-level approach well re-
flects the pathological characteristics of the subtypes, and RDR knowl-
edge management provided robust diagnosis using very little training
data.

1 Introduction

Emphysema is a chronic obstructive pulmonary disease (COPD) typically caused
by exposure to tobacco smoke. Alveolar walls break down due to inflammatory
responses to the particles inhaled and the affected regions show low attenuation
on high-resolution computed tomography (HRCT) scans. Patients suffer from
limited respiratory capabilities as the disease progresses.

Automated emphysema detection has been researched for almost as long as
CT has existed; Sluimer et al. recently provided an overview and performance
comparison in their survey on computerised CT analysis of the lung [1]. Despite
its age, density mask (DM), a method introduced by Muller et al. in 1988 [2],
is still considered the de-facto standard in computerised quantification [3]. DM
calculates the percentage of the lung showing below-normal attenuation and has
been shown to correlate well with pulmonary function tests, the standard for
emphysema diagnosis in pre-CT times [4, 5]. However, DM and other emphysema
quantification methods are unable to detect disease subtypes, a diagnosis made
routinely by radiologists when diagnosing scans manually.

To build a computer assisted diagnosis (CAD) system capable of compre-
hensive subtype recognition, extensive expert knowledge must be transferred
into the system systematically and in a time-efficient way. Ripple Down Rules
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(RDR), a knowledge engineering technology for expert systems introduced by
Compton and Jansen [6], is suitable for the task. RDR are ordered lists of rules
with exceptions. If a misclassification is detected for an input case while review-
ing classification results, an exception is appended to the firing rule to correct
the conclusion; a new rule is added to the knowledge base if no rules fire at all;
and no change is made for correctly classified cases (review/approve-or-create-
rule cycle). This makes RDR an incremental or per-case knowledge acquisition
method, where knowledge base testing and rule creation merges into a single
working step to make use of every sample reviewed. New rules are validated
against the existing knowledge base to ensure knowledge consistency. For any
new rule or exception created, the human expert is responsible for formulating a
rule condition based on some features of the case investigated. The choice of these
conditions is a trade-off between rule specificity and the desired generalisation
to similar but unseen future cases.

Feature extraction and feature design are crucial for the success of any CAD
system, and often, new features are added as the expert finds that the features
currently available are insufficient. If the diagnosis model was represented using
a machine learning approach, this would require re-training; with RDR being an
incremental learner, the expert would simply incorporate new features into the
newly built rules. Another important property of RDR is that the system is built
while being already in use. RDR can be seamlessly integrated into the day-to-day
workflow of the experts as demonstrated by the commercially successful version
of RDR for pathology domain [7,8]. It is known that RDR produce knowledge
bases (KB) similar in size to those developed by machine learning [9] and the
time taken to add a rule remains roughly constant regardless of the size of the
KB [8]. An enhanced version of RDR known as Multiple Classification RDR
(MCRDR) [10] can provide multiple conclusions to a given case.

In this paper, we present a CAD system for classification and quantification
of centrilobular (centriacinar), panlobular (panacinar) and paraseptal (bullous)
emphysema (Fig. 1). The system design is inspired by the way we observed the
radiologist in our group handle the task manually: raw emphysema regions are
detected (Sect. 2) and classified individually based on a set of region features.
Results are combined to provide input to a higher-level classification step (Sect.
3). Both steps use RDR rule bases for expert knowledge management and reason-
ing, forming a novel multi-level RDR classification system. We discuss evaluation
methods and some results in Sect. 4 and summarise remaining challenges and
ideas for future work in Sect. 5.

2 Emphysema Detection and Feature Extraction

Raw emphysema region detection is based on density mask, as this method
is widely accepted by radiologists and studies have been carried out to select
good threshold values [4,5]. However, a pure DM approach fails in our case for
later stage emphysema cases (confluent emphysema), where large regions of very
serrated appearance are detected that provide no meaningful shape information
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Fig. 1. CAD System overview

(see Fig. 2). To compensate, we have developed a DM variant called Adaptive
Density Mask (ADM), somewhat similar to but computationally more efficient
than the standard Watershed transform [11]. ADM was designed to give results
similar to standard DM except for confluent cases, where it creates more and
smaller unconnected regions more suitable for subsequent region analysis.

2.1 Adaptive Density Mask

The idea behind ADM is to select a binarisation threshold for each emphy-
sema region automatically to maximise the number of distinct regions while
simultaneously maximising their area, both within the limits imposed by mini-
mum/maximum density masks. Traditional minima detection methods capable
of achieving this [11,12] are expensive, over-segment the image and require ad-
vanced de-noising beforehand. ADM provides a simple, fast and robust tradeoff
between sensitivity and simplicity for the drawback of having to select a number
of additional parameters.

It is worth pointing out that, by definition, DM (and any method based
on it such as ADM) does not produce false positives in the traditional sense;
every detected image pixel/voxel is considered as indication of the presence of
emphysema and thus clinically relevant. Fig. 3 illustrates ADM schematically
for a real-valued signal; in particular, the method works as follows:

Given a set of thresholds t1,...,t,, a DM is calculated on the input image
for each threshold (for e.g. -965 HU to -945 HU using 5 HU steps in Fig. 3).
For each resulting distinct region (solid horizontal black lines), the minimum
attenuation is determined and the corresponding x/y position is associated as
an unique index to the region (squares and vertical lines). We can think of the
different density mask outputs as an ordered stack of layers as indicated by the
solid horizontal lines (binary one) and the dotted horizontal lines (binary zero)
in Fig. 3. Each region is recursively visited by the following procedure, starting
on the topmost layer:
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(a) (c) (d)

Fig. 2. Standard density mask (DM) compared to the adaptive density mask (ADM)
method for raw emphysema segmentation. (a) Original image region, a late case of
centrilobular emphysema. (b) DM output using a threshold of -950 HU (yellow). (c)
ADM output using -975 HU, -970 HU, ..., -945 HU thresholds (red). (d) Overlay of the
DM (yellow) and ADM (red) segmentations from (b) and (c). For large segments of late
panlobular and centrilobular emphysema, ADM creates more and smaller unconnected
regions as compared to DM that results in large, serrated regions.
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Fig. 3. Adaptive Density Mask: schema for a real-valued signal. The density mask
outputs for the different thresholds are depicted in solid (binary one) and dotted (binary
zero) lines, resulting emphysema regions are highlighted in bold red. For some regions,
the number of regions below the current layer n. is given.

— Find the number n,. of regions below the current layer covered by the current
region. For the rightmost region in Fig. 3 on the -945 HU density mask,
ne = 3.

— If n. < 1, the current region on the current layer will cover a maximum
area while simultaneously maximising the number of regions: recursing to
a lower layer will not increase the number of regions but will decrease the
region area. Mark the current region in the result mask as binary one and
stop recursion.

— If n, > 1, visit the covered region in the layer below.

We observe the following two properties of ADM:

1. Local minima detection: The image is re-quantised using ¢4, ..., t,, and every
local minimum detectable in the re-quantised image creates a distinct region
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in the binary result image. This ensures that even for late confluent cases,
shape information is retained.

2. Mazimum region area: While the number of regions in the binary result im-
age is determined by the number of detected local minima, each such region
has maximum area. This makes ADM behave similarly to DM where the
emphysema regions are generally well formed and isolated (non-confluent).

2.2 Region Feature Extraction

We extract multiple features for each low-attenuation region: Shape (compact-
ness and elongation using image moments), first-order statistics (mean HU, HU
standard deviation and uniformity using min/max normalised standard devia-
tion), connectivity to the lung boundary (pleura), edge-radius-symmetry trans-
form [13] for wall detection and a morphological wall detection approach in which
the region is dilated and first order statistics are calculated for the new region
pixels, resulting in a total of 12 features per region.

3 RDR Based Multi-level Classification

Our multi-level RDR system design is motivated by the finding that presence and
distribution of the different emphysema region classes in a patient are commonly
used by radiologists for subtype diagnosis [3]. Emphysema region identification
and classification is a task on its own and must not be confused with the higher-
level per-patient subtype classification.

Each disease subtype is dominated by a special type of low attenuation region
[3] (see Table 1 for a brief characterisation). Accordingly, the extracted region
feature vectors are used to classify regions into one of these region classes using
a region level RDR layer. In a second step, a diagnosis level RDR layer builds on
the region level results and produces the desired subtype diagnosis as outlined
in the schema in Figure 1.

Table 1. Region class characterisation and relation to emphysema subtypes (charac-
terisation extracted from [3])

Predominant
Region class Appearance in subtype
Bullous Round, compact, any size. Very low density, Paraseptal
typically touching the pleura, visible walls
Centrilobular Small/medium size; typically rounded shape Centrilobular
Diffuse Large, often smoothly outlined by interlobular ~ Panlobular

fissures and pleura; uniform density with smaller
vessels within

Expertise for the region classification decision was transferred into the system
using the common RDR cycle: new rules or exceptions to existing rules are added



-140- FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

by the expert either to correct a misclassified sample or to remove false positives.
The radiologist in our group, a specialist on lung CT with more than 30 years
of experience, created a total of 22 rules for the region classification rule base.
Effectively, 22 regions from a number of typical cases were thus used as the gold
standard (see Figure 4 for a sample rule created).

— TouchingPleura = 1, Area > 6.95 mm?, Compactness > 40%, MeanDensity <
—974 HU — Bullous
except
o WallsMorphMean < —890 HU — Centrilobular
except
* WallsMorphStddev < 100 HU, Uniformity > 85% — Bullous

— EmphysemaDistribution={Diffuse,Bilateral}, EmphysemaTotalLungPct > 30%
— Moderate panlobular emphysema

Fig.4. Two sample RDR rules created during system development: a region level
rule with an exception that in turn has an exception (top) and a diagnosis level rule
(bottom).

Percentage involvement of all the three region types detected in the previous
step are calculated for various lung regions. These percentages as well as distribu-
tion and predominance attributes (such as e.g. diffuse/focal, unilateral /bilateral
distributions or apical/middle/basal predominance, calculated for each region
class separately using [14]) are presented as features at the diagnosis level RDR.
We use multi-classification RDR [10] to allow for co-existence of different em-
physema subtypes, and each subtype is individually quantified as either absent,
mild, moderate or severe. Figure 4 shows a sample diagnosis level rule based on
these features.

4 Classifier Performance Evaluation

Evaluations were carried out separately for the region level and the diagnosis
level layers. In addition, in order to examine whether our region features are
powerful enough for a clear discrimination between the three region classes, we
compared region classification results obtained using standard machine learning
methods to expert opinion, where high agreement would indicate sufficiently
powerful region features.

A dataset consisting of 4,514 manually labelled regions (176 bullous, 4,193
centrilobular and 145 diffuse) from 9 scans of different patients was created
using a designated labelling tool to train and evaluate the following classifiers:
a decision tree (C4.5), a naive Bayesian, decision tables using the Inducer of
Decision Table Majority (IDTM) induction algorithm [15] and a fully connected
single hidden layer perceptron classifier, all through the WEKA data mining



FIRST INTERNATIONAL WORKSHOP ON -141-
PULMONARY IMAGE PROCESSING

suite for Java [16]. Sample sizes for each class were chosen to roughly reflect
the frequency distribution of the different region classes. Classifiers were trained
using 10-fold stratified cross validation using 10 repetitions. Table 2 shows high
agreement for all classifiers tested and proves that the proposed region features
are sufficiently powerful for region discrimination.

For comparison, Table 3 displays the confusion matrix for the region-level
RDR classifier after the creation of the 22 rules mentioned above for the same
dataset. Very good performance is observed for the centrilobular and the diffuse
region classes, while almost 33% of the bullous class are missed. Apparently,
an insufficient number of samples were reviewed to trigger rule creation and
knowledge transfer necessary for reliable classification of this region type. Also,
since the same expert hand-labelled the region dataset and created the RDR
rules, we cannot eliminate the possibility of some bias and thus over-estimation
of the RDR classifier performance.

Table 2. Class-specific and overall classification results for standard machine learning
region level classifiers using 4514 training regions. F-Measure is defined as the harmonic
mean between classifier precision and recall; the Total F-Measure column contains a
weighted sum of the class-specific F-Measures (weights proportional to class sample
size).

Class-specific F-Measure (%)

Bullous Centrilobular Diffuse Total
Classifier (176 inst.) (4,193 inst.) (145 inst) F-Measure

C4.5 67.50 98.50 89.80 97.01
Naive Bayes 50.40 94.80 64.20 92.09
Decision Tables  63.70 98.40 89.10 96.75
Perceptron 65.20 98.20 85.00 96.49

Table 3. Confusion matrix for RDR region level classifier using 22 training regions.
The value at the bottom right shows the combined F-Measure for the RDR classifier as
a result of a weighted average of the class-specific F-Measures (class weight proportional
to class sample size).

| Label/classified — Bullous Centrilobular Diffuse  F-Measure (%)

Bullous 119 55 2 66.48
Centrilobular 57 4,133 3 98.49
Diffuse 6 12 127 91.70

Combined 97.02
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For the diagnosis level layer, the radiologist in our team reviewed an ad-
ditional 25 scans (different from the ones used to create the region dataset)
manually. Since raw emphysema detection is out of scope for this work, we only
used scans that appeared to contain emphysema through their relatively high
DM coverage (31.3% =+ 8.4% for the selected scans using a standard -950 HU
threshold). Emphysema subtypes present were identified and a severity diagno-
sis was given for each case. 5 scans were diagnosed not to show any emphysema.
Among the others, 1 showed mild paraseptal (bullous) emphysema, 7 centrilob-
ular (mild: 1, moderate: 2, severe: 4) and 14 panlobular (mild: 10, moderate:
2, severe: 2) emphysema. The diagnosis level RDR knowledge base was initially
empty, and during the course of the review, the radiologist added new rules
whenever the system came to a wrong or no conclusion.

Altogether, 12 rules were created this way; we recorded the order in which
scans were reviewed and whether one or more rules were created to adjust the
system behaviour. Two different visualisations of the process can be seen in Fig.
5. Figure 5 (a) shows that 12 rules were needed on the whole to classify the 25
scans correctly. Figure 5 (b) clearly highlights a plateau effect (solid line) and a
decay (dotted line) as the number of scans reviewed increases: 10 out of the 12
rules (83.3%) were added for the first 17 scans (68%), confirming the well-known
RDR benefit of robust classification results after using only a small number of
training samples. Rather than testing on unseen cases, every new case is used
for training in the RDR tradition.

—e—Number of rules in KB =« Rules per case

100%
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1.2 3 4 5 6 7 8 9 10 N 13 5 7 9 11 13 15 17 19 21 23 25

Number of rules in KB Cases reviewed
(a) (b)

Fig. 5. Results of diagnosis level RDR evaluation. (a) Number of rules in the knowledge
base and overall classifier performance on the 25 scan test set. (b) Scans reviewed and
number of rules in diagnosis level RDR KB for the 25 scan test set used for evaluation
(left axis)/average number of rules per scan (right axis).

5 Conclusion and Outlook

We have presented the first CAD system capable of a comprehensive emphysema
diagnosis including disease subtypes. The RDR subtype diagnosis is parameter-
less and only influenced by the knowledge transferred into the system by the
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radiologist(s), suggesting a scenario for a routine clinical use: a fraction of the
scans passing through the CAD system in daily use can be reviewed manually
and inappropriate classification behaviour can be adjusted. Evaluation of the
RDR region classification showed results comparable to state-of-the-art machine
learning techniques using only a fraction of training samples.

Longer-term clinical application is one of our goals and still the only way
to demonstrate the system’s practicability. However, for an incremental system
such as the proposed one, results can be expected to improve as more knowledge
is gradually added to the adapting system. The presented region detection and
multi-level RDR classification may also be used as a generalised framework for
subtype classification of other lung diseases (e.g. asbestos-related diseases using
pleural plaque, diffuse thickening and pleural rind regions).

For the raw emphysema detection step, we have presented a refined version
of density mask called Adaptive Density Mask (ADM) as an extension to the
standard density mask method. Only ADM makes it possible to analyse the
shape of low-attenuation regions even with late cases of emphysema.

Data for this work was recorded using scan intervals of 10-15 mm, preventing
accurate 3D processing. However, extending the proposed system to 3D should be
a straight forward task and can be expected to increase robustness and accuracy.

Throughout this paper, we assume that the CT scans under investigation
contain emphysema and no other lung disease characterised by low-attenuation
regions. This assumption might not hold in practice, for e.g. fibrosis often co-
occurs with emphysema and might influence ADM detection results. In addition
to that, non-emphysema low attenuation regions (such as e.g. the bronchial tree)
should be segmented beforehand and excluded to improve the reliability of the
computed volumes.
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MRI
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Abstract. Radiotherapy (RT) treatments to lung tumours subject to significant
respiratory motion have been proved to be difficult. By studying the respiratory
motion of lung tumour from imaging modalities such as ultra-fast MRI and 4DCT,
the ultimate research task is to model the tumour’s respiratory motion and to use the
model to predict the tumour motion. In this paper, we are proposing a method to
build such a model by using a statistical technique called canonical correlation
analysis. We built the model from dynamic MR volumes acquired from five
volunteers. The leave-n-out (n=12) technique was used to evaluate the accuracy of
the motion prediction. The motion prediction results were compared to the motion
fields generated by using a B-Spline based non-rigid registration algorithm. The
mean absolute differences between the two motion fields are 3.40+3.20mm,
3.62+3.08mm, 3.68+3.50mm, 4.62+3.97mm and 4.29+3.14mm. Our method is
novel and efficient. Consider the model was built from low-resolution (5x5x5mm)
MR volumes, the results were satisfactory. More thorough evaluations will be
carried out on clinical data.

Keywords: Radiotherapy, MRI, respiratory motion model, CCA

1 Introduction

Radical radiotherapy (RT) is one of the primary treatments to non-small cell lung cancer.
It uses high-energy X-Ray to kill cancer cells by causing irreparable damage to their DNA.
Computed Tomography (CT), which provides high resolution anatomy and contains X-
Ray attenuation need for dose calculation is usually used to plan RT procedures. However
lung tumours may exhibit significant respiratory motions, limiting the accuracy of dose
calculation and delivery in RT procedures. Treating lung tumours that are subject to
respiratory motion has been a very active research topic in the last five years. Approaches
include treating at breath hold, target delineation and dose calculations, gated treatment
and tracked treatment. Except treating at breath hold, which relied on the reproducibility
of the breath hold, the other three approaches require a good understanding of lung
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tumour motion during respiratory cycles. However, directly tracking the tumour motion in
real-time during RT treatments is difficult. The uses of implanted markers are invasive
and can only measure the motions in a few locations. By studying the respiratory motion
of lung tumours and its surrounding anatomy from imaging modalities like X-Ray
imaging, 4DCT and MRI, it is possible to create a mathematic model which could
ultimately be used to predict the tumour position [1]~[6]. Approaches to create such
models have been reported in the past years. Low et al. proposed a linear model based on
two continuous respiratory parameters, the volume and flow measured by spirometry [1].
The location of an internal point of interest (POI), normally in the tumour will depend on
its location in the planning CT volume and the current values of the volume and air flow.
A simple linear model can be built from the correlation the respiratory parameters and the
positions of the POIL. Khamene et al also build a model based on two respiratory
parameters [2]. However the two parameters were yielded from a larger number of
respiratory signals by applying Principal Component Analysis (PCA). The first two
principal components (PC) were used as the respiratory parameters. In Khamene’s paper,
PCA was only used to reduce data dimensionality. Zhang et al extended Khamene’s idea
by using PCA to reduce the data dimensionality as well as to characterise the internal
organ motion from the current height of the diaphragm and its height 1.5 second earlier
[3]. Besides the extended application of PCA, Zhang used a free-form deformation field
computed from a non-rigid registration algorithm to represent the lung tumour motions.
Indeed, the non-rigid motion field does not only represent the tumour motion but also
represent the motions of other internal organs, including the lungs and the diaphragm.
Similar approach was used in [4][5][6]. McClelland et al found a B-Spline transformation
based non-rigid registration with control points spacing of 20x20x20mm was capable of
accurately representing the lung tumour motion [6]. He used a B-Spline cyclic function to
model the respiratory parameters (B-Spline deformation) by using motion signals
measured from a skin marker. Relatively good results were achieved.

In this paper, we propose a novel algorithm to model the respiratory motions of the
internal organs and link these motions to externally monitored surrogates such as motion
of the abdominal and thoracic skin surface. The algorithm involves two key steps: 1).
Create the free-form deformation fields by non-rigidly registering a breath-hold reference
MR volume to a set of free-breathing dynamic MR volumes; 2). Build the motion
prediction model by using a statistical technique called Canonical Correlation Analysis
(CCA).

In statistic, CCA is a well-known method developed by Hotelling in 1936 [7] to study
the relationship between two multidimensional variables. Since its invention, CCA has
been widely used in many areas including psychology, neuroscience and etc. In recent
years it was used to detect neural activity in function MRI [8][9]. In this paper, we will
demonstrate that CCA can also be a successful modelling technique to predict the
respiratory motion. Experiments were carried out on five volunteer data sets. The results
and discussion will be presented at the last sections of this paper.

2 Method
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2.1 Canonical correlation analysis (CCA)

Given a p-dimensional random variable X and a g-dimensional random variable Y (¢ < p),
both of which have zero mean, CCA seeks linear combinations aX and bY such that they
are maximally correlated.

Simple correction

:

r

Fig.1. CCA finds the linear combination of coefficients a;, a,...a, and b;, b,...b, to gives the
maximum correlation between X and Y.

Fig.1 illustrates how CCA works. Canonical correlation r between X and Y can be found
by solving the eigenvalue equations (equation 1).

Cxx_lcxycyy_lcyxa =ra

C1y'CiCax 'Curb = b M
where Cyy is the covariance matrix between vectors X and Y. The eigenvalue # is the
squared canonical correlation. a and b are the eigenvectors to the matrices Cyx 'CxyCyy

'Cyx and Cyy'CyxCxx 'Cxr. They are also referred to as canonical weights.
Given U and V where

U=aX V=bY 2)

U and V are called canonical variates. Equation (2) is called canonical function. Up to ¢
canonical functions can be found between p-dimensional variable X and g-dimensional
variable Y (g < p). In principle, they must be non-correlate (orthogonal) to each other.
Canonical correlation is the maximum possible correlation between two multi-
dimensional variables. The relationship between the two variables can be further
investigated by analysing their canonical loadings (CL) and canonical cross loadings
(CCL). By definition, CL is the covariance matrix between the original variable X or Y
and its canonical variate U or V. Similar to CL, CCL is the covariance matrix between X



-148- FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

or Y and its counterpart’s canonical variate V or U. Equation (3) and (4) calculate CL and
CCL. CL and CCL explain the amount of variable X explained by variable Y or vice versa.

Cyx=Cov(U,X) Cyy=Cov(V,Y) 3)
Cyx = Cov(V, X) Cyy=Cov(U,Y) (€))

Equation (4) is equivalent to matrix equation (5)
V=CyxX &)
From equation (5) we have
X =Cy'V (6)

By combining equation (6) and equation (2), we have
X=Cyx'bY (7

Equation (7) is considered as a prediction model which characterises vector X by using
vector Y. Considering vector X as the internal organ motion signals and vector Y as the
surrogate signals measured from the skin surface, equation (7) estimates the internal organ
motion from the surrogate signals. By using equation (7), we presume that the correlation
between the internal motion and the external motion does not change over time. A higher
CL or CCL means more elements in X or Y contribute to the construction of the model,
suggesting the possibility of a more accurate prediction. This theory will be proved by our
experimental results.

2.2 Relationship between CCA and PCA

CCA and PCA are similar to each other in two ways. Firstly, both CCA and PCA are
linear subspace methods. Secondly, both of them solve the same equation (equation 8).

B'Aw =r'w ®)
In fact equation (8) is equivalent to equation (1) given

A= 0 Cy ,B= Cix 0 andw=|¢

Cx O 0 ¢, b
However, PCA are fundamentally different with CCA because it solves equation (8) by
using different matrices A and B. In PCA, matrix A equals to Cyy, matrix B is a constant 1.
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2.3 Internal organ motion

Dynamic MR volumes had high temporal resolution (0.5s for a full 3D volume) and a
large field of view (480x480x265mm) showing the skin surface and the internal organs,
but had a low spatial resolution (5x5x5mm). A breath-hold high resolution MR volume
(1.875x1.875x2mm) was acquired when the subject was instructed to hold the breath.
Dynamic MR volumes were non-rigidly registered to the reference volume using a B-
Spline registration algorithm [11]. The B-Spline control point grid contained 2250 control
points (15x15x10 with 40x40x40mm spacing), each of which had a 3D displacement (dx,
dy, dz). The displacement vector D for the registration result is given by:
D = [dx,, dy,, dzy,. ...,dx,, dy,, dz,]

Here, n = 2250.

Applying CCA directly to the displacement vector D is computationally prohibited.
PCA, a dimensionality reduction technique was performed to reduce the number of the
internal organ motion variables to n principal components (PC). Zhang et al chose the first
two PCs which covered more than 83% of variance to build their model [3]. However, for
the datasets we used, we need three PCs to represent around 80% of the variations.

Given the control point motion D, the PCs P. Equation (9) estimates the original
variables.

_ K
D=D+Y AP =D )
k=1
where A is the principal component coefficient.

2.3 Skin motion

The skin surface is clearly visible in the dynamic MR volumes, and its position can be
measured automatically using a threshold algorithm similar to the method used in [4]
(fig.2). 6 control points were manually picked from the thoracic and the abdominal areas.
For each control point, current position m, and its precursor position m, , were measured to
form the skin motion signals.

M =[my g, mp,...... Me 11, Mg 2]

m;, ,(t22)
m; ., = Myt < 2)

By adding a precursor position m;,, we had the advantage that it incorporated temporal
correlations into the model, distinguishing the inspiration and expiration portions of the
breathing cycle.

where



-150- FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

Fig.2. Skin motions were measured from the dynamic MR volumes by using a threshold based
segmentation algorithm.

The input variables to CCA must be zero mean. Equation (10) calculates the standarised
motion signals.
. (M -M)
std(M)

Given the PCs of the internal organ motions P, and the skin motions M, CCA calculates
CCL C and canonical weight b between P and M. From equation (7) we have

(10)

P=C'oM" 11

By using equation (9) and (11), the estimated control point displacements D’ can be
calculated from the real-time measurement of the skin motion.

3 Experiment results

3.1 Spectrum of PCA Eigenvalues

For all the volunteers, PCA was applied to the internal control point displacements to
reduce the number of variables from 6750 to 3 PCs. For the five volunteers, the first three
eigenvalues account for 86.3%, 82.0%, 76.5%, 95.9% and 85.4% of the total variance in
the data.

32 CCA

The CCA function was implemented in Matlab (The MathWorks, USA) statistics toolbox.
The two parameters of CCA were the PCs of the internal motions and the skin motions.
For all the five volunteer datasets, the skin motion variables had strong canonical
correlations with the internal motion variables. The mean correlations between the three



FIRST INTERNATIONAL WORKSHOP ON -151-
PULMONARY IMAGE PROCESSING

pairs of canonical variables were 0.983 1 0.007, 0.8251 0.08 and 0.595 % 0.07. CL and
CCL measured the strength of overall relationships between the skin motions and the
internal organ motions. The mean cumulative sums of CL for the five datasets were 0.83,
0.89, 0.87, 0.65 and 0.80 respectively. The mean cumulative sums of CCL or the five
datasets were 0.70, 0.83, 0.83, 0.54 and 0.77. The higher the cumulative sum of CL or
CCL is, the more likely the model can deliver a satisfactory result. In the fourth dataset,
we observed considerably lower values of CL and CCL. This indicated the motion
predicted by the model built from the fourth dataset might not be as accurate as the
models built from the other datasets.

3.3 Model evaluation

Five separate CCA models were built from the volunteer MR data. The registration results
were assessed visually by an expert. Four out of five dataset were considered to be
registered successfully. For one dataset, the registration results exhibit more than two
voxel misalignment in the borders of the chest and the lungs. The leave-n-out strategy was
adopted to evaluate the performance of the CCA models. From each of the datasets, 12
volumes which cover at least one respiratory cycle were dropped. The models were built
from the other 48 volumes and used to predict the deformation fields of the missing
volumes. Fig.3 shows the deformation field at an arbitrarily selected point inside the
dynamic volume and the predicted deformation field at this point from one of the five
CCA models. Generally the organ respiratory motions in the anterior-posterior direction
(Y) and the left-right direction (Y) are not as considerable as the motion in the foot-head
(Z) direction. Therefore the motion signals in x and y directions were easier to be
contaminated by noise. Fig.3a and fig.3b show our attempt to model and predict the noisy
signals. Fig.3c shows the predicted deformation field is closely matched the measured
deformation field in Z direction. We calculated the mean absolute difference (MAD)
between the predicted deformation fields and the deformation fields generated by a B-
Spline-based non-rigid registration algorithm. For the five datasets, the MADs are
3.40%3.20mm, 3.62+3.08mm, 3.68%+3.50mm, 4.62+3.97mm and 4.29%3.14mm. Fig.4
shows the MAD maps generated from the B-Spline control points around the lungs in the
mid-coronal slices (Y=0). It is clear that most of the errors are around 5mm. In some
extreme cases, the differences can be up to 12mm because of the noise, the image
registration errors and the surrogate signal measurement errors. The motion prediction
errors around the lungs in the 4™ volunteers are bigger than the errors in other subjects
because of two major reasons. 1). The volunteer has a fast respiratory rate and the
temporal resolution of the dynamic MRI (0.5s/volume) is insufficient to produce an
accurate motion prediction model; 2). Considerable errors were produced by the image
registrations.

The cumulative sums of CL and CCL of the fourth dataset are considerably lower than
those of the other four datasets. The experimental data prove the theory that the signal
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prediction from the CCA model with high cumulative sum of CL or CCL is not as
accurate as the prediction from the model with high cumulative sum of CL or CCL.
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Fig.3. 12 volumes were dropped successively from the dynamic MR volumes. A leave-n-out
strategy was used to predict the motion signals measured from the missing 12 volumes. From an
arbitrarily selected point inside the MR volume, the predicted motion signals are closely matched

the measured motions in Z direction. In X, Y and Z directions, the mean errors are 2.86 = 2.40mm,
3.62% 3.16mm and 2.89 & 2.37mm.

Generally, the results are satisfactory considering our models were built from low-
resolution MRI with 5x5x5mm voxel spacing. Therefore, the errors correspond to about
one voxel.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5

Fig.4 The MAD maps were calculated from the mid-coronal slices (Y=0) showing that most of the
prediction errors around the lungs are approximately Smm. The motion prediction errors around the
lungs in the 4™ subject were higher because of the large image registration errors. The white
contours outline the boundary of the lungs and the dark spots suggest the locations of the B-Spline
control points.

4 Discussion and conclusions

We proposed an algorithm to model the respiratory motion of the internal organs by using
CCA and MRI. In this pilot study, CCA models were built from dynamic MR volumes
acquired from five volunteers. By using the leave-n-out strategy, the deformation fields of
the dynamic MR volumes were successfully predicted by using our model (average error
is less than 1 voxel). Although we only used the skin motions to build and drive the
model, it did not mean the skin surface was the only surrogate source possible with our



FIRST INTERNATIONAL WORKSHOP ON -153-
PULMONARY IMAGE PROCESSING

model. Without any modification, the model could be adapted to more parameters due to
the nature of the CCA method.

Similar to Khamene’s method, our model was built from 3D dynamic MR volumes
while many other reported methods involved the uses of cine mode CT [1][3][6]. CT
volumes acquired in cine mode often contain discontinuities in the data between adjacent
couch position due to sorting errors and inter-cycle variation. Extra procedures are needed
to correct the artifacts caused by these discontinuities [3]. By using an ultra-fast MR
sequence, it is possible to acquire the whole 3D anatomy of the lung from one scan.
Furthermore, by using MRI, it is possible to conduct a relatively long scan. 30 seconds
MR data were acquired from each of the datasets in this study. Compared to other studies
(24 seconds in [2], 20 seconds in [6], 11 seconds in [1] and one respiratory cycle in [3]),
our data cover more respiratory cycles sampling more inter-cycle variation. Potentially,
more data can be acquired with MR if required. But for CT studies, it is difficult to
increase the data acquisition time due to the radiation dose limit.

Many of the methods mentioned in the introduction use polynomial or cyclic function
to model the respiratory cycles. By using these methods, a presumption was made that the
end positions of inspiration and expiration remained the same over time. However, this
presumption is obviously wrong as the end respiratory positions can vary more than
10mm (fig.3) in reality. Our method did not make such presumption. It modeled the whole
respiratory signals including the inter-cycle variation. In this study, our models were built
from 48 dynamic MR volumes and used to predict the internal organ motions shown in
the other 12 MR volumes. Reasonable results were achieved. Without the radiation dose
limit, we can acquire more MR volumes and potentially can build a even more accurate
model. Zhang et al. reported a method to build the respiratory motion model by using
PCA [3]. Similar to CCA model, PCA model can also model the inter-cycle variation of
the respiratory motion. But the use of CT has efficiently limited the acquisition time. In
fact, Zhang’s CT data only covered one respiratory cycle.

Although our approach has many unique advantages and the uses of MRI to plan RT
procedures are beneficial (see Introduction), we have not yet evaluated our model on
clinical data. Therefore, the clinical accuracy of our model remains unknown. Having an
efficient and successful respiratory motion model is a big step toward. But it is still a
significant challenge to put this model into clinical use. Other known issues such as
tumour baseline variation and morphology changes [11] should be accounted for in any
clinical system and we are exploring how our model may be quickly and accurately
updated using interfraction imaging (kV or MV fluoroscopy or cone-beam CT).
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Abstract. Integral geometry descriptors are used to characterize local
textural properties of lung parenchyma from HRCT images. These quan-
tities, known as Minkowski functionals, describe the morphology and
topology (connectivity) of 2D and 3D binary structures. They have been
shown to be effective in describing properties of complex and disordered
media, such as open foams. In this paper we describe the Minkowski
functionals and propose their use for detecting and grading emphysema
and fibrosis in HRCT images. We show which relevant combinations of
the four quantities correlate well with three degrees of severity of emphy-
sema and states of fibrosis. We present some illustrative results and make
proposals for the use of these descriptors in a larger validation study.

1 Introduction

Emphysema and pulmonary fibrosis are common respiratory disorders which
destroy the lung and reduce its ability to oxygenate blood. The primary cause
is smoking, but other more subtle risk factors, such as genetic predisposition,
are known to be involved. In terms of health care costs, it ranks among the top
five western world diseases. The development of robust quantitative methods for
its early diagnosis, monitoring of its treatment and understanding of its disease
process is therefore of great importance.

High Resolution Computed Tomography (HRCT) is used regularly to assess
lung function and structure, and has become an essential tool in the detection
and assessment of emphysema and related conditions such as lung fibrosis. The
disease is characterized by the destruction of the lung’s alveolar sacs and the
collapse of their walls which results in localized fibrosis. This leads to a corre-
sponding loss of the respiratory capacity of the lung.

In HRCT images, the loss of lung tissue manifests itself as a reduction of
the mean lung density, which can be measured. One simple way is to locate
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lung regions below a given low threshold value (e.g. —910 Hounsfield Units) for
patients holding their breath at full lung capacity [1]. Histogram based analysis
has also been proposed to better determine a cut-off threshold. Nevertheless, the
use of a single, global density index has been shown to be unreliable during early
or mild stages of the disease, or when the emphysematic regions are dispersed
in normal parenchyma [2]. Also, when the pathologic process is mixed, such
as in the presence of inflammation and fibrosis, the local density can actually
increase. Emphysema and fibrosis can create complex patterns of the lung, whose
radiological appearance is commonly known as ground-glass opacities (GGO),
honeycombing (HC) and irregular linear or reticular infiltrates [3].

Since the appearance of the disease progression is textural, it is unsurpris-
ing that image texture analysis techniques have been applied to the problem
of robust quantification [2,4, 1,5, 3]. The early work of Uppaluril et al. [2] used
first and second-order texture features together with fractal dimension (see [6])
to characterize emphysema from CT images. Using pattern recognition, they
performed feature selection and trained a classifier to achieve an accuracy of ap-
proximately 90% and showed it to be significantly better than mean lung density
(MLD) and histogram analysis. Chabat et al. [4] proposed the use of grey-level
co-occurrence matrix (GLCM) texture measures to produce a 13 dimensional
feature vector containing common features of the GLCM, such as energy and
entropy. They also included a number of local shape features by considering the
number of primitives at a given grey level (quantized to 16), of a predefined
radius. These were then used to estimate the “emphasis”, size (short and long)
and uniformity, which would capture the connectivity and size of the primitives.
This approach is empirical but could be interpreted in the integral geometry
framework being presented here. The use of GLCM and the related shape and
connectivity measures suggested by Chabat are used again in more recent work
of Xu et al. [5]. This time, 3D voxel neighbourhoods were considered and the
classifier was set up to grade the pathology into severe, mild and normal lung
appearance. Across 34 subjects, they achieved significantly better discrimination
over an equivalent 2D approach. In reference [1] and recently Zavaletta et al. [3],
spatial maps of lungs have been produced which graphically show the results of
the texture classification and can be visually related to the degenerative states
of the disease. The type of classifiers used vary from simpler kNN ones, as used
in [3], to Bayesian [5] and to neural network approaches [7].

Other work which is of relevance is the study of distributions of air-spaces
in the parenchyma and their progression [8], something which could be readily
estimated by integral geometry descriptors. Notably, in-vitro histopathological
analysis of lung architecture is reported by Ochs et al. [9]. They calculated Euler-
Poincaré characteristics from histological samples and were able calculate the
total number of alveoli in the lung based on an estimate of the shape coefficient
of the alveolus. In this paper, we propose the use of integral geometry descrip-
tors: the Minkowski functionals, with the aim of producing calibrated maps of
the emphysema and related fibrosis, localizing and grading the lung parenchyma
into several stages from normal to severe. After a brief introduction to the math-
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ematical foundations behind Minkowski functionals, we present experiments on
synthetically generated data (based on a binary point-process model), and axial
HRCT slices of a subject. We discuss the results finding and make proposals for
further work.

2 Integral Geometry Descriptors

Healthy and emphysematic lung tissue present textures of distinct morphological
properties. To describe these we need geometrical and topological characteristics
that describe not only volume and shape but also connectivity. Integral geometry
provides a suitable family of such descriptors: Minkowski functionals or intrinsic
volumes. In 3D there are four such functionals and these are proportional to more
commonly known quantities such as volume, surface area, mean breadth and the
Euler-Poincaré characteristic.

Intrinsic volumes have been successfully used in material science to charac-
terize and discriminate morphology of various media [10, 11]. In material science
the structure of interest is usually homogeneous. In this paper we are interested
in characterizing a medium that is composed of various locally homogeneous
but texturally differing regions. To do so we compute Minkowski functionals for
equal-sized regions of voxels rather than the whole image.

Minkowski functionals are unbiased, stereological estimators and provide lo-
cal and global morphological information. In contrast to more standard char-
acterisation methods such as pair-correlation functions or cord-length distribu-
tions, they incorporate information from higher order correlations. Minkowski
functionals have nice mathematical properties such as C-additivity, see (4),
which means that they can be computed efficiently based on simple configu-
ration counts.

Mathematically, the Minkowski functionals are defined for a convex, compact
set K C R? via Steiner’s formula. Let K @ B, be the dilation of the set K by a
closed ball of radius r centered on the origin. Then the volume V of K @ B, can
be written as a polynomial function of r as follows:

3
_ 3 k
VIK&B,) = > (k) Wi (K)r". (1)
k=0
Here Wy, is the kth Minkowski functional. For example, if C' is a cube of side-
length a then

4
V(IC®B,) = da+6ad% + 3anr®+ ?Wrg (2)

and so Wy(C) = a®, W1 (C) = 2a%,W5(C) = an and W3(C) = 4r/3. This
also illustrates the relation of between the Minkowski functionals and the more
common descriptors volume V', surface area S, mean breadth B and Euler-
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Poincaré characteristic x:

Wo(K) = V(K),  Wi(K) = 1S(K), )
WalK) = 2nBK), Wa(K) = ().

As the reader is more likely to be familiar with the latter quantities, we will
present our results in terms of V.S, B and y. The Minkowski functionals are
proportional to these quantities and so we simply refer to these descriptors as
Minkowski functionals.

3 Method

To compute a Minkowski functional for a binary image their definition is ex-
tended from compact convex sets to sets that are finite unions of such. This
is done exploiting C-additivity of Minkowski functionals, that is, for compact
convex K7 and K5 we have

Wi(K1UKs) = Wi(Kr) + Wi(Ka) — Wi (K1 N K2). (4)

Further their definition is extended to the interior A9 of a compact n-dimensional
geometrical object A, in 3D space as follows [12]:

Wi(47) = (F)*HEw(A). ()

These extensions are required as each voxel is assumed to be a cube of edge length
1, and the image is defined to be a number of white voxels in regular lattice of a
black background. Each white voxel is subdivided into its component geometrical
objects, the interiors of which are disjoint. Using (4) and (5), the computation of
the Minkowski functionals now reduces to the problem of counting these objects:
i.e. finding the numbers of open cubes ns, open faces ns, open edges ny, and
vertices ng ensuring that for adjacent white voxels each shared geometrical object
is only counted once.

By repeated application of (4) and (5), and using the known values of the
Minkowski functionals for a cube, face, edge and vertex, the Minkowski func-
tionals can then be shown to be [12]:

V = na,
S:76n372n2,
3 3
B=2n3—ny+ °ny,
2”3 n2+2n1,
X = —ng +na2 —n1 + ne. (6)

For our data, to find ng, n2, n1 and ng, we use the method in [13], referred
to as the algorithm of equations. A black voxel does not give any contribution to
the sums of geometrical objects. Given a white voxel we find its contribution to
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the total of geometrical objects, not counting any shared geometrical objects of
thirteen of the twenty-six adjacent voxels. Indeed, Blasquez and Poiraudean [13]
refer to these voxels as the preceding voxels, however their contributions are
independent of the order in which they are found.

4 Experiments

To analyse a binary image, the image was split into a number of identical cuboids
of a given size in order to describe the heterogeneity of the data. Each cuboid
was then embedded in a black background, to ensure the boundary geometrical
objects are all counted in a consistent manner. Then the Minkowski functionals
were found for each cuboid and maps of the Minkowski functionals were pro-
duced. We investigated the correlation of the 4 quantities by principal component
analysis (PCA) and produced grey-scale maps of the principal variation and the
first three principal components mapped to the green, red and blue channels
respectively.

4.1 Synthetic Data

We first use the described method to test whether Minkowski functionals can
differentiate between idealized, and fairly crude, models of diseased and healthy
lung tissue.

The models are sampled in a window of size 320 x 500 x 30 containing 3
partially overlapping regions of equal overlaps. The first two models are Boolean
models [14] which use a random point process to place different structuring
primitives or grains, see Figure 1. The third model is a Voronoi tesselation [14].
In a Boolean model the locations of grains are independent and identically dis-
tributed uniformly on the region. For the healty tissue, the grains are 2 x 2 x 2
cubes and 3500 grains are placed in total. For the fibrotic tissue, 4000 points
are chosen, and at each point is placed a cuboidal segment. The segments have
lengths that are uniformly distributed on the interval [15,20], and gradients that
vary between £0.8. Their thickness is fixed and is 5 in the z-axis and 2 in the
zy-plane. Finally, for the emphysematic (honeycombed) tissue 800 points are
placed at random and the corresponding Voronoi tesselation is computed. The
thickness of the walls of each Voronoi cell is chosen to be one voxel. Figure 1
shows slice 15 of the synthesized volume.

We produced a scatter plot of the 4 functionals projected onto the first three
principal components of the covariance of the output, see Figure 2. Data from
the five vertical bands of the synthetic image are plotted and clearly show the
distribution in the Minkowski sub-space and good separation of the different
structures. We used the same dimensions to map the descriptors onto the green,
blue and red colour channels to produce the descriptor map in Figure 1 (bottom-
right).
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Fig. 1. Minkowski functionals found on synthesized data generated using Boolean and
Voronoi models. Top: Slice 15 of synthesized volume size 320 x 500 x 30 (parameters of
models are given in section 4.1). Second row: Minkowski functionals found on voxel regions
of size 20 x 20 x 10 from slices 11 to 20. Bottom row: Projection of functionals onto
principal mode of variation e3 from PCA of data m = (V, S, B, x)”; RGB mapping of
three principal modes of variation.

4.2 HRCT Lung Images

An axial HRCT scan of a subject with lung fibrosis was acquired using a GE
Lightspeed Plus CT scanner at a tube current of 150mA. The slice images were of
size 512 x 512 with in in plane resolution of 0.684 x 0.684 mm and a slice thickness
of 0.625 (Figure 3). We calculated the Minkowski functionals on thresholded lung
data, using a threshold of —600 Hounsfield units, and taking voxel regions of size
6 X6 x4.

In order to visualize the results, we performed principal component analysis
on the output from axial slices 29 to 33, and produced colour descriptor maps by
mapping the 4 measures on to a 3D sub-space spanned by the first three principal
axes of the PCA. Illustrative results for three slices are shown in Figure 4. The
colours are, approximately: normal tissue appears as green; fibrosis as a blue to
purple hue and honey-combing as brown and red.
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Fig. 2. Scatter plot of measures from vertical bands of synthetic image projected onto
pairs of the first thee principal components of variation, [eo,e1] and [eg, e2]. Bands are
numbered from left-to right (with respect to images in Figure 1).

Fig. 3. Original and close-up of ‘stripped’ data of axial slice 40, size 512 x 512, with
in-plane voxel resolution of 0.684 x 0.684mm. This slice clearly shows the honeycombing
artefacts and fibrosis.

5 Discussion and Conclusions

The results of Figure 4 show that Minkowski functionals can discriminate be-
tween different stages of degeneration in emphysematic/fibrotic lung. Minkowski
functionals not only have the advantage of being descriptors that have a clear
geometric/topological interpretation, see Table 1, but are also easy and fast to
compute. They are fully 3D descriptors that go beyond simple local lung density
estimation.

After submitting this paper we discovered concurrent but independent work
on the use of Minkowski functionals for grading of emphysematic/fibrotic lung
by Boehm et al. [15, 16]. The authors select specific volumes of interest that have
been labelled by experts as either normal, emphysematic or fibrotic lung tissue.
The Minkowski functionals of these volumes are then computed as a function of
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Table 1. Interpretation of Minkowski functionals for homogeneous structures. If W is the
volume of the sampling window then V,, = V/W, S, = S/W, B, = B/W.

Specific fibre length (edge density) Ly B,/m(1-V,)

Number of particles Isolated particles - x
Mean thickness of edges Sy /7Ly
Mean section area of edges Vi /Ly
Porosity (volume fraction) p 1-V,

the threshold value used in the binarisation of the image. Using an integrative
filtering procedure a single numerical quantity is produced that then can be used
for classification. As in our study, the authors show that Minkowski functionals
are cffective tools for the grading of emphysematic/fibrotic lung and provide
information that differs from densitometric measures. In contrast to Boehm et
al. we do not classify volumes of interest, but rather aim at the segmentation of
the whole lung into the various stages of degeneration. This is achieved by using
localized versions of the Minkowski functionals that can then be displayed as
spatial maps, see Figure 4. In further work we are planning to examine distribu-
tion of these localized functionals for the various stages of pathology. Modelling
the spatial distribution of the localized topological measures as a mixture dis-
tribution then provides the basis of segmentation of the lung.

In Section 4.1 we present a crude model for some of the structures that may be
encountered in diseased lung. More advanced probabilistic model development
is needed as important groundwork for statistical inference and the analysis
of longitudinal data. The computation of Minkowski functionals is a first step
towards model fitting as explicit expressions of these functionals are known for
various models, for example the Boolean model.

‘While the promise of the proposed descriptors is clearly illustrated with our
results, supervised validation on a larger survey is needed and planned as further
work. In this paper, a simple PCA illustrates how the Minkowski functionals
differentiate between textures. Further work will exploit these characteristics in
more sophisticated method for feature selection [1] as well as classification and
learning [7].
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Fig. 4. Results on axial HRCT slices of subject with severe pathology. Left column: original
HRCT data. Right column: Results of PCA projection of first 3 principal modes of variation
from covariance analysis of slice 30 (second row). Slices 20, 30 and 40 shown. Normal tissue
colours as green; fibrosis colours as a blue-purple hue; honey-combing as brown and red.
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Abstract. Response assessment is critical for cancer patient manage-
ment and new drug approval. Traditional methods to assess the response
are based on measuring tumor size changes in one or two dimensions
on computed tomography (CT) before and after therapy, and can be
biased. In order to investigate if changes in tumor volume can better
assess therapy response, there is an urgent need to develop accurate
and reproducible computer-aided tools. Automatic detection and seg-
mentation of lung cancers is a difficult task as lung cancers are often
large in size, irregular in shape, and can grow against surrounding struc-
tures of similar density and intensity. In this paper, we propose a novel
method for automatic segmentation of lung areas that can be distorted
by large lung cancers using robust active shape models. We also propose
a novel method for automatic detection and segmentation of large lung
cancers using a supervised learning framework followed by the analy-
sis of 3D texture likelihood maps. Finally, we present promising results
of our methods applied to different clinical applications. The proposed
computer-aided methods may provide a new powerful tool for accurate
and reproducible quantification of tumor volumes in lung cancer clinical
trials.

1 Introduction

The evaluation of therapy response is critical for determining whether a partic-
ular treatment is effective on a specific cancer type in a patient. Traditionally,
the ways to assess the response are based on measuring size changes of can-
cer in a transverse image using computed tomography (CT) before and after
a treatment [1,2]. However, the traditional uni-dimensional (maximal diameter
of tumor) and bi-dimensional (product of maximal diameter and its perpendic-
ular maximal diameter) measurements can be biased especially when a tumor
is not spherical in shape and does not change its shape in a spherical fashion.
The preliminary result in a lung cancer study [3] showed that the changes in
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tumor volume could be determined as early as 3 weeks after a novel chemother-
apy, whereas the changes of tumor volume measured in the traditional methods
were significantly less sensitive in the same time period. In addition, manual
delineation of tumor contours is time-consuming and lacks the reproducibility.
Therefore, there is an urgent need for automatic detection and accurate segmen-
tation methods for the volumetric assessment of therapy response.

Unlike small lung nodules, lung cancers to be treated are often large in size,
present spiculate edges, and grow against surrounding structures such as the
chest wall, the mediastinum, and blood vessels, which make automatic detection
and segmentation difficult [3]. Thus, the algorithms developed for automatic de-
tection and segmentation of small solid lung nodules are most likely to fail when
applied to large lung cancers [4-13]. In those studies, larger lung lesions that were
attached to the chest wall and mediastinum could be easily and mistakenly ex-
cluded from the segmented lungs in which the subsequent lesion detection would
be performed [4-7]. Also, the existing segmentation algorithms often assumed
that small lung nodules would possess spherical shape, which is not adequate for
describing large lung cancers. Furthermore, inability to separate a larger lesion
from its surrounding structures of similar intensities was another shortcoming
of the existing segmentation algorithms.

In this paper, we propose novel methods for automatic segmentation of lung
areas as well as automatic detection and segmentation of large lung cancers from
CT images for the purpose of therapy response assessment. We first propose a
robust active shape model for the accurate segmentation of lung areas that are
distorted and occluded by large lung cancers. Next, we develop a classifier for the
detection of cancers in the segmented lung areas by boosting a k-Nearest Neigh-
bor (k-NN) classifier, whose distance measure is the Euclidean distance between
the nonparametric density estimates of two regions. The statistical validation of
the proposed classifier is also provided. Finally, the classified cancers are auto-
matically segmented by analyzing 3D texture likelihood maps of the surrounding
areas. We present the promising experimental results of our method applied to
various clinical data. The proposed methods would provide a new powerful tool
for automatic detection as well as accurate and reproducible segmentation of
lung cancers for therapy response assessment in lung cancers.

2 Method

2.1 Robust active shape models (RASM) for lung area segmentation

Large lung cancers often grow against surrounding structures, such as the chest
wall and mediastinum. Lung areas that are distorted and occluded by such lesions
are hard to segment due to the similarity of the intensities between the cancers
and the surrounding structures in CT images. In this section, we develop a robust
method to accurately segment lung areas occluded by large cancers by improving
the active shape model framework.

An active shape model (ASM) represents the shapes of interest as a Point
Distribution Model (PDM) [14]. Then, it constructs a shape space as a set of
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(a)

Fig. 1. The segmented lung area using RASM. Red points are active shape model and
green lines are the connected contour. (a) Large cancers attached to the chest wall and
mediastinum (large red circle) and the initialization of the ASM, (b) ASM finding the
false boundary of lung, and (c) RASM finding the correct boundary of lung and the
large white area in the left lung is a large lung cancer.

orthogonal basis P by applying the Principal Component Analysis (PCA) and
finds an optimal shape for a new example of the shapes with PCA reconstruction.
Given the shape space P, the projection C of a new example shape X is given
as C = PTdX, where dX = X — S and S is the mean shape from the aligned
shapes of the training set. Based on the projection C, we can easily find a
corresponding shape in the shape space as X = PC + 8. For simplicity, we
denoted dX = PC. Since § is constant, the accuracy of X depends on C which
is related to dX. In many applications, dX is often optimized with some low-
level image features such as the gradient along normal directions to the boundary
of an initial shape toward the strongest edge in the image [14].

The ASM method as described above, however, is not suitable for the accu-
rate segmentation of lung areas with large cancers attached on their walls, since
the cancers occlude the real boundary of the lung and appear as the strongest
edge, as illustrated in Fig. 1(a) and (b). To overcome this difficulty, we develop
a robust ASM (RASM) based on the robust M-estimator [15]. The goal is to
recover the projection C' with the majority of the correct dX and to restrain
the outlier points of dX. Mathematically, it computes C' by minimizing the
following robust energy function:

Erpea(C) = minG ([[dX — PCY|, 0) (1)

where, G(x,0) = 22/(2? + ¢2) is the Geman-McClure error function and ¢ is a
scale parameter that controls the convexity of the robust function. The solution
for C' can be obtained by an iterative gradient descent search on E,p.q:

ctt = c 1 xaAC (2)
where, A is a small constant that determines the step size and

aETpca o?
= -2P(dX — P
FTe; X = PO) = pCE+ 072

AC =
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(b) (©)

Fig. 2. Effects of F.,, (only one slice from the whole volume is shown). (a) Original
volume, (b) Volume filtered with F.y, and (c) Volume after thresholding.

The iterative process is performed until HE%Z;) — E$‘p>m|\ < €, where € is a pre-

selected tolerance. Using the robust projection C*, we obtain a robust shape in
the shape space as: 3
X=PC"+S

The result of this process is illustrated in Fig. 1(c), where the lung area occluded
by a large lesion is accurately segmented.

2.2 Detection of large lung cancers

In this section, we present a novel method for automatic detection of large lung
cancers from the segmented lung areas. The method is based on 3D texture
analysis using a machine learning framework, i.e., boosting the k-NN classifier.
However, the accuracy of the detection may be hindered by various structures
within a lung. Thus, we first apply a 3D cylinder filter to suppress the intensity
values of vessels and other elongated structures as well as noise inside a lung,
while maintaining the intensity values of large lung cancers intact [16,17]. The
cylinder filter F,, is defined as:

e

6 yGQg

where, (2§ is the domain of the cylinder filter centered at 2 with orientation 6.
F,,, is a hybrid minimum neighborhood filter that produces strong responses to
large blob-like objects (e.g., large cancers). In this paper, we have selected the
parameters of F,,, empirically and used a cylinder with radii of 1, 2 and 3 voxels
and length of 7 voxels at 7 different orientations. In Fig. 2(a) and (b), we can
see that vessels and noise are effectively suppressed while the large lung cancers
remains intact. After the filtering, we isolate the candidate regions for large lung
lesions by simple thresholding (Fig. 2(c)). The threshold value is automatically
determined by analyzing the histogram of the filter response image [16]. Each
candidate region is then classified with a learning framework described below.
To apply a supervised learning framework, we collected volumetric samples
for positive (lesion) and negative (non-lesion) examples manually. Let @5 be the
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region of a volumetric sample bounded by a sphere. We estimate the probability
density function (pdf) of the intensity values of the interior of ¥;;. We use a
nonparametric kernel based method to approximate the pdf. Let i € [0,255]
denote the random variable for intensity values. The intensity pdf of ¥y, is
defined as:

(i— I(y))Q) dy 3)

. 1 1
Pip) = V(¥um) // oy V2102 op <_ 202

where, V(%)) denotes the volume of ¥,,, y are the voxels in the domain ¥y,
and o is the standard deviation of a Gaussian kernel.

For the candidate areas of large cancers isolated above, the learning for their
classification has a discrete target function f: R™ +— {®,©}, with the label ®
for lesions and © for non-lesions. For k-NN, an instance x is represented as a
point in R™ by a feature vector (ai(x),---,a,(x)), where a;(x) = P(i|%um).
The Euclidean distance is used as the distance measure between two instance
vectors. Given a query instance x, to be classified, k-NN returns f (xq), as its
estimate of f(x,), which is the most common value of f among the k training
instances nearest to x4, that is, f(wq) = ArgMaX,c (g 0} Zi;l 6(v, f(zi)), where
21, -+, 2 denote the k instances from training samples that are nearest to x,,
and 6(a,b) = 1 if a = b and 0 otherwise. To obtain an accurate classification,
k-NN requires a large training set, which results in slow classification due to the
large number of distance calculations. We overcome this difficulty by boosting
k-NN [18]. As in [18], our purpose for boosting k-NN is to improve the speed
of k-NN by reducing the number of prototype instances and thus reducing the
required number of distance calculation without affecting the error rate.

2.3 Segmentation of large lung cancers

‘We now segment the classified large lung cancers. Because of the hazy appearance
and irregular shape of large lung cancers and the large overlap of intensity values
between large lung cancers and surrounding vessels, simple thresholding and
contour based segmentation method do not provide accurate segmentation. The
proposed method involves the analysis of a 3D texture likelihood map using a
nonparametric density estimation [19], followed by eigenanalysis of the Hessian
matrix to accurately remove vessels overlapped with large lung lesions.

We extract the region of interest (ROI) surrounding a classified large lung
cancer based on the detection of the large lung cancers. For each voxel in the
ROI, we evaluate the likelihood of the voxel belonging to a large lung cancer by
measuring the 3D texture consistency between the large lung cancer and a small
spherical region (i.e., 3D texon) centered at the voxel.

Let @5 be the region of a volumetric sample of a classified large lung cancer
bounded by a sphere. Using (3), we estimate the pdf of the intensity values of
the interior of @y, i.e., ppr = P(i|®Pps). Similarly, let &1 be the region of the 3D
texon centered at the given voxel in the ROI. Again using (3), we also estimate
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Fig. 3. Results. Segmented large lung cancers projected onto a slice (top), 3D recon-
struction of large lung cancers (middle and bottom).

the pdf of the interior of @, ie., pr = P(i|®r). To measure the similarity
between the two pdfs, we use an information theoretic distance measure called
Kullback-Leibler Divergence (KLD) [20]. The Bhattacharya distance, which is a
symmetrized variation of KLD, between @, and @ is:

B(pumllpr) = —log p(pumllpr) = —log / [par (D)% [pr (i) di

We evaluate the 3D texture likelihood of the 3D texon at every voxel in ROL.
We define this likelihood using p, since it increases as the Bhattacharya distance
between two distributions decreases. The radius of a 3D neighborhood sphere
used in our paper is less than 3 voxels and the model interior texture is mostly
homogeneous with some level of noise. Thus, it is not necessary to consider
the spatial correlation between voxels. Finally, we remove the remaining vessels
around large lung cancers in the 3D likelihood map by using the eigenanalysis
of the Hessian matrix [21-23]

3 Results

We have 10 chest CT images containing 16 large lung cancers. To test the pro-
posed method, we collected 500 volumetric samples, containing 300 training
samples and 200 testing samples, from 4 training clinical chest CT images. The
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samples were of size 15 x 15 x 3 voxels from the CT volumes. Each sample was
converted to an instance vector in R?°®, representing its nonparametric den-
sity estimate. For the boosted k-NN, we used the standard Euclidean distance
as the distance measure between two instances as described in Section 2.2. We
performed bootstrapping to estimate the generalization error of our large lesion
detection method [24]. We trained and tested the proposed method on bootstrap
samples. After 20 steps of boosting, the mean error rate converged to 3.50%.

We applied the trained classifier to all 10 CT volumes containing 16 large
lung cancers. The CT volumes were acquired by multi-slice HRCT scanners with
5mm slice collimation. The number of slices in each CT scan ranged from 44 to
69 (and digitally resliced to obtain cubic voxels, resulting in 130 to 205 slices),
each of which are of size 512 x 512 pixels, with in-plane resolution of 0.82mm.
The classifier detected all 16 lesions successfully with no false negatives (Fig. 3).
However, it also detected 2 false positive lesions, which the trained radiologists
classified as atelectases.

The detected large lung cancers were then segmented using the method de-
scribed in Section 2.3. Fig. 3 illustrates four representative cases of the segmented
large lung cancers. In the figure, the 3D reconstruction of the segmented 3D large
lung cancers (middle and bottom row) as well as their 2D projections on one of
the slices (top row) are shown. From the figure, we can also see that the sur-
rounding vessels are accurately removed from the large lung lesions segmented.
Table 1 compares the greatest diameters, their greatest perpendicular diameters
and tumor volumes of the 16 lung cancers from the results of the manual seg-
mentation by experts and the automatic segmentation by the proposed method.
The table shows that the mean relative error of the greatest diameter and its
greatest perpendicular diameter are 2.8% and 2.2% and shows that the mean
relative error of the tumor volume is 8.4%. We also compared the overlapping
ratios of the tumor regions segmented manually and automatically, which ranged
from 80.9% to 97.3%. The low overlapping ratios were resulted from the cases
in which the cancers were heavily occluded by blood vessels, where the expert
radiologists also found difficulty. The mean overlapping ratio was 90.9%. These
results demonstrate the potential of our method to correctly segment occluded
lung areas as well as the accuracy of the classification and segmentation of the
large lung cancers. These results demonstrate the potential of our method to cor-
rectly segment occluded lung areas as well as the accuracy of the classification
and segmentation of the large lung cancers.

4 Discussion

Lung cancers to be treated are often large in size and grow against surrounding
structures such as chest wall, mediastinum, and blood vessels. Large lung cancers
attached to such structures make it difficult to accurately segment lung areas
from chest CT images, since they occlude the real boundary of the lungs and
have similar intensity values to the surrounding structures. In this paper, we
proposed a novel method for automatic and accurate segmentation of lung areas
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Table 1. Comparisons. d1 and d2 are the greatest diameter and its greatest perpen-
dicular distance of each tumor. Vol is the volume of each tumor. Overlap ratio is the
volume overlap ratio of the manual segmentation results and automatic segmentation
results. Manual and Auto are the measurements on the manual segmentation results
and the automatic segmentation results, respectively.

Dataset d1 d2 Vol Overlap
(mm) (mm) (mm?) Ratio

Manual Auto|Manual Auto|Manual Auto| (%)

1 95 94 37 36 | 9676 9043 92.5

2 74 73 35 33 | 13357 12237| 90.2

3 84 83 25 24 | 12704 11753 91.2

4 34 35 32 33 | 1643 1819 93.6

5 21 20 16 16 278 254 92.1

6 13 13 11 11 305 291 92.5

7 15 16 13 13 462 503 90.0

8 51 52 18 18 | 2152 2228 91.6

9 21 20 12 12 258 235 82.2

10 21 20 19 18 | 1402 1226 97.3

11 7 7 7 6 61 57 80.9

12 68 67 59 58 | 5988 5583 94.3

13 36 37 27 28 | 6268 6783 91.4

14 22 23 13 13 291 320 88.3

15 27 26 17 16 657 591 95.6

16 39 38 33 32 | 4583 4212 91.6
mean error (%) 2.8 2.2 8.4 90.9

that were distorted and occluded by large lung cancers using robust active shape
models.

We also proposed a novel method for the automatic detection and segmen-
tation of large lung cancers from chest CT images. The proposed method first
extracted candidate lung cancer areas by applying the 3D cylinder filter. Then,
each candidate region was classified by boosting the k-NN, whose distance mea-
sure was the Euclidean distance between the two intensity pdfs. We performed
bootstrapping to estimate the generalization error of the method and showed the
mean error rate of the method converged to 3.50%. Each cancer detected was
automatically segmented by analyzing the texture likelihood map of the region.

The very promising results of our methods applied to various clinical chest
CT images were also presented. Although the evaluation of therapy response is
critical for determining whether a particular treatment is effective on a specific
cancer type in a patient, the traditional methods such as uni-dimensional and bi-
dimensional measurements of tumor size are not sensitive enough to accurately
evaluate the changes in tumor volumes. In addition, the manual delineation of
cancer contours is time-consuming and lacks the reproducibility. The proposed
methods provides a new powerful tool for automatic detection as well as accu-
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rate and reproducible segmentation of large lung cancers for therapy response
assessment in lung cancers.
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Abstract. This article proposes a method for estimating the local prop-
erties of the lung background or parenchyma, i.e. local mean and stan-
dard deviation of the intensities, from CT images. The properties esti-
mating method uses an iterative estimation scheme with outlier detec-
tion and exclusion applied in a sliding window. The iterative optimisation
method allows for the inclusion of prior knowledge about the background
characteristics, thereby increasing the robustness.

Two applications for the algorithm are presented. The first application
is the visualisation of the background pattern in the lungs. The second
application is the separation of the lungs lobes by using a soft vessel
segmentation. The estimated background properties allow the detection
of the smaller vessels without the need for a fixed threshold. The back-
ground estimation method has been validated on a set of 50 phantom
images with and without simulated vessels. The applications have been
tested on 3 data sets from 3 different patients. The results have been
evaluated by a radiologist. He considers the perfusion method helpful for
reading the images and finds the lobe segmentation results acceptable.

1 Introduction

Radiologists have to review an increasing amount of CT images of the thorax,
due to increased scanner speed and resolution, and an increasing demand. The
evaluation of these images is most often performed by looking at 2D slices, using
the standard lung window (from —1300 HU to 300 HU). In order to enhance the
quality of the diagnosis and reduce the time spent looking at images, CAR/CAD
methods are useful. This article presents two methods for improving the read-
ing of lung images: visualisation of the lung perfusion and of the lung lobes.
Both of these methods are based on the estimation of the properties of the lung
background. The lung voxels can be subdivided in low intensity background
voxels (parenchyma) and higher intensity foreground voxels (mainly vessels).

* This work was supported in part by the Research Fund K.U.Leuven under Grant
GOA/04/05 and in part by L.W.T.-Vlaanderen under Grant IWT/SBO/60819-
QUANTIVIAM.
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The visualisation of the lung perfusion is mainly useful for the assessment of
mosaic perfusion. Mosaic perfusion is a symptom common in the lungs, (mildly)
present in about 80% of all healthy people. It manifests itself in a CT image by
inhomogeneous background intensities. There are however multiple factors that
can cause mosaic perfusion. [1] Diseases, e.g. pulmonary emphysema or small
airways disease, may decrease the blood perfusion in certain areas of the lung,
which causes a local decrease in intensity. Gravitation causes a slight increase
of blood in the lower parts of the lung, which results in a different intensity
pattern according to the patient’s orientation (prone vs. supine). Other factors,
e.g. the age of the patient and the phase of the respiratory cycle, globally affect
the intensities. When the standard lung window is used to view the image it is
not easy to perceive the inhomogeneous background pattern.

Herzog et al. have proposed a tool to visualize this background pattern in
order to assess pulmonary embolism. [2]. They detect the background by using
a global adaptive threshold that preserves the 80% of the lung voxels with the
lowest intensities. A smoothed version of these background voxels is shown as a
coloured overlay upon the original image.

We propose an improvement computing the properties of the background
by using an iterative parameter estimation algorithm with outlier detection and
exclusion, applied locally within a sliding window. The parameters under con-
sideration are the mean and standard deviation of the intensities. Due to the
iterative procedure this algorithm allows for the incorporation of prior knowledge
concerning the lung background intensities.

As a first application of this algorithm the perfusion in the lungs can be
visualised by showing the estimated mean as a coloured overlay.

‘We also propose to use the background knowledge to segment the lung lobes.
A segmentation of the lung lobes is useful because it facilitates orienting oneself
in the image and because lobe boundaries are often also a border to various
pathologies.

Segmenting the lung lobes has traditionally been performed by segmenting
the fissures themselves, like in [3]. This is also the method a physician applies
when he looks for different lobes in the image. However the fissures are not
always visible, or might even be absent [4]. The lobes can also be segmented
using the vessel tree, as has been done by [5]. The authors first segmented the
vessel tree, and looked for the surface that optimally separated the vessel trees.
The exact location of this surface was refined using the fissure information if
it was present in the image. Zhou et al. used a similar approach, but they also
included the segmentation of the bronchi [6].

We present a lung lobe segmentation using the estimated background prop-
erties. First a soft vessel segmentation is performed, by detecting the vessels as
outliers to the background. By applying the fuzzy distance transform (FDT) [7]
starting from manually indicated points near the hilum the lung lobes are sepa-
rated using their vessel trees.

The lobe segmentation method presented improves over the previously men-
tioned methods because it uses the estimated background properties to be robust
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in case of mosaic perfusion. Hence it shows the advantage of using a suited back-
ground estimator.

The next section presents the methods. A validation of the background es-
timation method on phantom images and of the applications on real images
is presented in Section 3. A discussion of the presented methods and hints for
future work in Section 4 conclude this article.

2 Method

The algorithm consists of the following parts. The first step segments the lungs.
Next the local background parameters, i.e. the local mean and the local stan-
dard deviation of the intensities, of the lung parenchyma are estimated. These
parameters are used for two applications, i.e. visualising the lung perfusion and
the separation of the lung lobes. All algorithms operate in three dimensions.

2.1 Lung Segmentation

In order to be able to focus on the relevant parts of the image a basic lung
segmentation algorithm is applied. At first it selects all air in the image by ap-
plying a fixed threshold at —200 HU. The lungs are extracted using a connected
component analysis of the whole image. The dominant connected component in
the slice at one third from the top in the area [{n,, £1] X [$1, 3n,] will denote
the air in the lungs, with (ns,n,) the slice dimension. The smaller vessels are
already included in this volume due to partial volume (PV) effects. To include
also the larger vessels, a closing operator using a cuboid of size 10 x 10 x 10mm?
is applied. The speed of the lung segmentation is increased by applying it on a
subsampled image. The image is subsampled by keeping the first of every two
voxels in every dimension, reducing the total image size by a factor 1/8. If the
only interest is visualising the background, the algorithm can be speed up by
omitting the closing operation.

2.2 Estimating the Background Properties

The background of the lungs consists of the low intensity (around —900 HU)
voxels that make up the parenchyma. The foreground consists of everything
else with a higher intensity. The vessels make up most of these higher intensity
structures. The background intensities are modeled by a normal distribution,
characterised by its mean p and standard deviation o.

The background properties ¢ and o are computed in a sliding window. For
each voxel a surrounding region is selected. The diameter of this region should
be chosen larger than the largest vessel inside the lung mask. For this application
we have chosen the diameter to be 10 mm. Such a region typically contains only
two tissues, i.e. the background and the vessels, so the histogram is expected
to consist of two Gaussian peaks. For a healthy lung the background peak is
centered at about —900 HU, while the vessel peak is centered at about 200 HU,
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Fig. 1. Histogram of an area of the lung (bars). The full line is the Gaussian fitted
to the background peak. The dotted line shows the vessel resistance function defined
in (1).

assuming contrast images. However due to partial volume effects, the vessel peak
can degenerate into a slope of the background peak. A typical histogram of such
a region is shown in Figure 1.

To be able to separate this slope on the right from the background on the
left we need to know the properties of the Gaussian at the left, which are in fact
the afore mentioned p and o. This could be done using a maximum likelihood
expectation maximisation (MLEM) that incorporates PV effects like [8].

A more efficient way to get this result is by calculating the mean and variance
with outlier detection and exclusion, using an iterative algorithm. First p and
o are initialised at their default values, i.e. —860 HU and 70 HU. These values
are based on the measurement of lung intensities of healthy and pathological
lungs. u and o are iteratively updated by computing the mean and standard
deviation of the voxel intensities in the area that does not deviate more than
no from p. The estimated standard deviation is biased because it is computed
on voxels with a limited intensity range. To prevent a bias on the estimated
standard deviation it should be multiplied by 1.13684 for n equal to two, as used
in this article. The formula to compute this value is derived in the appendix. The
iteration is repeated seven times. Empirical testing has shown that this suffices
for convergence on clinical images of the thorax.

This algorithm is speed up by calculating ¢ and o on a subgrid, and in-
terpolating the result afterwards. The distance between the voxels included in
the subgrid is half the size of the sliding window for each dimension. Since the
algorithm acts as a low pass filter this approximation does not cause significant
changes to the result. In a pathological image the average absolute differences
were 3 HU and 4.3 HU per voxel for ;1 and o respectively.

The perfusion is visualised by showing the computed mean p as an overlay
using a rainbow colour map onto the original image. This is shown in Figure 3.
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2.3 Lobe Segmentation

The estimated background properties are used to calculate in each voxel a
probability-like vessel resistance value f. This value is 1 for background voxels,
and 0 for voxels that almost certainly belong to a vessel, while linearly inter-
polating in between. The following definition has been chosen to incorporate as
much image information as possible while minimising the effects of the fissures
present in the image.

1 < p+ko
f=41- =545z € (u+ ko, —200) (1
0 x> —200

In this equation z is the voxel intensity, while p and o are the values computed
in section 2.2. The parameter k£ determines the distance between the centre of
the background peak and the start of the slope. This parameter should be chosen
to eliminate the background peak from the slope, so a value of k = 3 is a safe
choice. A lower value might increase the accuracy while a value too low will
severely distort the result. For all figures in this paper k is set to 2.3. The end of
the slope is fixed at —200 HU, so all voxels with a higher intensity are expected
to belong to a vessel, and will have zero vessel resistance. A plot of f is shown
in dots on Figure 1.

The lobes are segmented using a FDT of (1) by comparing the distance from
multiple starting locations in the image to each lung voxel. The starting locations
are placed manually at the start of large vessel trees, near to the hilus.

3 Results

The method for computing the background properties has been validated using
a software phantom. The perfusion method as well as the lobe separation have
been tested on CT data sets of three different patients, and the results were
evaluated by an experienced radiologist.

3.1 Tests on synthetic data

In order to test the accuracy of the background estimation method a set of ran-
dom phantom images imitating some of the lung’s characteristics has been cre-
ated. The generated phantom images consist of a background with slowly varying
intensity (—900 HU to —700 HU, left to right) containing a set of non overlapping
vessels of varying size (radius 0.25 voxels to 4.75 voxels, top to bottom). The
vessel model is similar to the one presented in [9]. The vessels are modeled as
cylinders. The model incorporates partial volume (PV) effects, a Gaussian point
spread function (PSF), and different noise characteristics for vessels and back-
ground. The PSF is an isotropic Gaussian with standard deviation 0.75 voxels.
The foreground (vessel) voxels have a mean intensity of 200 HU and a standard
deviation o1 of 35 HU, while the background has a standard deviation oo of
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() (c)

Fig. 2. Example of the calculation of the background properties on a phantom image.
Phantom image (a), background ground truth (b), and estimated background (c). All
images have a window level from —970 HU to —600 HU.

50 HU. The standard deviation of the PV voxels is 0, = y/ao? + (1 — a)o3,
where « is the vessel/voxel volume ratio for a certain voxel. A slice of one of the
created phantom images can be seen in Figure 2(a).

The background estimation algorithm has been applied to a set of 50 phan-
tom images. The difference between the estimated background intensity and
the ground truth background was 7.2927 4+ 2.5478 HU The difference between
the estimated standard deviation of the background and the ground truth stan-
dard deviation was 3.9615 £ 1.5929 HU. The small positive bias of the mean is
probably due PV effects. Changing the vessel intensity to 0 HU and 400 HU
did not result in significantly different values. For comparison the same val-
ues for 50 background-only images were 0.0024 £ 0.7518 HU for the mean, and
0.1799 + 0.7301 HU for the standard deviation. The standard deviations for all
these values over all images was smaller than 0.3 HU.

3.2 Background Perfusion

We have applied the perfusion tool to three datasets of three different patients
and presented the results to an experienced radiologist. He said the perfusion tool
allows to visualise subtle diffusion variations, like those caused by gravitational
effects. Without this tool a tedious amount of twiddling with the window level
would be needed for these subtleties to be visible, so therefore he thought the
tool would be able to increase his productivity. Since the algorithm is fully
automated, it can be executed beforehand, thus enabling the radiologist to show
the perfusion by using only one slider.

An example of the result of this algorithm is shown in Figure 3. The image
on the left shows the original slice using the standard lung window. The image
at the right shows the perfusion using a rainbow color map. The image in the
center shows the perfusion map as an overlay onto the original image. In the
original image a brighter background is visible when one has a good look at the
bottom of the lung on the right hand side. In both other pictures this area is
visible at first sight without effort. Moreover the right image shows a soft green
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660

(a) original (b) original with overlay  (c) overlay only

Fig. 3. Demonstration of the background properties. The coloured overlay shows the
intensity of the parenchyma, thus allowing to visualise subtle diffusion variations.

\

(a) original (b) original with overlay  (c) overlay only

Fig. 4. Demonstration of the lobe segmentation. Different colours indicate different
lung lobes.

glowing at the bottom of the lung on the left hand side, indicating a slightly
higher perfusion due to gravitational effects.

The algorithm has also been executed with less optimal initial estimates
for p. The initial estimate does not influence the values to wich the iterations
converge, since a difference by 100 HU yielded a mean absolute difference of less
than 1 HU after fourteen iterations.

3.3 Lobe Segmentation

We have applied the lobe segmentation to three datasets of three different pa-
tients and presented the results to an experienced radiologist. According to him
the lobe segmentation tool is adequate for clinical use. The most important ad-
vantage of this algorithm is that it is complementary to lobe segmentation by
fissure detection, which is how the radiologist normally recognizes different lobes.

The algorithm does not always return the optimal result after the first manual
initialisation. In this case an iterative procedure, in which additional starting
points are added, is performed.

An example of the results returned by this algorithm can be seen in Figure 4.
Figure (a) shows the original CT slice, and (c) shows a colour map depicting
the different lung lobes. A combination of both is shown in (b). The lobe seg-
mentation has been performed for £ = {2.0,2.3,3.0}. The maximum volume
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percent difference between the several results was smaller than 0.75%. These
small differences between the different results show that the exact value of k is
not critical.

3.4 Timing

The algorithms have been implemented in Matlab R2006b with C++ calls for
the most time intensive parts. The Matlab image processing toolbox is used for
performing the morphological operations of the lung segmentation step. On a
Dell Precision workstation with dual Xeon 2.2 GHz/512k processors the lung
segmentation took 37 minutes, estimating the background properties took 51
seconds, and separating the lobes took 270 seconds, for an image of 512x512x601
voxels.

If one is interested in the perfusion only, and not in the separation of the lung
lobes, the efficiency of the lung segmentation step can be improved by omitting
the time consuming morphological operations, which account for 36 minutes of
processing time.

4 Discussion and Future Work

We have proposed a method for computing the properties of the lung background
using a low pass filter with outlier detection and exclusion. The result of this
filter can be visualised immediately, showing the lung perfusion. The accuracy
of the results allows the physician to see otherwise nearly invisible variances in
the background distribution, like those caused by gravitational effects. Showing
the result as an overlay results in a simple tool, which was judged by a clinician
as very helpful, e.g. because it can speed up the reading. By using the afore-
mentioned background properties we have also proposed a lobe segmentation
algorithm, which is robust in cases of mosaic perfusion.

The algorithm has not yet been tried on non-contrast images, but the inten-
sity gap between foreground and background should still be sufficient to yield
acceptable results.

To improve the visualisation of the perfusion an automatic detection of the
adequate window level would be useful. A fixed window level is not adequate,
since the amount of air in the lungs affects the background intensities. The
initialisation of the lobe segmentation method could be automated by using a
map like in [3]. Once the lobe segmentation has been performed, the perfusion
detection can be recomputed on a per lobe basis, increasing the visibility of the
contrast differences at the fissures.

Our focus for the future will rather be on using the background estimation
algorithm in applications, e.g. vessel segmentation, than on improving the algo-
rithm as such. The methodology for segmenting the lung lobes can also be used
to separate the arteries and the veins, yielding promising preliminary results.
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A Bias on Estimated Standard Deviation

Let f(z) be a Gaussian probability density function with mean p and standard

deviation o. ) )
@) = i exp (f—(‘”;gé‘) ) @

Suppose the mean and the standard deviation of this probability density
function are estimated on a limited interval, i.e. in the interval [ — no, u + nol,
with n > 0. It is obvious that the estimate mean u' will be the same as the real
mean p. The estimated standard deviation ¢’ however will be biased.

The estimated standard deviation ¢’ is computed as
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Abstract. A new framework is proposed for segmenting the pulmonary
vessel tree while simultaneously estimating vessel orientations from lung
Computed Tomography (CT) images. The problem is formulated as a
joint optimization for both the segmentation and the orientation of the
vessel tree. We propose to use a histogram vector to describe vessel ori-
entation, which avoids explicit classification of branching points from a
vessel tree. The objective function encodes the orientation information
by defining a neighboring relationship between voxels, and is solved iter-
atively by alternately optimizing the segmentation and regularizing the
orientation. The validation on manually labeled datasets suggests the
potential value of our algorithm.

1 Introduction

Pulmonary vessel extraction is an important step in performing a quantitative
analysis for lung CT images. Blood vessels inside lungs have a salient tree struc-
ture over the entire lung. The radii of vessels get decrease as they extend from
the center to the periphery of the lung. The vessels typically have a higher inten-
sity than the lung parenchyma. However, it is not sufficient to classify the vessels
from the rest of the lung volume only by using the voxel intensities. The imaging
process adds noise to the data volume and under current limitations of scanning
resolution, the vessel structure in the images may become disconnected. These
factors make vessel extraction a challenging problem.

In order to achieve a robust vessel segmentation, researchers have proposed
various approaches. One is to preprocess the volume by enhancing the vesselness.
For example, Shikata et al ([1]) first enhanced the vessels by a line-filter based on
the Hessian matrix, after which the vessel tree was segmented by thresholding
the vesselness and filling local gaps. Another method turns the problem into a
tracking problem on the vessel tree after getting the initial segmentation using
some heuristic thresholding. In [2], the initial estimation of the vessels was ob-
tained from maximum intensity projection, and a rule-based scheme was adopted
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to separate the vessel tree by extracting the center lines. Wu et al ([3]) used the
method in a more principled way. They proposed a regulated morphology ap-
proach to produce a set of fuzzy spheres; a tracking algorithm subsequently
generated a set of connected trees based on constraints such as for instance
collinearity and size. There are also level-set based approaches such as those in
[4][5], which optimize the vessel boundary as the zero level set of a deformable
curve model.

In terms of optimization, the variable that all these methods try to optimize
is only the segmentation label. Other information, especially the orientation of
the vessel tree, is fixed after precomputation from either the Hessian matrix ([1])
or the morphology ([2][3]). In contrast to these previous approaches, we exploit
the orientation information in a new way. An accurate estimation of orientation
can provide better tracking in segmentation. Meanwhile, a good segmentation
eliminates noise and improves the orientation information. In this paper we pro-
pose a new method of vessel extraction to compute both the segmentation and
the orientation simultaneously.

In our framework, the orientation is regarded as a variable to be optimized
rather than a precomputed feature for segmentation. We formulate our approach
as an optimization problem and propose an iterative solution. First, a new de-
scription of orientation is applied for vessel extraction. We employ a histogram
to accommodate multiple directions at tree branching points. This is different
from using the direction vector, which is not suitable for describing bifurcation;
for instance, in previously reported methods ([1][2]) special tracking rules have
to be defined for the branching points. To initialize the orientation response in
multiple directions, we design a bank of elongated second-order filters, which
can detect more than one dominant direction.

Second, we propose a new formulation to alternately optimize both the orien-
tation information and the segmentation label. We apply the graph cut method
in segmentation, which has become a popular method for medical image seg-
mentation ([6][7][8]). This method guarantees the global optimal solution and is
computationally efficient. It can model both the data likelihood and the neigh-
boring relationship between two voxels. We introduce a novel term defined in
terms of the orientation of neighboring voxels. This leads us to a new way to
integrate the tracking and segmentation procedures.

This paper is organized as follows: Section 2 presents our simultaneous seg-
mentation and regularization framework. Section 3 shows both quantitative and
qualitative results on High-Resolution Computed Tomography (HRCT) ([9])
data. Finally, we give our conclusion in Section 4.

2 Method

The goal of our method is two-fold: to segment the pulmonary vascular vessels,
and to estimate the vessel orientation at each voxel. We propose a new framework
for optimizing both the segmentation label and the orientation estimation. Given
the image volume I, for each voxel i with coordinates s;, we want to assign a
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Fig. 1. (a) The 92 predefined directions 1)y, illustrated on a 3D sphere. (b) Three types
of points on a Y-junction. (¢) The orientation vectors o of for A) branching points, B)
intermediate points and C') end points. (d) 2D view of the orientation filter (Equ. (2)).

label [; indicating whether it belongs to the vessel tree (I; = 1) or the background
(I; = 0). Moreover we want to estimate the orientation of the vessel voxel at s;.

The orientation is described by a histogram vector o; = (0},...,05). Each
bin in the histogram corresponds to one of the predefined K unit normal vectors,
{1,..., ¥k}, ||¢k| = 1. Figure 1(a) shows the 92 directions used in the paper.
The value of bin of is a continuous value in the range of [0, 1], representing the
likelihood to the k-th direction of the vessel. Such a histogram vector is capable
of describing multiple dominant vessel directions at the same location; thus it
can generalize the description of the three types of points in the vascular tree:
the branching points with three non-zero bins, the intermediate points with two,
and the end points with one. In general o; is a sparse vector € [0, 1] (see Figure
1(b)(c) for an illustration on a Y-junction ).

Such a vector description is different from the one used by most previous
methods ([1][2]), in which the orientation is only defined on the intermediate
points, and the branching points need to be classified differently from other
points in order to initiate vessel tracking. In contrast, our histogram representa-
tion is capable of describing orientation information in all parts of the vascular
tree with the same format. Therefore, there is no need for classifying and track-
ing branching points like in [3]. This description is more robust to local noise
and broken vessels.

The data term, D7, denotes the negative log-likelihood of assigning label

l; to the pixel ¢ by the intensity at site s;. VVZS] is the neighboring connectivity
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term referring to the compatibility between i and j. A is the second order spatial
neighborhood of 26-connectivity. D and ij are the terms for orientation. W<
and WF ensure that the segmentation labels and the orientation of the vessels
change smoothly along the tree. Our algorithm computes the minimum of the
objective function:

C(L,0)=> DI+A¥ > > Wi+ DE+aR Y > wh.

icl i€l 1AL jEN; icl ill=11,=1|jEN;

Each term is a function of the segmentation label field L = {l;}, and the ori-
entation field O = {o0;}. The first half of the formulation, >, DY + >, > W,
is the popular segmentation energy function, which can be efficiently optimized
by the min-cut/max-flow algorithm ([6]). In contrast, the variable o; in the sec-
ond half, Y, DE + 3", > W, is a continuous variable, which leads us to a

different regularization approach as explained in Section 2.3.

2.1 Initial Estimation of Orientation

To locate the multiple dominant directions, we apply a bank of directional filters
tuned along the set of directions {4} }. This is different from using the Hessian
matrix ([1]), which is suitable for only one dominant direction. To detect thin
structures, we generalize the elongated second-order derivative filter in [10][11]
to 3D as:
10 N A
Fle,8,7) = ds20 5 575xXP (75 + 5 + ) - @
Copr T hao? o (2,9, T=R(a,0,7)(2,9,2)T

The direction of the filter is controlled by the Euler angle (a,/3,7). The
predefined direction % determines o and (. The third Euler angle v comes
from n evenly distributed angles from 0 to 7. We empirically choose n = 4 as
a tradeoff between accuracy and running time. dz>o makes the filter respond
only to the forward direction. o controls the scale of the filter, A\, controls the
elongated scale along x-axis, and A\, controls the thickness of the thin structure
(see Figure 1(d)). We set ¢ = 1, A\, = 16 and A, = 1 in our experiments. R is
the rotation matrix defined by (a, 3,7). By rotating the filter in 3D we get a
bank of filters { F'(«v, 8,7)} for different directions. So an image volume needs to
be convoluted with K x n filters. The initial estimation of the orientation bin
o" is the maximum response out of the n filters of 1, normalized to the range
[0,1] divided by the maximum response of the whole volume.

2.2 Segmenting the Frontier Band

The vascular vessels are typically brighter than the rest of the lung region. How-
ever, in the regions towards the boundary of the lung, the vessels become as thin
as only one or two voxels. Small motion blur and imaging noise make it difficult
to identify these vessels. In contrast to voxel intensity, the orientation informa-
tion is relatively more robust because the orientation filter typically covers a
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Fig. 2. (a) A patch from HRCT lung volume. Blue arrows:
the initial orientation 6; estimated from convolution with
the filter bank. Red arrows: the orientation after regular-
ization, o;. (b) The histogram vector of 6; and o;.

Fig. 3. The active band
(red region) and the
segmentation (green re-
gion) for the first itera-
tion.

large neighborhood. We introduce the orientation into the connectivity term as
follows:

kK k
Wi, = w05, Wi = . 3
I EA w7 0 otherwise ’ 3)

e o= {(lpk,sjfs,-) for  (thk,s; —si) >t

k=1

where (-,-) is the vector dot product and ¢ is a threshold (¢ = 0.9 for our
experiments). In this definition, the spatial regularization weight wfj is high if
the voxel j is along any of the detected directions at voxel . I/Vf] in Equ. (1) is
defined to be symmetric: W;”; = max(ﬁ/fj, WJSI) We set \Y = 3/7 in Equ. (1).
The data likelihood term is defined as DY = —log Pr(I|l;). This likelihood

is computed by the local Parzen-window nonparametric density estimation. A
small neighborhood around each voxel is sampled by an isotropic Gaussian PDF.
The implementation details for optimizing the segmentation labels L given Equ.

(3) are illustrated in [8] by using the min-cut/max flow algorithm.

2.3 Regularization of Orientation Vectors

The initial estimation of vessel orientation depicted in Section 2.1 is very noisy.
‘We desire a sparse solution for vector o;, in which each vector should have strong
responses only in no more than three bins. Also the estimation should be spatially
coherent. For this purpose we apply the multi-modal regularization framework
introduced in [12]. The value of o; is regularized from the initial estimation o;.
The data term in Equ. (1) is defined as:

K K
Dff = Jlo; — oil|* + k(e 5f = Y (0f)*), in which 6; = — Y " of". (4)

k=1 k=1

The first term restricts the regularization results o; to be close to the input o;.
The second term enhances predominant orientations and attenuates the spurious
ones, while ¢ controls the number of non—zero peaks (see details in [12]).
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We set ¢ = 6 and k = 0.5 in this paper to favor 1 to 3 non-zero differ-
ent peaks. For the spatial regularization term, W1R7 in Equ. (1) is defined as:
WE = Zszl wf;(of — of)?. As normalized bin values in o; are non-negative
real-valued, we minimize this stage by solving a constrained system of linear
equations. The details for optimizing the orientation {0} with the Gauss-Seidel
algorithm are given [12]. We set A}Y to be 6. Figure 2(a)(b) shows an example
of the regularization results.

2.4 TIterative Optimization of the Objective Function

‘We propose an iterative approach to alternately optimize the first and the second
half of the objective function Equ. (1). In each iteration, we maintain a region
called Active Band (AB). The segmentation and regularization is only applied
sequentially inside this region, and the labels outside AB are fixed.

In the initialization stage, AB is obtained by thresholding the response of
multiple orientation filters (see Figure 3). Next, orientation is regularized within
AB. After the regularization, segmentation labels within AB are computed by
the min-cut/max flow algorithm. At the end of each iteration, AB is updated by
dilating current vessel tree labels (we use a dilation radius of 2).

The tubular-like structure of AB prevents the segmentation from leaking into
the lung parenchyma. This improves computation efficiency without sacrificing
accuracy. Such an idea is also adopted in [7]; but in contrast, we do not use
Laplacian pyramids to obtain the active band. The convergence point of iteration
gives a sub-optimal solution to the objective function of both L and O.

3 Results

The two datasets were acquired from one patient with no known pulmonary
disease. Using a volumetric expiratory HRCT protocol ([9]), the patient was
scanned once at end-inspiration and again at maximal end-expiration with a 4-
detector CT scanner (GE Lightspeed, 2.5 mm collimation, 120kVp, 240mA, 0.5s
gantry rotation time, 15mm per rotation). Images were reconstructed to 1.25
mm-thick slices with a 512x512 matrix of 0.63-mm in-plane resolution and were
further downsampled by half-resolution to 256 x256x200. Before vessel extrac-
tion, a rough mask of the whole lung was estimated via semi-automatic level-set
segmentation ([13]) to remove extra parts of the bones, heart, and large airways.

Three iterations were run for each volume to obtain convergence. Figure 4(a)
shows the final vessel 3D mask on one volume. Most of the extracted vessels are
thin (i.e. not over segmented) and connected without manual initialization. We
evaluated our segmentation results using a similar approach to that used in [1].
About 3000 points uniformly distributed within vessels were manually labeled
for each volume. For verification, the lung region is divided into five distinct
regions (see Figure 4(b)) depending on the distance from two seed points man-
ually placed on the border of the left and right lung around the hilum, where
most vessels enter the lung region. The peripheral region £ contains mostly thin
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(a)

Fig.4. (a) The extracted 3D vessel mask from the 256x256x200 volume, with no
leakage apparent from visual inspection. (b) The five divided regions according to the
distances from the two seed points.

region A B C D E all regions
case 1|127/129 [300/307 | 491/503 | 794/821 | 557/585 || 96.8%
case 2 |321/327(384/393 | 544/564 | 554/577 | 201/215 | 96.5%
total | 98.3% | 97.7% | 97.0% | 96.4% | 94.8% 96.7%

Table 1. Validation on different regions. The left in-/~is the number of points correctly
extracted; the right is the number of points available for validation in each region.
The true negative is mainly from thin vessels around the lung periphery due to the
restriction of the resolution. Note that false positive ratios are, however, unable to
be reported, as in [1], due to the absence of the ground truth of the entire vessel
segmentation.

vessels, while thick vessels exist in region A. For each region we counted the num-
ber of correctly classified samples. Table 1 lists the true positive rates averaged
over different regions and different volumes. While our results are comparable
to those reported in [1] for regions A, B and C, our accuracy decreases from
the hilum to the periphery of the lungs (region D and E), where the vessels are
almost one pixel thin and get blurred by both imaging noise and low resolution.

Due to the absence of the ground truth of orientation, we only provide qual-
itative results for the estimated orientation. Figure 5(a) shows an example of
the initial orientation estimated from the multi-orientation filter bank in a small
region. Figure 5(b) is the final regularized orientation, which is more smooth
and sparse, i.e. the noise was eliminated.
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(@) (b)

Fig. 5. A partial region from the entire mask. (a) The initial orientation from the
filters. (b) The final orientation, which is much more regularized and has less noise
than (a).

4 Conclusion

In this paper a new method is proposed for simultaneously segmenting the pul-
monary vessel trees and estimating the vessel orientation from lung CT images.
The orientation information is represented by histogram vectors, which unifies
the representation for branching, intermediate and end points in a vessel tree.
The orientation is also a variable to be optimized in the objective function, in
contrast to being fixed in existing methods such as those reported [1](3]. The
approach has two phases for each iteration: in the first phase, the estimated
orientation is regularized by fixing the segmentation mask; in the second phase,
the segmentation mask is updated by a min-cut/max-flow algorithm.

Future plans include applications of our method for nodule and abnormality
detection. Also we want to examine quantitative validation of orientation and
connectivity, and compare them with existing methods in a large scale test. Re-
garding computation efficiency, current unoptimized implementation took about
40 minutes on the 256 x256 x200 volumes for one iteration on a Intel Xeon 3GHz
CPU. This can be improved, since the method, especially the regularization step,
is highly parallelizable. And about 60% of the time is spent sampling the Gaus-
sian PDF for D¥ (see [8]), which can be reduced by a better sampling function.
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Abstract. In this paper, we propose an automatic non-rigid lung registration
method for the visualization of regional air trapping in full inspiration and
expiration chest CT scans. To cope with intensity differences between CT
scans, we segment the lung vessel and parenchyma in each scan. Then, we
match them without referring any intensity information. We globally align two
lung surfaces by affine transformation. Then, locally deformable transformation
model is developed for the subsequent non-rigid registration. Subtracted
quantification results are visualized by pre-defined color map. Experimental
results show that proposed registration method is able to correctly align the full
inspiration and expiration CT images in 10 patients. Our method can model the
global and local deformation between full inspiration and expiration CT scans.
Our non-rigid lung registration method may be useful for the assessment of
regional air trapping by providing intuitive color-coded information of
quantification results.

1 Introduction

Regional air trapping has been qualitatively assessed by comparing the intensity
change of lung parenchyma during the respiration between full inspiration and
expiration chest CT images. However, due to the change in body posture, the complex
respiratory motion of lung, and heart beating, it is difficult for doctors to find
correspondences manually between two CT data sets. Therefore, automatic lung
registration methods, which align two images, and establish correspondences, are
much helpful for radiologists to find areas of regional air trapping.

Several methods have been suggested for lung registration in temporal chest CT
scans. Betke et al. [1] developed an automatic registration method of temporal chest
CT images for the nodule registration. They detected the trachea, sternum and spine

* Corresponding author.
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as anatomical landmarks using an attenuation-based template matching. The optimal
rigid-body transformation that aligned the corresponding landmarks was found for the
initial registration. Then, the initial surface alignment was refined step by step in an
iterative closest-point process. However, the transformation model of this method
assumed there was no local deformation between two scans so that this method cannot
be applied to the registration between full inspiration and expiration scans. Fan et al.
[2-3] proposed a volumetric lung registration method between CT images obtained at
different stages of breathing. Both feature points and lung surfaces at consecutive
frames were incorporated as a priori knowledge for 3D warping to derive an initial
sparse comprehensive displacement field. This field was then interpolated over the
entire volume in an iterative fashion governed by a model derived from continuum
mechanics and 3D optical flow. However, their method was only validated for data
sets, which had small volumetric differences. Dougherty et al. [4-5], and Torigian et
al. [6] proposed an optical flow-based method to register images and visualize
changes between temporal CT scans. Their method was applied to lung nodule
assessment, evaluation of pulmonary enhancement, and functional changes due to air
trapping. However, their methods could be applied to data sets, which had small
volumetric differences.

In this paper, we propose an automated non-rigid registration method for regional
air trapping visualization in full inspiration and expiration chest CT scans. To cope
with intensity differences between two scans, we segment the lung vessel and
parenchyma in each scan. We match them without referring any intensity information.
We globally align two lung surfaces by affine transformation. Then, locally
deformable model is used for the subsequent non-rigid registration. Our registration
method is implemented in multi-resolution scale using a Gaussian pyramid. Our
method can model the global and local deformation between full inspiration and
expiration chest CT scans.

2 Methods

2.1 The Generation of a Binary Image

We segment lung parenchyma and vessel as follows. For the preprocessing, we
remove the background area by applying 2D seeded region growing [7] on every slice
with outermost seed points of each slice in the threshold range of -
1024HU(Hounsfield Unit) to -200HU. The airway is extracted by applying 3D seeded
region growing with the automatically detected seed point, which is the center of the
uppermost airway in the threshold range of -1024HU to -950HU. Lung parenchyma is
extracted by applying 3D seeded region growing [7] with the same seed point and
subtracting the airway. The threshold range for the full inspiration CT is from -
1024HU to -400HU. And the threshold range for the full expiration CT is from -
1024HU to -200HU. From the hole filled lung parenchyma, we can extract lung
vessel in the threshold range of -400HU and 3095HU. Then, the intensity of lung
parenchyma is replaced as 0. And the intensity of lung vessel and other areas is
replaced as 1. Subsequent registration procedure is performed on this binary image.
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2.2 Initial Lung Surface Registration

In a surface registration algorithm, the calculation of the distance from a surface
boundary to a certain point can be rapidly calculated using a preprocessed distance
map [8]. To generate a 3D distance map, we approximate the global distance
computation with chamfer distance transform [9], which is repeated propagation of
local distances. Chamfer distance transform can be computed by performing a series
of local operations while scanning image twice. We explain chamfer distance
transform in 2D coordinate for an illustration. In forward scan, we compute fi(p) for
all p€image in a single standard scan of image. For each p, f; has already been
computed for all of the gs in B(p). If p has coordinates (x, y), B(p) contains (x, y+1),
(x-1,y), (x-1,y+1) and (x+1, y+1).

if p e boundary

. . 1
min{/,(q)+1:q < B(p)} if p ¢ boundary @

£(p)=

In backward scan, we compute f(p) for all p€image in a single reverse standard
(right-to-left, bottom-to-top) scan of image. A(p) contains the remaining neighbors of
p, which are not contained in B(p).

f(p)=min{f,(p), f,(q)+1:q € A(p)}. @

After the generation of chamfer distance map, the average distance between two
surfaces can be calculated as follows.

1 .
average distance = — Z DistanceMap,,,,.. (Transform(x)), 3)

xelmage;
where the point in image 1 is transformed into the point, Transform(x) in image 2.
DistanceMap,,,., (x) is the distance value at the position, x of chamfer distance

map. N is the number of points in the overlapped area between image 1 and 2.
Transformation model is composed of translation, rotation, and scaling. The
transformation is calculated as follows using three translation, rotation, and scaling

parameters: 7,7, 7,, R, R, R,. S, S,, S, [10]

leagc, 7CImagc\ =
R.(6,)-R,(0,)-R.(0.)-S,-S,-S. - (Page, ~ Cimmage,) @
+T(T,T,.T.).
where F:mage] and C[magel are the position of voxel and center in image 1. P[mgez and
C are the position of voxel and center in image 2. To search for transformation

Image,

parameters, Powell’s directional method [11] is applied as the optimization technique.
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2.3 Non-rigid Registration based on Locally Deformable Model

Due to local deformation of lung, a point inside lung moves locally during the
respiratory motion. Therefore, we can model the local movement of a point inside
lung as the summation of linear transformation and translation. We calculate
parameters of linear and translational transformation at each point, p around their

neighborhood, € to minimize the following error functions.

E =) [Image,(P)—Image,(L,P+T,) .
aep ®)

where Lp is 3x3 matrix including 9 linear transformation parameters at a point, p .
And Tp is 3x1 matrix including 3 translational transformation parameters at a point,

p . Q can be approximated as 5x5x5 regular hexahedron. If we find the optimal

transformation parameters according to Eq. (5), holes can occur when deformation
parameters spatially change a lot. Therefore, we add the smoothness term [12] into
locally deformable model to smooth the spatial change of deformation parameters.
Eq. (5) with the smoothness term is optimized by Newton-Raphson iterative
technique.

The range of () with respect to a point is limited in the neighborhood regular
hexahedron centering the point. The degree of modeled deformation is limited by the
size of a regular hexahedron. Therefore, multi-resolution approach is applied in this
paper. Gaussian pyramid [13] for each image is generated. In Gaussian pyramid, the
average intensity of 2x2x2 voxels in the current level is assigned as the intensity of
one voxel in the next level. In this paper, five levels of hierarchical Gaussian pyramid
are generated.

3 Results

Our method was performed on Intel Core2 Quad 2.4 GHz PC. Our method has been
applied to ten pairs of clinical data sets, which were full inspiration and expiration
chest CT images. Each image had a matrix size of 512 x 512 pixels with 0.75 mm
slice thickness and spacing. For each scan, a stack of 450-550 contiguous slices were
acquired.

The performance of our method was evaluated from the aspects of visual
inspection, accuracy, and color mapping of subtraction images. First, 3D volume
rendering images of each lung surface before and after the registration are shown in
Fig. 1. Fig. 1(a), and (c) show a large amount of initial misalignments. This initial
misalignment is completely corrected by proposed method. The lung boundaries of
the full inspiration and expiration CT scans are aligned exactly, as in Fig. 1(b), (d).
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(a) (b)

(©) )
Fig. 1. 3D volume rendering images after the registration of full inspiration(red) and
expiration(blue) CT images (a) before the registration(the front view) (b) after the

registration(the front view) (c) before the registration(the side view) (d) after the
registration(the side view)

We evaluate the registration accuracy of proposed method by measuring
normalized mutual information(NMI) before and after the registration. Average NMI
value measured inside the lung for ten patients was 1.00310 (before registration),

1.00394 (after initial registration), and 1.01246 (after non-rigid registration) as shown
in Fig. 2. Average NMI value was the maximum after non-rigid registration.

1012

1.008

1.006

= oD

1002 4
before initial non-rigid
registration  registration  registration

Fig. 2. Average NMI value
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The joint histogram to measure NMI was shown in Fig. 3. The intensity value of CT
images, which is in the range of -1024HU and 3095HU, was scaled in the range of 0
and 255. The joint histogram before the registration was dispersed as shown in Fig.
3(a). The joint histogram after the registration was congested as shown in Fig. 3(b),
which meant the alignment of full inspiration and expiration CT images.

(2) (b)

Fig. 3. Joint histogram (a) before the registration (b) after the registration

Finally, we evaluated the clinical efficiency of proposed method by color mapping
of the subtraction image of lung parenchyma after the registration. Fig. 4(a) showed
the subtraction image between the full inspiration and expiration CT images after the
registration. Fig. 4(b) showed the color mapped subtraction image using a rainbow
color table. Blue colored regions represented that the intensity difference between the
full expiration and inspiration CT images was small. These regions meant air trapping
regions. The average processing time per each patient was about fifty minutes on Intel
PC with Core2 Quad 2.4 GHz CPU and 2GB RAM.

Fig. 4. Subtraction image after the registration (a) subtraction image (b) color mapped
subtraction image
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4 Conclusion

We have proposed an automatic non-rigid lung registration method for the
visualization of regional air trapping in full inspiration and expiration chest CT scans.
To cope with intensity differences between CT scans, we segmented the lung vessel
and parenchyma in each scan. Then, we matched them without referring any intensity
information. We globally aligned two lung surfaces by affine transformation. Then,
locally deformable transformation model was developed for the subsequent non-rigid
registration. Subtracted quantification results were visualized by pre-defined color
map. Experimental results showed that proposed registration method was able to
correctly align the full inspiration and expiration CT images in 10 patients.
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Abstract. A novel method for the quantitative evaluation of registra-
tion systems in thoracic CT is utilised to examine the effects of vary-
ing system parameters on registration error. Regional analysis is im-
plemented to determine whether registration error is more prevalent in
particular areas of the lungs. Experiments on twenty-four CT scan-pairs
prove that in many cases significant reductions in processing time can be
achieved without much loss of registration accuracy. More difficult cases
require additional steps in order to achieve maximum precision. Larger
errors appear more frequently in the lower regions of the lungs close to
the diaphragm.

1 Introduction

The accurate registration of intra-patient thoracic CT scans has a variety of
motivating clinical applications including improved ease of visual comparison,
quantitative or automatic analysis of pathology progression, and in the case of
inspiration/expiration pairs, analysis of lung function. In radiotherapy planning,
registration information can be used to construct pulmonary motion models in
order to propagate the location of the target region [4].

Although many promising registration algorithms exist, the quantitative eval-
uation of these techniques poses a further challenge due to the lack of an es-
tablished reference standard. Without a means for quantitative assessment the
improvement and optimisation of a registration algorithm is extremely difficult.
Visual analysis of registered images is a time-consuming and subjective pro-
cess and particularly in 3D images it is impossible to visually quantify subtle
differences between results from various systems.

In this work a registration reference standard for thoracic CT pairs is formu-
lated in an efficient semi-automatic manner, resulting in a well-distributed mesh
of corresponding landmarks throughout the lung volumes to be registered. This
reference standard is used to evaluate a parametric intensity-based registration
algorithm under varying conditions. Regional error analysis is implemented to
determine whether registration error is more prevalent in specific areas of the
lungs.
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2 Materials

All scans used in this work form part of an experimental lung cancer screening
programme. Twenty-four patients (22 male, 2 female, ages 54-79yrs), each with
a baseline and a follow-up scan (3-9 months apart) were chosen randomly from
the database. All scans were obtained at full inspiration and without contrast
injection on a 16 detector-row scanner (Mx8000 IDT or Brilliance 16P, Philips
Medical Systems). They have a per-slice resolution of 512x512, with the number
of slices per scan varying from 383 to 551. Slice thickness is Imm with slice-
spacing of 0.7mm. Pixel spacing in the X and Y directions varies from 0.55mm
to 0.8mm.

All registration experiments were carried out on a standard desktop PC with
an Intel Core 2 Duo processor, 2.4GHz.

3 Methods

3.1 Reference Standard Construction

In this section an overview of the reference standard construction method will
be provided. The technique used is described in detail in [5].

The first step in the construction of the reference standard is the determi-
nation of landmark locations in the baseline scan. A fully automatic system has
been designed which identifies 100 well-dispersed points throughout the lungs.
These points are required to be sufficiently distinctive to enable them to be
matched in the corresponding follow-up scan and points on the pleural surface
itself are therefore excluded. A projection view of all the landmarks selected for
a scan is shown in figure 1(a).

A semi-automatic system was developed to accurately match the voxels
identified as landmarks in the baseline scan with voxels at the corresponding
anatomic locations in the follow-up scan. Each scan pair was processed twice
by independent observers (medical students). The observers were required to
match at least 20 of the 100 landmarks manually using a custom-made graph-
ical interface. The ordering of the points presented to the users was designed
such that each subsequent point was well-distanced from its predecessors. Dur-
ing this phase the system utilised a thin-plate-spline (TPS) [1] and the thus-far
annotated point pairs to model the relationship between the two images. The
TPS model was evaluated at each new point by attempting to predict the correct
correspondence and comparing this prediction with the subsequent user annota-
tion. When 20 points were manually matched the system handled the remaining
points automatically, provided that the TPS model had been validated by suc-
cessful predictions of the user annotated matches. The annotation procedure
took 20-30 minutes per scan-pair and did not require observers with significant
experience of pulmonary anatomy.
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Fig. 1. (a)A set of automatically determined landmarks projected in the coronal di-
rection. (b) Inter-observer differences categorised by match-types.

3.2 Registration Methods

Prior to registration the baseline and follow-up scans were down-sampled in order
to reduce memory consumption. The down-sampling was by means of block-
averaging such that the matrix size of 512x512 in the original images is reduced
to 256x256, with the number of slices being reduced accordingly by a factor of
2. The calculated transform from the registration procedure was subsequently
applied to the full resolution follow-up scan.

The registration procedure consisted of an initial affine registration step fol-
lowed by an elastic registration to handle the non-rigid deformations of the lung
tissue. Both registration steps involved a multi-resolution strategy using a Gaus-
sian image pyramid. A mutual information cost function [7] was used in both
cases along with a stochastic gradient descent optimizer [3]. The elastic registra-
tion deformations were modelled by a B-Spline grid [6]. The grid-size varied per
resolution-level with the finest grid at the last level having a spacing of 8 voxels
in each dimension.

In this work only the anatomy within the lungs is registered and all other
structures are masked out. Previous experiments [5] have determined that this
gives more accurate registration of the structures within the lungs. The mask
used to distinguish the lungs from other anatomy was created by means of an
automatic lung segmentation procedure based on the work of Hu et al. [2].

A number of experiments have been carried out in order to test the effects of
tuning various parameters in the registration system. In particular the number
of resolutions in the multi-resolution scheme and the number of iterations in
the stochastic gradient descent optimizer are varied to determine their impor-
tance and optimal values. Registration error is analysed for each scan-pair at the
various settings and regional error analysis is carried out over the entire dataset
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4 Results

4.1 Reference-Standard Construction Results

Inter-observer differences The inter-observer differences were analysed to
verify the ability of observers and of the system to find reproducible correspond-
ing anatomic locations for the landmarks. In figure 1(b) the inter-observer differ-
ences in mm are illustrated, categorised by match-type. The match-type indicates
whether the point was marked manually by one or both observers or whether it
was chosen by the system. Regardless of match-type, 97% of all points had an
inter-observer difference below 2mm. As is expected, points which were marked
automatically by both observers are considerably more likely to have differences
of Omm than those which were marked manually, however manual observations
are within 2mm of each other in 96% of cases.

Dispersal of Reference Points In order to verify that the reference points
were evenly distributed around the lung volume, and later to analyse registration
error in a regional manner, each lung was divided into 4 equally sized volumetric
regions as follows: (See figure 2(a)). The centre of mass, ¢ of both lung volumes
together was identified. A sphere s, centred on ¢, was constructed such that 25%
of the left lung volume was enclosed by s. This 25% represented the portion of
left lung around the mediastinum. The remainder of the left lung was divided
into 3 equally sized volumes by cutting at the appropriate slices. The right lung
was then divided in an analogous fashion.

The number of points in each region over all images is illustrated in fig-
ure 2(b). It is clear that the points are well distributed over all areas. The
right lung has slightly more points than the left which is to be expected due to
its larger size, and the mediastinal area has a slightly higher concentration of
landmarks since it is generally a much more distinctive region than any of the
peripheral areas.

Number of Points
400

336
300 280 B
255 238
0
0
1:Left 2:Left 3:Left 4:Left 5:Right 6:Right 7: Right 8: Right
Mediast. Lower Mid  Upper Mediast. Lower  Mid  Upper

(a) (b)

2

=1

1

IS

Fig. 2. (a)A slice showing a cross-section of the 3D lung partitions calculated. (b)The
dispersal of points among the partitioned regions.
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4.2 Registration Results

For each image-pair the computed transform 7" which maps from locations in
the deformed follow-up scan to locations in the original follow-up scan is applied
to each of the landmark points [ from the baseline scan. It is clear that for
an accurate registration we expect T'(I) & Im, where Im is the matching point
marked during reference standard formulation.

For all points Imgps1 marked (manually or automatically) by observerl the
Euclidean distances §(T'(1), lmeps1) between T'(1) and Imps1 were calculated us-
ing the appropriate T for the scan-pair. These distances ¢ were used as a measure
of registration accuracy.

Varying number of Iterations Reducing the number of iterations performed
in the stochastic gradient descent procedure is one way to considerably improve
the speed of the registration system. In order to determine the importance of this
parameter on the registration results the 24 scan-pairs were registered first with
512 iterations, then with 256 and finally with 128. All other parameters were
kept fixed, with 4 resolution levels during the affine registration and 5 during the
elastic. The registration errors 6(T'(1), lmyps1) are shown in box-whisker plots for
each scan-pair at each setting in figure 3. In most cases the median error increases
slightly with fewer iterations although in a few instances, particularly those scans
with the lowest error measures the number of iterations has little effect.

The time to register a down-sampled image pair was reduced from approx-
imately 10 minutes with 512 iterations to 5 minutes with 256 iterations or 3
minutes with 128. Consideration must be given to balancing the registration
accuracy against the amount of time required to complete a registration since
many clinical applications demand results within a specified timeframe.

Figure 4 shows an example of a difficult case (the sixth case from figure 3).
Although the images are reasonably well aligned there are clearly some errors in
the vessel structure. Subtraction images shown in figures 5(a) (subtraction after
registration with 128 iterations) and 5(b) (subtraction after registration with
512 iterations) illustrate the difficulty of visually assessing registration results.

Varying number of Resolutions In this experiment the number of iterations
was kept fixed at 512 while the number of resolutions was varied. The registra-
tions were carried out firstly with 4 resolutions in the affine step and 5 in the
elastic step and secondly with 3 resolutions in the affine step and 4 in the elastic
step. The registration errors §(T'(1), Imgps1) for each scan-pair are shown in fig-
ure 6. In most cases the reduction in numbers of resolutions had little effect on
the registration error, however in a single case the registration result with fewer
resolution levels is so poor that the box showing the interquartile range of errors
cannot be seen at the scale shown in figure 6. The scans to be registered in this
case were so disparate that they required extra low-resolution steps in order to
overcome the large-scale differences early in the procedure. By adding the extra
resolution step back into the affine phase only, the median error is reduced from
approximately 18mm to just 0.5mm.
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Fig. 3. Registration errors per scan-pair for varying numbers of iterations.

Fig. 4. A difficult case, corresponding slices from the fixed image and the deformed
moving image.

Fig. 5. The same difficult case as shown in figure 4. Subtraction image after registration
with (a) 128 iterations and (b) 512 iterations.
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The reduction of the number of resolution steps had a minimal effect on the
time required to complete a registration, saving only in the order of 30 seconds
of the 10 minutes.
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Fig. 6. Registration errors per scan-pair for varying numbers of resolutions

Registration Error per Region As described in section 4.1 and illustrated
in figure 2(a) each lung was divided into 4 equal volumes to enable regional
analysis. In figure 7 the error per region is shown for the system at 3 different
settings. Based on the range of errors above the 0.75 quantile value it is clear
that in all cases the largest errors for each lung are seen in the lower sections
(region labels 2 and 6). This is to be expected since the motion of breathing
affects the lower lungs much more significantly than the upper. Similarly, in all
but one case, the upper section of the lung (region labels 4 and 8) has less error
than any other section.

In figure 8 a closer view of the median values of the same box-plots is shown.
The differences in median error values between regions are of the order of 0.1mm
showing that for the majority of points there is little difference between regions.
Median values for the regions close to the mediastinum and the diaphragm (re-
gion labels 1,2,5,6) tend to be slightly higher than those for the peripheral areas
of the middle and upper lung.

5 Conclusion

A semi-automatic system for reference standard formulation has been used to
generate a well-distributed mesh of corresponding landmark points in intra-
patient thoracic CT scan pairs. The scan pairs have been non-rigidly registered
using a parametric intensity based registration algorithm with various parameter



210- FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

12 50
20
£ 10- g £
£ g g 40-
£ £ £
5 : 230
5 g g
2 2 2
s 6 H :
2 210 e
3 8 3
H H £ 20
g 4 2 g
10+
N

%‘; ! e == e m e

1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 12 3 4 5 6 7 8
LeftLung  Right Lung LeftLung  Right Lung Left Lung  Right Lung

(a) (b) ()

Fig. 7. Plots showing registration error per region for various system settings. The
labels on the X-axes refer to the lung regions as shown in figure 2(a). (a) System with
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Fig. 8. A closer view of the median regions from the plots of figure 7.

settings. The constructed reference standard enabled the quantitative compari-
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son of results from different system settings and the detection of subtle disparities
in registration accuracies.

Regional analysis was also possible due to the regular distribution of the
landmark points. It appears that larger errors are more likely to occur in the
lower sections of the lung close to the diaphragm.

The results of parameter testing confirm that registration accuracy is gener-
ally negatively affected by the reduction of the number of iterations in gradient
descent optimisation. However the accuracy difference in terms of millimetres
is usually small or even negligible for easier cases (those where a good result is
already achievable with fewer iterations, probably due to a good initial align-
ment of the baseline and follow-up images). Depending on the application and
required accuracy the reduction in processing time may be more important than
a negligibly small gain in accuracy.

The number of resolutions to be used in the multi-resolution scheme was
shown to be an important factor in registration accuracy. In cases where the
initial difference between scans is large the reduction of the number of resolutions
proved to be detrimental to the system accuracy while providing little in terms
of processing speed improvement.

These initial results suggest that optimisation of the registration algorithm
may best be achieved by means of a feedback strategy whereby easier registra-
tion tasks may be completed with a minimal number of iterations while more
difficult cases would be identified in the early stages and treated accordingly
with additional steps.
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Abstract

Our preliminary results show that albuterol administered to patients with
chronic obstructive pulmonary disease (COPD) has no significant effect on the
local ADC (apparent diffusion coefficient) values. To prevent confounds
stemming from airway dilatation to affect albuterol’s effect on COPD, we
compute ADC and ADC difference maps over ventilated regions only. We
compare intra-subject ADC values of pre and post albuterol administration
conditions through the computation of RMSE, a voxel-wise based metric, in
order to avoid compensation likely to occur in the computation of the (global)
mean-ADC  difference. Voxel-wise comparison is achieved through
coregistration and normalization of the b0 images previously masked with
corresponding combined ventilation masks (zero in unventilated voxels), both
in the pre and the post albuterol reference spaces. The ADC and ADC
difference maps are also computed for ventilated-only voxels. We also show
that the registration process does not affect global ADC metrics.

Introduction

Hyperpolarized helium-3 is a gaseous contrast agent for MR imaging that, when
inhaled, provides high temporal and spatial resolution images of the airspaces of the
lung (1, 2). By measuring the spin density of the inhaled helium, images of lung
ventilation can be obtained (3). Focal areas of poor ventilation have been
demonstrated in a variety of lung diseases including asthma (4), chronic obstructive
pulmonary disease (COPD) (2, 5), and cystic fibrosis (6, 7). In addition to ventilation
imaging, the size and connectedness of the alveoli/distal airspaces can be assessed
using diffusion techniques, similar to those used in brain MRI (8, 9). Elevated
apparent diffusion coefficients (ADC) have been found in patients with COPD (10)
and in animal models of emphysema (11, 12). These elevated ADC values are
thought to correspond to the distal airspace enlargement that characterizes
emphysema (12). To date, analysis of hyperpolarized helium-3 ADC maps has largely
been confined to histogram based approaches, adequate for studies in which each
subject is imaged a single time to assess for disease presence/severity, but that do not
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take advantage of spatial or regional information contained within the ADC maps (8,
11, 13, 14). In order to assess changes on a regional basis, more sophisticated image
analysis methods are required if the subjects are imaged more than once. One
potential difficulty in developing a method to assess regional changes in the ADC
maps is that the pattern of ventilation in the lung may vary with time or treatment
(15). Since the ADC can only be measured in ventilated regions of the lung,
comparison of ADC values at different time points is only meaningful at sites where
the voxels are ventilated at the examined time-points.

The purpose of this study is to assess the effect of albuterol on COPD
(emphysema) patients through the local analysis of the corresponding ADC maps.
Our approach intends to circumvent the problem arising from the use of global
metrics, such as difference of means, requiring no alignment of the pre and post-
albuterol administration images, but suffering from possible compensation due to
complementary changes, potentially leading to misinterpretation of the results (e.g..,
false negative). In the following, we describe a newly developed paradigm for the
computation of always-ventilated ADC difference maps. Our approach allows for the
computation of locally based metrics such as RMSE. We present preliminary results
when this algorithm is applied to a small group including healthy (normal) subjects
and COPD patients.

Methods
Acquisition Protocol

Hyperpolarized helium diffusion MR imaging was performed in 6 subjects (2
healthy and 4 with COPD) with each subject being imaged before and after the
administration of inhaled albuterol on two successive days (Day1, and Day2). Thus,
4 ADC maps were obtained for each subject. Albuterol is a bronchodilator and as
such could change the regional pattern of ventilation but is not expected to affect
alveolar morphology, i.e, ADC. All subjects underwent spirometry immediately prior
to the helium MR scan on each of the two imaging days. The hyperpolarized helium
gas was administered with approval from the Food and Drug Administration (FDA)
as an Investigational New Drug (IND # 57,866), and this study was approved by our
local institutional review board (IRB) with written informed consent was obtained
from all subjects.

The helium-3 gas was polarized in a commercial helium polarizer (Model IGI9600
Helium Polarizer; Magnetic Imaging Technologies Inc., Durham, NC) by the
collisional spin-exchange method and polarizations of 30 to 40% were typically
achieved. Approximately 300 mL of polarized helium-3 gas was mixed with
approximately 700 mL of medical grade nitrogen and dispensed into a Tedlar bag
(Jensen Inert Products, Coral Springs, FL). The bag containing the helium dose was
then taken to the MR scanner room where the subject was already positioned supine
within the 1.5 T whole body MR scanner (Magnetom Sonata, Siemens Medical
Solutions, Malvern, PA) equipped with the multinuclear imaging option. A flexible
wrap coil (IGC Medical Advances, Milwaukee, WI) tuned to the helium-3 frequency
was used for imaging. Starting from maximum expiration, subjects inhaled the
hyperpolarized helium/nitrogen mixture from the bag through a short segment of
plastic tubing. During the subsequent breath hold, contiguous axial diffusion-
weighted images that covered the whole lung volume were acquired by using a
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FLASH-based pulse sequence (TR/TE, 11/6.7 ms; FA, 7°; matrix, 80 x 128; FOV, 37
x 42 cm, slice thickness, 20 mm). Diffusion sensitization was achieved by the
addition of a bipolar gradient-pulse pair in the slice-select direction. Images were
obtained corresponding to two b-values, 0, and 1.6 s/cm?, namely b, and b, . The
images collected at b=0 s/cm? depict regional ventilation. To minimize the effects of
signal attenuation from T1 decay and from radio-frequency pulses, the data
corresponding to both b-values were acquired for a given phase-encoding view before
the phase-encoding gradient strength was incremented to its next value. Assuming
mono-exponential signal loss due to diffusion, two diffusion-weighted images, each
corresponding to a different b value, are the minimum number required to calculate a
spatial map of the ADC values. Since the goal was to image subjects with COPD
whose breath hold capacity may be limited, we elected to use the minimum number of
b-values to minimize the breath hold duration. The length of the breath hold
depended on the number of images required to cover the entire lung volume but was
typically less than 15 sec.

ADC Difference Map Computation

As opposed to anatomical images, such as those obtained from CT, hyperpolarized
gas images of the lung tend to present substantial variation in the apparent anatomy at
different acquisition times, depending on different temporal functional characteristics,
such as ventilation and diffusion. In our case, this varying apparent anatomy may also
arise as the result of different areas of the lung being ventilated before and after drug
administration, and give place to local functional pattern differences, which may
erroneously drive the registration. Since our focus is albuterol effect on COPD, i.e.,
the ADC maps within emphysematous tissue, we want to disregard ventilation
changes at the airways level. To this end, our first step is to compute ventilated-only
versions of the measured images (and, as a consequence, of the corresponding ADC
maps), which will then be used during this study. This also ensures that the
registration of the pre and post-albuterol images is driven by ventilated voxels only,
thus preventing erroneous deformation into unventilated areas (likely to occur to
match anatomy). For the sake of simplicity, we will use pre and post for short for pre-
albuterol and post-albuterol administration, respectively.

For each subject, we first compute M,,,, and My,,,, the pre and post ventilation
binary masks, corresponding to by, and by, the pre and post b, (b = 0 s/cm?)
images, respectively. These masks, encoding ventilation pre and post-albuterol, are
obtained by thresholding b, and by,,, using Otsu’s algorithm (17) (given our
acquisition system, we assume SNR>2 for approximate Gaussian distribution). Then,
in order to obtain combined ventilation masks both in pre (Mcy,,.) and post (Mcy,,,)
reference spaces, we coregister by, into by,,., and apply the obtained transformation
to My, to obtain My,,; ;... In turn, we apply the inverse transformation to M,,,, to
obtain My,,, ;- Since this study deals with intra-patient comparisons, where the
acquisition was carefully performed to replicate same conditions, we assume the
combined ventilation masks, obtained through coregistration only, to be accurate
enough to closely match the actual ventilated regions. Finally, the combined vetilation
mask in the pre space, Mcy,, and its counterpart in the post space, Mcy,,,, are
obtained by:
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- *

Meyyre= My * Myposinpre (1)
= *

Mevpost = Mypre_inposs ™ Muypost (2)

where * stands for pixel-wise multiplication. Mcy,,, and Mcy,,, have a value of 1
wherever the lungs are always ventilated, and O otherwise. Next, the always ventilated
versions of by, and b,,,, namely by, and byy,,, respectively, are obtained by
masking:

b()Vprc = bom * MCVpr'e (3)

bovmm = bn,um * MCV/msl (4)

Similarly, we compute b4y, and b4y, (b = 1.6 s/em?). Coregistration is
implemented using a two-step multi-resolution paradigm, where a quaternion
transform, used to take care of translation, and rotation, is followed by an affine
transform, which “fine-tunes” for any possible (generally minor) shear and scaling.

Following, byy,,, and byy,,, are coregistered, using the same method described
above, and normalized through a (deformable) symmetric diffeomorphic (topography
preserving) algorithm (16). This last step is introduced to correct any deformation
caused by imaging setup/inflation. Since our objective is to align voxels
corresponding to the same anatomical location but possibly presenting different ADC
values (as a consequence of the albuterol administration), a metric suitable for multi-
modality registration is necessary. In our case, we use mutual information (MI) as the
similarity metric both for the non-deformable and deformable steps, already proven to
be very efficient in multi-modality registration, and very suitable for small
deformations (18, 19, 20, 21, 22). Finally, we warp byy,,, and its corresponding
b} 6ypos IO pre space, to match byy,,, and b, 4y,,,., respectively. Pre and post ADC maps
are then computed using the general equation:

ADC(x) = log ()

167 byg(x)

(5

where b,(x) is the signal intensity of the voxel in b, and b, 4(x) s the signal intensity
of the corresponding voxel in b, ,. We compute ADC using (1) for ventilated voxels
only (Figure 1); unventilated voxels are set to zero in the ADC map. Notice the
ventilation difference between pre and post-albuterol observed particularly in the
upper right and upper left lobe in the b, images. Another advantage of using the
combined ventilation masks is background noise removal, limiting the map to
meaningful ADC values only, and, as a consequence, to more robust statistics.
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Figure 1. Pre (left) and post (right) albuterol b0 images (top) and corresponding ventilated
ADC maps (bottom). ADC values are non-zero for ventilated voxels only. Ventilation
differences between pre and post-albuterol is mainly observed in the upper right and upper left
lobe in the b, images (top row).

Finally the ADC difference map, AADC, is computed as:

AADC = ADC,,, -ADC,,, 6)
where ADC,,, and ADC,,, are the values of ADC before and after albuterol

administration. All our algorithms are implemented in C++ using The Insight Toolkit
(ITK) libraries (18).

Validation

We compare global metrics commonly used in clinical assessment and tracking of
COPD to assess whether warping affects the (warped) ADC map. These metrics,
namely mean, rate of ADC above 0.35, 50% (median) and 90% percentile, are
computed for the warped and non-warped (original) ADC post albuterol maps for
each subject. As well, we establish basal acquisition variability, i.e., our control, by
comparison of intra-subject images taken on Dayl and Day2 (Dayl+1), without
albuterol administration (pre).

Results

Warping Effect on ADC values

We are interested in assessing whether warping b, and b,, images affects the
corresponding ADC map computation in the new reference space. Table 1 shows the
ADC, % voxels with ADC = 0.35, 50" (median) and, 90" percentiles for the post
albuterol administration images, at Day1, before and after warping, along with the
corresponding relative change (the last column). In general, it can be said that the
global measures for the warped ADC map are not significantly different from the ones
in the one computed in the acquisition (original) space. This is a desirable outcome if
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one wants to compare ADC maps in a voxel-wise fashion. Relative high variation,
though, is seen for the % voxels with ADC = 0.35 measures, corresponding to
subjects #1 and #3, with -53.19% and -66.62%, respectively. Despite these relative
large changes, the absolute change is actually small, and can be explained as a
consequence of interpolation limitations of the warped images; the negative change
trend can be explained as interpolation towards background, given the general lack of
signal in these images. Furthermore, the warped results still agree with the fact that
these are normal subjects (low ADC signal).

ADC 50" Percentile (median)
# unwarped  warped YA # unwarped warped Yo
1 0.2362 0.2347 0.63 1 02331 02327 0.17
2 0.3439 0.3367 2.08 2 03361 03332 0.88
3 0.2286 0.2286 0.03 302247 0.2267 091
4 0.4625 0.4595 20.66 4 04554 04571 0.36
5 0.3374 0.3347 079 5 02960  0.2942 0.61
6 0.5272 0.5307 0.66 6 05296  0.5338 0.80
% voxels with ADC = 0.35 90™ Percentile
# unwarped  warped %A # Unwarped warped %A
1 1.56 0.73 53.19 1 02863 02707 545
2 44.40 41.86 572 2 04763 04456 -6.45
3 1.65 0.55 -66.62 302870  0.2688 6.34
4 78.61 79.46 1.08 4 06470 0.6266 -3.16
5 34.10 34.13 0.08 5 05155 0.5004 -1.76
6 93.06 94.67 1.73 6 06700  0.6598 -1.51

Table 1. Unwarped, warped, and percentage change for ADC, % voxels with ADC = 0.35,
and 50" (median) and, 90™ percentiles. Day1, post-albuterol. The warping process shows little
effect on most of the metrics. ADC change seen is less than 0.8%, 0.92% for the median, and
1.77% for the 90™ percentile. Relatively elevated change is seen for % voxels with ADC = 0.35
for the normal subjects (53.19% for subject #1 and 66.62% for subject #3). Still, the
corresponding values for these subjects are very low, still being negligible after such a change.

Basal Variability

Table 2 shows the basal variability expected at two acquisition times, Day1 and Day2
= Day1+1, without albuterol administration. In general, no significant change is seen
from Day1 to Day2. This result suggests that basal variability is negligible.
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ﬁnay\
0.2334
0.3610
0.2144
0.4858
0.3115
0.5312

Rmyz
0.2286
0.3473
0.2141
0.4603
0.3489
0.5390

RMSE
0.0380
0.0713
0.0461
0.1072
0.0995
0.0746
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Table 2. Basal variability. Measurements taken at Dayl and Day?2. No albuterol administered
(pre images). RMSE show no significant change, suggesting negligible basal variability, and,
therefore, suitability for treatment assesment and tracking.

Albuterol Effect

Table 3 and Figure 2 show the albuterol effect on the ADC maps. Table 3 presents

similar values to those obtained for the basal variability, Table 2. This suggests, as it
was expected, that albuterol has no significant effect neither on the normal subjects

(#1 and #3) nor on the COPD patients. This result tends to confirm the hypothesis

that, in the short term, albuterol does not change the emphysematous tissue
characteristics with respect to the size of the voids created by the degeneration

process.

#
1
2
3
4
5
6

Table 3. Albuterol effect. Measurements taken at Day1, pre and post albuterol administration.
In general, RMSE show little change, suggesting that albuterol has no effect on subjects.

0.2334
0.3610
0.2144
0.4858
0.3115
0.5312

an
0.2362
0.3439
0.2286
0.4625
0.3374
0.5272

RMSE
0.0431
0.0709
0.0462
0.1001
0.0625
0.0798

Abuterol Ettect on CoPD

Supert sucz

e suets

Sueas

Figure 2. RMSE values for Albuterol administration effect are similar to those of the
baseline (control) for all the subjects (subject #5 even shows higher degree of change for
control than for albuterol administration). This suggests that there is no significant effect of

albuterol.
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Conclusions

We developed a method for voxel-wise comparison of hyperpolarized helium-3 ADC
maps obtained in the same patient at different times. This method includes in the
analysis only those regions of the lung that are ventilated at both time points (always
ventilated) since the ADC cannot be measured in non-ventilated regions of the lung.
This was achieved through the creation of combined ventilation masks in the pre and
post-albuterol spaces. To test this algorithm, we imaged normal volunteers and
patients with COPD before and after the administration of albuterol. As a
bronchodilator, albuterol would be expected to change the pattern of ventilation but
not the ADC values in ventilated regions of the lung. As expected, the patients with
COPD present elevated ADC values as compared to the normal subjects, even after
albuterol administration (while ventilation pattern changes were indeed observed in
the patients). We found that the registration method, non-deformable followed by
symmetric diffeomorphic algorithm with MI as the similarity metric, renders a good
normalization of the pre and post-albuterol (as well as Day 1/Day2) images despite
the ventilation changes while it does not significantly affect the global metrics. In
addition, basal variability at acquisitions one day apart (Day 1/Day 2) was computed,
providing the baseline for change detection. Finally, we found that there is little
change in the ADC values before and after albuterol administration; i.e., RMSE of
ADC difference maps support the hypothesis that no significant local change in ADC
values, hence no significant change in the state of the emphysematous tissue, occurs
as the result of albuterol administration.
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Abstract. Contrast enhanced (CE) CT images are commonly used for
pulmonary embolism (PE) detection and blood flow assessment. The
enhancement by the contrast medium introduces an intensity difference in the
regions with and without sufficient blood flow. By the difference, thrombus can
be visually recognized as a region with no enhancement in CE CT images. In
parenchyma region, the enhancement can also be observed in the regions with
normal blood flow. However, it is only subtle, causing difficulties in
differentiating the regions with low blood flow. In order to assist blood flow
evaluation in parenchyma region as well as in vessel, we have developed an
automated visualization system that generates color-coded subtraction images
between non-CE CT images and CE CT images via non-rigid registration. The
subtraction images produced by the system resemble to the image obtained
from blood flow scintigraphy SPECT scan, which shows clinical importance of
this system by its potential ability to enable blood flow assessment with only
CT images.

Keywords: Registration-2D/3D, Computer Assisted Diagnosis, Functional
Imaging, Quantitative Image Analysis

1 Introduction

Blood transports substances to support cellular activities through blood vessels. Any
blockages in a vessel lead to the lack of blood supply to the region covered by the
subsequent vessel subtrees, which may cause severe symptoms. Such obstructions
must be detected and treated in their early stage. Pulmonary embolism (PE) is a
typical disease that prevents blood flow. The number of PE patients are increasing
annually and the mortality rate is high [1]. For PE detection, contrast enhanced (CE)
CT images are commonly used in clinical practice. Intensity values in CE CT images
increase significantly compared with non-CE CT images in vessels with normal blood
flow. The enhancement makes noticeable difference between a vessel and a thrombus,
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which enables the thrombus to be visually recognized in the image. There are several
systems that support PE detection such as in [2]. These systems are potentially able to
detect subsegmental PEs those are difficult to identify by visual inspection. However,
the systems are not usable for regional blood flow assessment in parenchyma.

The radii of the pulmonary vessels decrease along bifurcations to the periphery. In
the capillary bed, blood flows from the pulmonary artery into vein. Though the
peripheral vessels are well under CT resolution, the function can be noticed by the
increase of CT value in CE CT images. Therefore, if there is any blockage in a vessel
and blood flow decreases, low or no enhancement in the parenchyma region covered
by the subsequent subtree is likely to be observed. It is clinically important to identify
the region with low blood flow both for understanding severity and treatment
planning. In parenchyma region, intensity increases by approximately 30-50 HU in
normal case, whereas 100 HU or more enhancements can be observed in vessel. Due
to the low contrast, it is relatively difficult to identify parenchyma region with low
blood flow if only CE CT images were available.

In order to evaluate blood flow in parenchyma region, blood flow scintigraphy
with SPECT image is useful. In blood flow scintigraphy, radioisotope (RI) is injected
as maker and the SPECT scanner visualizes its distribution. Since pulmonary vessels
spread in the entire lung, the distribution of the maker can be interpreted as the
distribution of blood flow. Though the SPECT image cannot visualize anatomical
structures by itself, CT-SPECT image fusion augments the missing information and
the fusion image can improve diagnosis based on SPECT images [3, 4]. However, it is
not well suited for evaluating local blood flow primarily due to the low spatial
resolution.

In order to assist blood flow assessment in parenchyma region as well as in vessel,
we have developed an automated visualization system that generates color-coded
subtraction images between non-CE CT images and CE CT images via non-rigid
registration. Advantages of this system are listed as follows;

a. The system can be used for the assessment of blood flow distribution in
parenchyma region as well as PE detection.

b.  The system uses only CT images that have high spatial resolution and ability to
depict anatomical structures.

c.  The system uses only CT images that are more commonly used than SPECT
images. In addition, the management of the contrast medium is easier than RI,
which may contribute to establish cost-effective blood flow evaluation method.

2  Method

The proposed system consists of three steps, preprocessing, registration and
subtraction. In the preprocessing step, pulmonary vessels and lung region are
extracted to form masks to be used in the following registration and subtraction steps.
Registration is performed with a free-form deformation model based on B-spline.
Subtraction images are generated using vessel segmentation result. The subtraction
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images are color-coded and overlaid onto original CT images. Details can be found in
the following subsections.

2.1  Preprocessing

Pulmonary vascular tree and lung segmentation are performed in this step. Vessels are
automatically extracted from both non-CE and CE CT images based on the method in
[5]. Segmentation process is as follows; Segmentation of the pulmonary vascular trees
is performed by applying a combination of an adaptive Gaussian filtering and a vessel
traversal. With cylindrical vessel model, the intensity values at the points inside the
model decrease after applying Gaussian smoothing. Using the model, a voxel is
marked as vessel point when the CT value at the voxel lowered after convolving
Gaussian function with an appropriate standard deviation. A set of Hessian matrices
and their eigenvalues / eigenvectors are calculated at the same time in order to
determine if the voxel is close to the vessel centerline. A set of points that are close to
the centerline is used as seed points for the following vessel traversal to construct
connected vascular trees and to eliminate noise elements. Starting from a seed point,
the traversal front position is updated by progressing toward a tangent direction
approximated by an eigenvector of the Hessian matrix at the point. This process
extracts pulmonary vascular trees without user interaction.

Lung region is extracted by a combination of global threshold and morphological
operations. After the lung segmentation, two volumes of interest (VOIs) that tightly
cover the left and the right lung are set to extract each lung. The volume of each VOI
is approximately 1/4 of the original volume.

2.2 Registration

The registration for this specific application can be described as an intra-subject,
mono-modality registration with non-rigid deformation and intensity alteration
between the images. Lung surface moves smoothly on pleura during the respiration
and that causes abrupt non-rigid deformation between two different CT scans in terms
of the relative spatial distance between the structures in body, namely ribs, and the
internal lung structures. The deformation often lowers registration accuracy in lung
periphery when using a smooth deformation model. Therefore, the lung mask is
applied to exclude structures outside the lung. The masked CT images that contain
only lung region are used as input for the registration.

The height of an adult human lung with full inspiration is about 25-30 cm and a
whole lung scan typically includes 300-350 slices with 1 mm slice thickness. Using
whole volume for registration requires massive computational cost. In many
applications, subsampled images are used to avoid the problem. Though registration
with subsampled images provides visually good results, higher registration accuracy
will improve the quality of the subtraction images. We therefore employed a multi-
resolution registration approach [6] using automatically extracted two VOIs that
include the left and the right lung separately. The first registration is performed using
subsampled non-CE and CE CT images by factor of 2. Then the secondary
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registration is applied independently to the left and the right lung with the original
resolution. This reduces memory consumption per process and the secondary
registration can be performed in parallel.

In the registration, a free-form deformation based on B-spline [7] is used as
deformation model and mutual information [8] is used as similarity measure. In each
resolution level, CT values are converted into 64 bins and the maximum of 50
iterations are allowed for the massive computational cost. We defined 64 bins by
dividing equally the difference between maximum and minimum CT values of the
lung region into 64 steps. The registration program was written using Insight
Segmentation and Registration Toolkit (ITK).

2.3  Subtraction

While the registration in the previous step yields highly accurate registration
results, the registered image will have some extent of misalignment. Simple
subtraction of the intensities between the corresponding points includes errors
introduced both by registration and interpolation. Smoothing is a way to possibly
reduce the direct effect of the errors. However, taking mean value of all neighboring
voxels without distinguishing vessel and parenchyma is likely to introduce additional
error since the extent of the enhancement is different between these two regions.
Therefore, the source values of the subtraction are calculated as mean of neighboring
vessel points or non-vessel points depending on the location. If a voxel is on a vessel
point, the mean intensity of all vessel points among the neighboring voxels is used for
subtraction. Similarly, if a voxel is on a non-vessel point, the mean intensity of all
non-vessel points among the neighboring voxels is calculated. When a point is on
vessel (non-vessel) point and no vessel (non-vessel) points were available in the
neighbor, the point is excluded from taking subtraction. The vessel segmentation
result for both non-CE CT image and CE CT image are available to distinguish the
non-vessel points and the vessel points. This process possibly relaxes registration
errors and contributes to provide smooth subtraction images. We empirically used a
cubic VOI of 7x7x7 voxels to define neighboring voxels.

3  Results

The proposed system was applied to 10 sets of non-CE and CE CT scans from 10
patients and the color-coded images were generated for each case. All scans were
acquired by a 40-slice multi-detector row CT scanner. Each image consisted of
512x512 pixels and the pixel dimension was about 0.6 mm? . Slice thickness was
Imm and approximately 300-350 slices were available per scan.

In the preprocessing step, it is visually confirmed that the vessel and lung
segmentation were successfully performed for all cases (10x20 = 20 scans), and the
separation into the left and the right lung were also performed without failure.

Followed by the preprocessing step, the multi-resolution registration was
performed. The registration takes approximately 15 minutes in each level with a PC
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that equips a Pentium 4 3.0 GHz and 2 GB RAM, resulting in 45 minutes for total
registration. After the registration, simple subtraction from the deformed CE CT
image to non-CE CT image was taken for evaluating registration results. Please note
that this simple subtraction was taken for evaluation purpose only and is different
from the way to produce final subtraction images as explained in Section 2.3. Since
the intensities are to increase in most of the locations in CE CT images, negative
values after the subtraction, especially at vessel point, imply misalignment. Therefore,
we counted the number of vessel points whose subtraction value is negative as a
measure to evaluate the registration.

Table 1 shows the ratio between the number of negative points and the total
number of vessel points. For comparison, two additional registration results are also
shown in the table. Method 1 used subsampled, nopreprocessed CT images as input
and up to 500 iterations were allowed. Method 2 used subsampled, lung masked CT
images and up to 500 iterations were allowed. Method 3 is the multi-resolution
registration used in our experiments. It took approximately 45 minutes per case for all
three methods. The figures in the table show that the multi-resolution approach
significantly reduced the number of negative points for all cases. The result indicates
better registration with the multi-resolution method.

Table 1 Percentage of the negative voxels in the vessel mask

‘ [Method 1 (%)[Method 2 (%)|Method 3 (%)]

case 1 41.1 21.7 11.6
case 2 27.8 15.3 9.3
case 3 18.9 12.0 6.5
case 4 203 10.6 5.4
case b 22.2 12.0 7.8
case 6 29.5 21.8 13.6
case 7 23.7 173 11.8
case 8 28.3 20.1 11.2
case 9 33.9 21.0 13.4
case 10 22.9 15.7 14.5

In order to visualize the voxels with negative subtraction value, volume rendering
images obtained from case 2 are shown as an example in Figure 1. In the Figure 1(a)
and (c), a low opacity value was assigned to the voxels whose subtraction value is in
the range from 100 to 250, which infer well aligned vessels. In (b) and (d), voxels
with negative value were overlaid on (a) and (c) with a brighter color. The figure
shows that the negative value were observed most around the lobular fissures and the
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diaphragm pointed by the white arrows, indicating that special care may be needed in
these regions to obtain more registration accuracy.

() (b) () (@)

Fig. 1 Volume rendered images of the simple subtraction images after the registration. (a) and
(c) visualize voxels whose subtraction values ranging from 100 to 250 in grey color, indicating
well aligned vessels.(b) and (d) visualize negative voxels after subtraction in a brighter color,
indicating potential misalignment.

Figure 2 shows two examples of the final output, color-coded subtraction images
and corresponding RI-SPECT images. The RI-SPECT images available for this study

had 64x64x64voxels in size and voxel dimension was 6.4 mm®. The RI-SPECT
image was manually registered and overlaid onto the corresponding CT image with a
colormap shown in each figure. Blue and red colors denote low and high blood flow,
respectively. In Figure 2, (a) and (c) are RI-SPECT images and (b) and (d) show the
subtraction images generated by the system. In Figure 2, (a) and (b) show a case
which shows a defect region of pulmonary blood flow in right lung (case 1). (c) and
(d) show a case which shows a defect region of pulmonary blood flow in right upper
lung (case 2).

In case 1, a defect region of pulmonary blood flow in the right lung was indicated
by a red arrow in RI-SEPCT image (a). The subtraction image shown in (b) also
rendered the similar region with the same color. However, the defect region of
pulmonary blood flow in subtraction image is smaller than that of RI-SPECT image.
In RI-SPECT image, the defect region of pulmonary blood flow is visualized by
obstruction of peripheral pulmonary arteries caused by Tc-99mMAA. However,
subtraction image suggests that pulmonary blood flow exists in the defect region of
RI-SPECT image. This indicates some pulmonary arteries are not obstructed
completely. In case 2, (c) shows pulmonary blood flow is extremely low in most of
the upper lobe of the right lung. However, the subtraction image in (d) suggests that
pulmonary blood flow exists in same region. Also this image indicates defect region
of pulmonary blood flow exists in left lung. This is not indicated by RI-SPECT image.
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Figure 3 shows two examples that illustrate an airway and a vessel appeared in
blue color. In (a), an occluded airway and a vessel run in parallel near a large
bronchogenic carcinoma pointed by a yellow arrow. They can be clearly distinguished
by the difference of the overlapped color. We can also evaluate activity of obstructive
pneumonia caused by bronchogenic carcinoma. In (b), a vessel with nearly no blood
flow was shown in blue. So, we can easily evaluate the existence or nonexistence of
blood flow.

The Figure 2 and 3 show that the subtraction images produced by the system can
support blood flow assessment in both parenchyma and vessels. The availability of
the high spatial resolution is an advantage over RI-SPECT image for evaluating local
blood flow.
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Fig. 2 Examples of the color-coded subtraction images that show low blood flow in
parenchyma region. (a) and (c) are RI-SPECT images manually registered on the corresponding
CT images. (b) and (d) are the subtraction images produced by our system.

¢

(a) (b)

Fig. 3 Examples of the color-coded subtraction images that depict an airway and a vessel with
no blood flow. (a) shows an occluded airway and (b) shows a vessel with nearly no
enhancement.

3 Concluison

In this paper, we presented an automated visualization system for spatial assessment
of pulmonary blood flow using non-CE and CE CT images. In the clinical practice,
blood flow in vessel is evaluated with CE CT images and RI-SPECT images are used
for blood flow assessment in parenchyma region. The proposed system can be used
for both purposes. In many hospitals in Japan, we can not obtain RI-SPECT images
easily, and costs of RI-SPECT study are high. However, our system uses only CT
images, which may reduce the overall diagnosis time and cost. Moreover, our system
may add more information about pulmonary blood flow to that of RI-SPECT study.
The future task includes the development of an algorithm to detect the low blood flow
region and PE from the images generated by our system.
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Abstract. Vessel segmentation within pulmonary images serves as a
basis for a variety of applications, including PE detection and visual-
ization, lung nodule detection, assistance in bronchoscopic navigation,
lobe segmentation, and surgical planning. Although applications have
different segmentation requirements, speed and accuracy is a clear ben-
efit. A new approach combining a single parameter vessel enhancement
filter and fuzzy connectedness is presented. The advantages of vessel
filtering are brought to bear with a minimal impact on time by limit-
ing the scales. Vesselness and intensity features are combined within a
fuzzy segmentation framework, reducing the number of required scales
and avoiding some of the drawbacks of each feature alone. Validation
was performed on five datasets and Dice Similarity Coefficients (DSC)
demonstrate an improvement of 9% (from 81% to 90%) on average for
small vessels without influencing the accuracy for large vessels (95%)
compared to an intensity-based method alone.

1 Introduction

Vascular tree segmentation in pulmonary computed tomography (CT) images
is a core component of a variety of applications. Both the computer-aided di-
agnosis (CAD) and visualization of pulmonary emboli (PE) require vessel seg-
mentation [1-3]. Although smaller vessels may have less direct clinical relevance,
segmentation of these vessels can provide important information for tree hier-
archy, lobar lung segmentation, and lung region assessment [4]. In PE CAD,
the segmentation is used to reduce false positives while in visualization the seg-
mentation is used as a basis for display. The same holds true for lung nodule
CAD [5]. Navigation through the airways can make use of the vessel segmenta-
tion as well [6]. Finally, scoring and determining bronchio-arterial ratios within
the airways also makes use of vessel segmentation [7].

Several challenges face vessel segmentation methods. Variations in attenua-
tion due to partial volumes effects and the presence of PE can limit the segmen-
tation extent. Nearby high density structures such as airway walls or connective
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tissue can be confused with vessels. Finally, arteries and veins in close proximity
can cause their segmentations to overlap [4, 8]. Although we do not address this
last issue, we believe that an improved segmentation is also advantageous for
artery-vein separation methods.

Intensity-based segmentation approaches using either threshold-based meth-
ods [4,9,10], front propagation techniques [8], or fuzzy techniques [11] have
proven to be very efficient. These methods use an intensity model that is directly
or indirectly utilized to detect and delineate vessels. However, due to variations
in intensity as explained above, these methods tend to leak into surrounding
non-vessel structures in some areas while missing smaller vessels.

Vessel enhancement filters, such as the Hessian-based filters [12,13] have
proven to be very capable in vessel segmentation. These methods compute eigen-
values of the Hessian matrix and combine them into a final value. These filters
need to be applied at multiple scales to capture vessels of varying diameters.
Approaches such as Zhou et al. [1] use up to 12 different scales. Speed quickly
becomes an issue when multiple scales are used. Additionally, bifurcations usu-
ally do not have high responses to line-filters resulting in disconnected pieces.

We propose to use vessel enhancement filtering (Section 2) in combination
with our intensity-based fuzzy approach [11]. Compared to other enhancement
techniques our filter response function has been analytically designed to combine
the eigenvalues of the Hessian matrix in such a way, that the output becomes
maximal for tubular structures with Gaussian intensity profile. In particular it
does not rely on any other parameter than the scale factor [14]. We demon-
strate that this combination (Section 3) allows for accurate vessel segmentation
with only a few filter scales, which would not be possible with vesselness filters
alone. In addition, the intensity information is capable of steering the fuzzy-
connectedness region growing process in areas such as bifurcations for which the
filter output is lacking. The result is a synergy of the benefits of the individual
methods compensating their individual drawbacks. The speed of intensity-based
methods is preserved with the specificity benefits of vessel filtering (Section 5).

2 Optimized Vessel Enhancement

Vessel enhancement filters are typically based on the eigenvalues of the Hessian
matrix H [12,13] and have already been successfully applied to pulmonary vessel
segmentation [1, 15]. In practice, the image signal is convolved with the six second
order derivatives of the Gaussian g and the eigenvalues of the resulting Hessian
matrix are combined into a filter output that enhances tubular-like structures.

Assuming that a vessel v(r)(r = (z,y, 2)) can be modeled locally by a cylinder
with a radial Gaussian intensity profile with, e.g., a, b being the intensity values
at the vessel center and boundary, respectively, which is orientated along the
z-axis for the following considerations,

¥+ 22
202

v(r) =b+ (a—b)exp— (1)



FIRST INTERNATIONAL WORKSHOP ON -235-
PULMONARY IMAGE PROCESSING

we compose the filter h(r) as a linear combination of second order derivatives
of the Gaussian with the standard deviation o} chosen to be the same as the
standard deviation of the vessel model o, such that its convolution with this
ideal vessel signal v(r) is maximized [14]

S=vxh= | v(r)h(—r)dr (2)

This can be solved analytically using the mathematical framework of La-
grange multipliers yielding

2

) =+ (300:0) = (1) = 9.2 ®

with ¢ = 1/5;—;/2 /Oy

In reality, the orientation of the vessel is not known, but the filter has to be
oriented along the vessel to obtain maximum response. This direction is equal
to the eigenvector corresponding to the eigenvalue with the smallest magnitude
of the Hessian matrix. Let the eigenvalues of H be A 23 with |A;| < [Xa] < |As3,
then the optimal filter output can be computed as:

2
Sopt =V *x hrot = g)\l — )\2 — )\3 (4)

Since vessel structures are brighter than the background we expect Az 3 < 0.
Unfortunately, very bright, plate-like structures for which the cross-sectional
profile is Gaussian only in one direction, i.e., the intensity decreases rapidly in
one direction but not in the orthogonal one, the filter output might still become
large because of either |\o| or || being large. Hence, we multiply the filter
output (4) by an isotropy factor

()

1 Ral=lxs)

{o if \a>0 or A\3 >0
K =
[X2]+[As]

else

As the pulmonary vascular structure consists of vessels with varying diam-
eters, multiscale results are therefore obtained combining the filter output at
different scales op,,. It can be shown that the filter output with an idealized

/2

vessel is proportional to ai , which needs to be accounted for

Sopt = max (H . 0;3/2 . Sopt(o'hi)> Y oi (6)

Results of the optimized vesselness filter, shown in Figure 1, allow for a clear
distinction between vessel- and non vessel-like structures. Fig. 1a shows the orig-
inal HU values while in Fig. 1b the lung regions have been replaced by the fil-
ter output. Additionally we have recently shown its applicability to liver vessel
enhancement in CT data [14]. Note that compared to other Hessian-based tech-
niques such as [12], our filter function requires only a single parameter (scale).
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LUT C/W: -600/#200

(a) Original (b) Filter output

Fig. 1. Contrasted CT dataset of the lung. (a) Original (lung window) and (b) vi-
sualization for which the lung areas have been replaced by the filter output using
op = [1,2,4] mm while the body regions are shown as original value (vessel window).

3 Combined Fuzzy Segmentation

For the sake of completeness we will first briefly review our general fuzzy segmen-
tation framework [11] before detailing the incorporation of the vesselness filter
output into the intensity-based system and discussing the different parameters.

3.1 Fuzzy Vessel Segmentation

Assuming a segmentation of the left and right lung [16] is already given, we first
detect multiple seed points throughout the whole lung. To this end we segment
the major vessels with a high specificity using an intensity-based method [4].
Hence we apply a lower threshold 7' = 150 HU and eliminate components smaller
than Vi, = 500 voxels in size. Next each resulting component is converted into
one or more seed-points by locating and clustering vessel points with locally max-
imal distance to the vessel surface utilizing a 3D distance transformation. The
cluster representatives s; are selected with preference to large distance values,
i.e., large radius estimates. Assigning to the so detected seed-points a proba-
bility measure of Pyegsel(s;) = 1, we calculate the probability measure for the
remaining voxels using the fuzzy connectedness algorithm [17].

The likelihood that two neighboring voxels ¢, d belong to the same class, here
to the vascular tree, is described by the local affinity . (c,d). Using, e.g., an
intensity-based probability function, the affinity can be defined as

R e DR R (GES (C I

pr(c,d) = {6 20

(7
1 else

with f(c) being the intensity value at position ¢ and p,? being the expected

intensity value and variance of the used Gaussian function. The “strength of

connectedness” pn of two distant voxels ¢, d along a certain path pc q is simply
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the smallest pairwise fuzzy affinity along this path. A path pcq from ¢ to d is a
sequence of m > 2 neighboring voxels <c(1) =c,c®, .. cm = d>7 ie.,

fix (Pe.a) = min [/Ln(c(l),c(z)), ---,uh-,(c(m*”.,c(’"))} (8)

The global connectivity pg(c,d) is then the largest of the strength of connect-
edness of all possible paths IPc 4 between c, d:

pr(c,d) = max [un(p;)] Vj 9)
pj€Pc.a

The probability measure that a voxel x belongs to a vessel is hence:

Pyessel(x) = max [pr (x,8;)] with Piegser(s;) =1 Vi (10)
Si

Note that even if Pyessel drops below 0.5 for a voxel, this voxel can still most
likely belong to the vascular tree. In fact, an appropriate threshold has to be
applied for binarization.

3.2 Feature Combination

Using an intensity-based function alone, one can observe that small vessels that
are significantly darker than large vessels are often missed while already leak-
ing into non-vessel structures. Hence it is reasonable to focus on small vessels
when applying the vessel enhancement filter while vessels of larger scale are seg-
mented well using an intensity-based function alone. Additionally to minimize
the computational complexity we prefer to use as few filter scales as possible. A
combination of ¢, = [1,2,4] mm have been experimentally determined to be a
good choice (see also Fig. 1). Having now the original and filter output values,
the local affinity becomes a multimodal function with p, ,, (c,d) being depen-
dent on the parameters (i ), 0%1,2) and f{m}(c) being the intensity value and
filter output at c, respectively. The scalar output of u, has been chosen to be the
maximum value of (1.2 T'he parameters fi(; 2} are the average intensity and
filter output values of the seed points s; while 0%112} have to be chosen (Sec. 5).
Consequently, the fuzzy connectedness region growing targets large vessels
via the intensity-based function and smaller vessels via the filter output. How-
ever, in areas where the filter output is locally low, such as it is the case for some
bifurcations, the intensity-based function will still prevent the growing process
to terminate early. That is, locally low filter responses will not cause additional
vessels to be missed while also having no impact on the false positive rate.

4 Validation

The validation of pulmonary vessel segmentation systems is especially difficult
because of the complexity and size of the vascular tree structure. Often such
methods are only qualitatively validated because of a missing ground truth



-238- FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

for clinical data. Additionally some authors estimate the accuracy of their ap-
proaches by counting the number of manually placed centerline points that are
included into the segmentation output [1], which however allows no quantifica-
tion of false positive regions. Wu et al. [9] compare their segmentation results of
clinical data with additive artificial noise to the result of the original data. Such
evaluation feature indicates the robustness of the segmentation method against
noise but does not quantify the segmentation accuracy itself.

We use a fast, semi-automatic method to create reference segmentation in
sub-volumes based on the random walker algorithm [18,19]. The user first de-
fines a 3D region of interest (ROI) and threshold-based fore- and background
seed points are added within this subvolume. These seeds are then used as initial-
ization for the random walker algorithm, a graph-based segmentation approach
that can be used for interactive segmentation purposes. To this end, each voxel
is represented by a node and neighboring voxels are connected by weighted edges
using a weighting function, such as

wij = oxp (=f - Ady; - [1(xi) = I(x;)]) (11)

Here I(x;) is the intensity value of voxel i, Ad,; the distance between voxel ¢ and
j and 8 a free parameter (here: 3 = 150). Next, the random walker algorithm is
consecutively applied along with user interaction until the segmentation output
is sufficiently accurate. Although strictly spoken one would have to validate the
semi-automatically created segmentation results itself, which is as already dis-
cussed difficult due to a missing ground truth, the characteristics of the described
method indicates that it is very well suited for validation purposes:

— The random walker algorithm allows the creation of any arbitrary segmenta-
tion given enough seed points, i.e., the user is not bounded by the system [18].

— Ounly a comparibly small number of seed points is required to produce a
segmentation that is almost identical to a manual segmentation [19].

— Variations of the exact position of the seed points results only in small differ-
ences in the final result, i.e., the method allows the creation of results with
a higher reproducability than manual methods [19].

Using the so created reference segmentations for quantitative validation and
parameter optimization we use sensitivity (TPTJF%)7 specificity (#ﬁ,ﬂp)7 and
the Dice similarity coefficient (DSC)

2.-TP
DSC_2-TP+FP+FN (12)
with TP, FP, and FN being the true positive, false positive, and false negative
voxel count as validation features. Note that each threshold for Pyegse1 Will result
in one set of features.

Although the semi-automatically created reference segmentations have a high
accuracy, they are still limited by the time the radiologist (or any other medical
expert) can spend on their creation. We avoid superficial differences between
the automatic segmentation and the ground truth from influencing the results
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Fig. 2. DSC for all datasets with varying parameters. The red curves show the per-
formance using the intensity-based method only. For larger vessels (a) the variation of
parameters does not have any significant influence on the accuracy within the optimal
band of thresholds highlighted by the gray bar. In (b) one can see that the inclusion of
the vesselness criteria shifts the DSC curve for small vessels towards higher thresholds.

by not counting voxels within a margin of one voxel along the outer vessel sur-
face as neither positive nor negative. This methodology also reduces a potential
validation bias since the interior segmentation should be more independent on
the semi-automatic method than the contour.

5 Results

The proposed method has been evaluated on five different randomly selected
contrast enhanced chest CT scans from clinical routine of patients referred for
PE. These data have been acquired using Siemens Sensation 16/64 scanners with
voxel sizes ranging from 0.55-0.7 mm in z,y and 0.6-0.7 mm in z-direction. For
quantitative validation 30 manually selected ROIs of size 50 voxel have been
semi-automatically segmented. For each patient, two ROIs have been randomly
placed in regions of large vessels and four in regions of small vessels within the
periphery of the lung. Although the intensity-based method alone provides in
general good results, the evaluation of large and small vessels individually (Fig. 2,
red curves) reveals that for thresholds of the probability measure Pyessel that are
very well suited for large vessels, the accuracy for small vessels is not optimal.
Adding the output of the vesselness filter to the fuzzy segmentation method
does especially increase the segmentation accuracy of smaller vessels for high and
medium thresholds without significantly affecting, as expected, the segmentation
output for large vessels, since we apply the filter for smaller scales only. The
comparison for different parameter settings of o1 and o9 are shown in Figure 2.
In fact, only the ratio between both parameters is of importance when combining
both affinity features, hence we keep o1 = 200 HU constant while varying o9 €
[2500, 3400]. One can observe that an increased value of oo will shift the DSC
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Fig. 3. Dice similarity coefficient and ROC curve for all datasets including large and
small vessels with varying parameters. (a) The red curve shows the DSC using the
intensity-based method only and the blue curve using a combination with o2 = 3000.
Note that the blue curve has its optimum in the middle of the preferred threshold
range. (b) ROC curves with (solid line) and without the one voxel security margin
(dashed line) used for evaluation. The circles represent the operating points of the left
and right boundary of the band of optimal thresholds, respectively.

curve for small vessels towards higher threshold. Unfortunately, the maximum
accuracy also decreases slightly with increasing oo. This is most likely caused by
introducing also some false positive regions by the vesselness feature, where the
filter output responses relatively high to non-vessel structures. Note, however,
that the optimal threshold for small vessels using the intensity feature alone
has practically no relevance since it would cause severe leakage in other regions.
Taking this into account a parameter of o = 3000 (blue curve) turns out to be a
good compromise as its DSC just turns to its maximal value at the left boundary
of the specified optimal range of thresholds. Using, e.g., a threshold for Pyegsel
of 0.4 that segments the vessels relevant for PE applications consistently well,
the DSC increases from 81% to 90% for small vessels while being 95% for large
vessels. Comparing the intensity-based function only with the combination using
o = 3000, the overall DSC curves are shown in Figure 3a. The overall sensitivity
and specificity within the band of optimal thresholds varies between 88.4—92.9%
and 99.8—99.4% with security margin and between 88.4—92.9% and 98.4—97.5%
without the security margin (Fig 3b).

Segmentation examples are shown in Figure 4 using a threshold for Pyegser of
0.4. The top row shows that the proposed method (right) is able to capture more
vessels than the purely intensity-based method (left). For the example shown in
the lower row even a reduction of the threshold for Pyegser to 0.2 for the intensity-
based method would only cause severe leakage into non-vessel structures but not
the inclusion of the missed vessel. The vessel segmentation without vesselness
filters typically requires 30 seconds. The addition of the filter responses adds
about 20 seconds (per scale) to this time on a common PC. However, more
efficient implementations involving the GPU reduce this time drastically [14].
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Fig. 4. Segmentation result using the proposed method (right) in comparison to the
intensity-based method (left) for two different patients (best viewed in color). One can
observe that the new segmentation extends further to the periphery than the purely
intensity-based one.

6 Summary and Conclusions

We have presented a vessel segmentation method combining a minimal param-
eter vesselness filter with fuzzy connectedness. The method combines the filter
output with an intensity model in our fully automatic fuzzy approach to pul-
monary vessel segmentation in contrast enhanced CT data. One can observe
that using intensity features alone the optimal thresholds band suited for large
vessels does not overlap with the band for small vessels. Hence such methods
tend to leak into surrounding non-vessel structures in close proximity to larger
vessels while missing smaller vessels. The results show that using the combi-
nation improves the DSC by 9% (from 81% to 90%) for small vessels without
influencing the accuracy for large vessels (95%) compared to the intensity-based
method alone. Additionally we were able to limit the number of required vessel-
ness filter scales to three, resulting in a computationally efficient method. The
result is a method with the benefits of the vesselness filter, i.e., accuracy, and the
intensity model, i.e., speed, without the drawback of each method individually.
In the future we plan to extend the validation to more datasets, especially also
to patients with other lung deseases.



-242- FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

References

1. Zhou, C., Chan, H.P., et al.: Automatic multiscale enhancement and segmentation
of pulmonary vessels in CT pulmonary angiography images for CAD applications.
Med. Phys. 34(12) (2007) 45674577

2. Kiraly, A.P., Novak, C.L., et al.: A comparison of 2D and 3D evaluation methods
for pulmonary embolism detection in CT images. In: SPIE MI. Vol. 6146. (2006)
132-140

3. Masutani, Y., MacMahon, H., Doi, K.: Computerized detection of pulmonary
embolism in spiral ct angiography based on volumetric image analysis. IEEE TMI
21(12) (2002) 1517-1523

4. Kiraly, A.P., Pichon, E., et al.: Analysis of arterial subtrees affected by pulmonary

emboli. In: SPIE MI. Vol. 5370. (2004) 1720-1729
. Agam, G., Armato III, S.G., Wu, C.: Vessel tree reconstruction in thoracic CT
scans with application to nodule detection. IEEE TMI 24(4) (2005) 486—499
6. Geiger, B., Kiraly, A.P., et al.: Virtual bronchoscopy of peripheral nodules using
arteries as surrogate pathways. In: SPIE MI. Vol. 5746. (2005) 352-360
7. Kiraly, A.P., Odry, B.L., et al.: Computer-aided diagnosis of the airways: Beyond
nodule detection. Journal of Thoracic Imaging 23(2) (2008) 105-113
8. Buelow, T., Wiemker, R., et al.: Automatic extraction of the pulmonary artery
tree from multi-slice CT data. In: SPIE MI. Vol. 5746. (2005) 730-740
9. Wu, C., Agam, G., et al.: Regulated morphology approach to fuzzy shape analysis
with application to blood vessel extraction in thoracic CT scans. In: SPIE MI.
Vol. 5370. (2004) 1262-1270
10. Masutani, Y., MacMahon, H., Doi, K.: Automated segmentation and visualization
of the pulmonary vascular tree in spiral CT angiography: An anatomy-oriented
approach based on three-dimensional image analysis. Journal of Computer Assisted
Tomography 25(4) (2001) 587-597
11. Kaftan, J.N., Kiraly, A.P., et al.: Fuzzy pulmonary vessel segmentation in contrast
enhanced CT data. In: SPIE MI. Vol. 6914, 69141Q. (2008)
12. Frangi, A.F., Niessen, W.J., et al.: Multiscale vessel enhancement filtering. Lecture
Notes in Computer Science 1496 (1998) 130-137
13. Sato, Y., Nakajima, S., et al.: Three-dimensional multi-scale line filter for segmen-
tation and visualization of curvilinear structures in medical images. Medical Image
Analysis 2(2) (1998) 143-168
14. Erdt, M., Raspe, M., Siihling, M.: Automatic hepatic vessel segmentation using
graphics hardware. In: 4th Int Workshop on Medical Imaging and Augmented
Reality (MIAR). (2008) to appear.
15. Shikata, H., Hoffman, E.A., Sonka, M.: Automated segmentation of pulmonary
vascular tree from 3D CT images. In: SPIE MI. Vol. 5369. (2004) 107-116
16. Hu, S., Hoffman, E.A., Reinhardt, J.M.: Automatic lung segmentation for accurate
quantitation of volumetric x-ray ct images. IEEE TMI 20(6) (2001) 490-498
17. Udupa, J.K., Samarasekera, S.: Fuzzy connectedness and object definition: theory,
algorithms, and applications in image segmentation. Graph. Models Image Process.
58(3) (1996) 246-261
18. Grady, L.: Random walks for image segmentation. IEEE Trans on PAMI 28(11)
(2006) 1768-1783
19. Grady, L., Schiwietz, T., et al.: Random walks for interactive organ segmentation
in two and three dimensions: Implementation and validation. In: Proc of MICCAI
LNCS 3750 (2005) 773-780

ut



FIRST INTERNATIONAL WORKSHOP ON -24.3-
PULMONARY IMAGE PROCESSING

Analysis of 4D CT cine images for the characterization
of organ motion due to breathing

Maria Francesca Spadeal’z, Marta PeroniZ, Marco Riboldi?, Guido Baroni’,
George TY Chen®, Gregory Sharp®

1 Department of Experimental and Clinical Medicine, University of Magna Graecia,
Catanzaro, Italy, 2 Bioengineering Department, Politecnico di Milano University, Milano, Italy,
3 Massachusetts General Hospital — Harvard Medical School, Boston, MA, USA

Abstract. A semi-automatic procedure to correlate the motion of lung tumor
points in 4D-CT images with a respiratory surrogate signal is presented. Data
analysis was performed to characterize of the robustness of external/internal
correlation properties in the clinical framework of gated radiotherapy
treatments. A cross-correlation based algorithm was implemented to perform
template matching for tracking the spatial movement of tumor’s points in 6
patients. A graphical interface was developed to allow users to navigate through
un-binned CT images. The detected internal movement of features in 3D was
then retrospectively synchronized with the RPM signal, and the correlation
index R* was computed. Results also include the range of motion of selected
points, and the prediction error. The developed procedure allowed a fast
analysis for external/internal correlation of lung anatomy. The study is
generally relevant for all the treatments in which organ motion compensation
and control is an issue.

Keywords: organ motion, 4D-CT, lung tumor, external/internal correlation.

1 Introduction

Organ motion due to breathing is an issue in different medical treatments such as
radiotherapy [1], [2] and robotic assisted surgery [3], [4], where the main goal is to
improve the accuracy of therapeutic procedures while being minimally invasive.
Problems occur at different levels: first of all, image artifacts on diagnostic images do
not provide consistent information for treatment planning; secondly, the know how
transfer from treatment plan to intra-operative environment can be not obvious if the
treated position and the expected position of an internal target differ.

For instance, in the radiation therapy framework, the actual delivered dose to the
patient might diverge from the planned dose because of anatomical changes during
the beam delivery in a treatment fraction (intra-fraction) or in between fractions
(inter-fraction), as compared to the time of treatment planning.
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Recently, conventional radiotherapy and surgery have moved in the direction of
Image Guided Radiotherapy (IGRT) [5] and Image Guided Surgery (IGS) [6], for
which on-line tools have been developed by many companies to follow the moving
organs during a treatment and from one fraction to the next one. Time-resolved
imaging techniques, such as 4-Dimensional Computer Tomography (4D-CT), are
increasingly emerging as optimal strategy to overcome motion artifacts and
limitations in diagnostic imaging and treatment planning/delivering (4D imaging, 4D
treatment planning, 4D dosimetry). In this imaging modality, multiple images are
acquired during the respiratory cycle and retrospectively sorted into volumetric image
sets corresponding to different breathing phases. A respiratory signal (usually the
motion of external surface) must also be acquired and synchronized with the image
formation process. Hence, 4D data can be analyzed to determine the mean tumor
position, tumor range of motion for treatment planning, the relation of tumor
trajectory to other organs and to extend the static treatment plan to the all phases of
the respiration cycle. However, a limitation of 4D CT is that it is affected by
variations in respiratory patterns during acquisition. A second issue arises in the
correlation between external fiducial movement and tumor/organ motion. The relation
of between the motion of internal and external anatomy need to be assed to exploit the
benefits of both IGRT and IGS techniques.

This work follows a previous pilot study [7], aiming at assessing the correlation
between the motion of external fiducials and internal features in lung tumors on the
basis of 4-Dimensional Computer Tomography (4D-CT) data. Previously, vessel
bifurcations were selected as inner targets to be correlated with RPM signal. In this
case, the motion of tumor points were tracked. Data analysis was conducted to extract
the Spearman correlation coefficient, the range of motion of the tumor, the prediction
error in tracking the internal motion from the external fiducial monitoring.

2 Material and Methods

The 4DT-CT data of a group of 6 lung patients (pt) were used in this study.
Images were acquired through a 4-slice scanner (LightSpeed QX/i, GE Medical
Systems, Milwaukee, WI) operating in axial cine-mode. Patients’ breathing signal
was provided by the Real-Time Position Management system (RPM, Varian®
Medical System, Palo Alto CA), in which a single surface surrogate (infra-red marker
block) is tracked in real-time with a video camera positioned at the foot of the CT
couch [8]. The RPM block was placed abdominal surface of the patient. According to
protocol in use at our Institute, described in detail in Rietzel et al [8], a pre-
determined number N of 4-slice chunks (Ch; with i=1...N) was acquired at each
couch position (CP). Images were reconstructed from 360° projections, which require
either 0.8 or 1.0 seconds to acquire (T;). For analysis purposes, we assume the
acquisition occurs instantaneously at the mid-scan time, half way through the full
rotation. The CP time duration (cine duration, T.,) was set on the basis of the
observed subject’s breathing period plus the time required for a tube rotation.
Therefore, the number N varied among patients as a function of the T, T; and of the
midscan time delay (AMidscan time) between 2 contiguous images in a CP, according
to the following equation :
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AMidscan

The acquisition of projections at each CP starts independently of the current
respiratory state and therefore no correspondence exists between Ch; at different
couch positions. At each couch position, the coverage in superior-inferior (SI)
direction was 1 cm (2.5 mm thickness per 4 slices). The resolution both in latero-
lateral (LL) and anterior-posterior (AP) directions ranged from 0.76 mm to 0.98 mm.

2.2 Images processing: automatic feature matching algorithm

The time stamp of each image (midscan time) was time synchronized with the
respiratory signal acquired by RPM system. Un-binned images were processed and
sorted on the basis of acquisition time, and matched with the RPM. Anatomical
landmarks in the lungs were selected in 4D-CT cine-data, and correlated with the
respiratory signal.
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Fig. 1. View of the graphical user interface of the application. Upper left quarter,
navigation panel and image for point selection. In the bottom left quarter, RPM trace
with indication of the instant of time of the selected point keeps track of the position
of the automatic searched point while navigating in the volume. Upper right quarter,
navigation panel and image for verification of the semi-automatic procedure. In the
bottom right quarter, 3D trajectory of the tracked point is updated in real-time
according to navigation throughout the volume and user manual corrections.

A semi-automatic procedure for inner feature tracking in 4D-CT was developed in
Matlab environment (MatLab® version 7.0, the MathWorks, Natick, MA). The user
first chooses a point on a selected image (reference image) and then decides which
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slices to include in the tracking process. A graphical interface assists the user in
navigation within the 4D-CT volume data (see Fig. 1).

Through a virtual navigation keyboard one can select the CP, the Ch;, and the
slice within the couch position (sl; with i=1...4, indicated above the panel). The
selected point is marked with a green dot on the image, and its corresponding external
position within the RPM respiratory trace is shown below, thus helping the user in
choosing the couch positions to be included in the feature searching. This is shown on
the left of Fig. 1, where a point is selected on the third slice of a 4-slice set acquired at
the maximum inhale condition, and the green dot in the RPM plot below shows the
external amplitude. The recommended automatic search region would therefore
consist of the two previous couch positions plus the current one, since it is expected
that the diaphragm will move superiorly. Feature tracking was based on a 2-D
template matching image process. The template was defined as a matrix of 62x62
pixels centered in the point selected on the reference slice. The cross-correlation
matrix between the template and the searching window (92x92 pixels) was computed
for each slice encompassed in the selected volume. The pixel location (in terms of
row and column indexes of the image searching window) in each processed image
corresponding to the maximum value of the correlation coefficient (score) was
selected as result of the template matching. Hence, a correlation score (ranging from 0
to 1) was obtained for each slice at every respiratory phase in correspondence of the
three couch positions. A second image (on the right in figure 2) is produced for the
verification of the semi-automatic procedure, which is again assisted by interactive
navigation. For each chunk the slice with maximum score (among the 4 ones) is
presented. The user may accept the result, change the location of the feature position
along the LL and AP directions and/or within the 4 slices or delete the selected feature
if it is not present. The 3D trajectory of the point is showed below the verification CT
slice. To increase the resolution along the superior-inferior (SI) direction, a 2"-order
spline, interpolating the best score values in the 4 slices of each phase, was computed.
An example of the interpolation procedure is showed in Fig. 2. Feature SI-location
was selected according to the maximum of the interpolant function.
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Fig. 2. Example of spline interpolation between slices. In this case scores were
0.864, 0.829, 0.675, 0.650 for slice 1, 2, 3, 4 respectively. Maximum value of the
interpolant was found between slices 1 and 2
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2.3 Data analysis

For each patient 3 points (each one in a different couch positions, from head to
feet) on the edge of the cancer mass were tracked. The detected internal movement of
tumor’s points was correlated with the RPM signal and analyzed for linear
correlation. A dedicated section in the algorithm was implemented to analyze data in
terms of the motion amplitude and the correlation index R2 of the linear fitting over
the entire patient population. In order to measure the prediction error of the internal
motion based on the external signal, a cross validation leave-one-out was
implemented. This analysis was enriched by a 3-dimentional linear fitting to
understand if a 2 parameter model based on external motion amplitude and its
gradient can better fit the internal movement (see Fig. 3).

The results were supported by non parametric statistical analysis computed by
means of the software Statistica 6.0 (StatSoft Inc, Tulsa OK, USA).

Amplitude
-40 =
E * }“’ E -40
= &0 i 5
T * /g‘( £ B0
= e g
@ .- "1 =]
& B0~ 4 £ 80
E - & 5
i3] * 2
705 1 0 1 RPMvelocity 5 -2 RPM amplitude
[mm{Sec [mm]

RPM amplitude [mm)

Fig. 3. Example of the line and plane fitting to extract internal external correlation.

4 Results

In Figure 4, the correlation index R? between the external and the internal motion
in each direction is shown (p-value<0.01). Maximum values of R? (95% of
confidence interval) are in SI direction, being the mediantquartile 0.93+0.09 .
Internal motion along LL and AP direction featured low correlation with the
movement of the external point (0.51+0.52 and 0.66+0.32 in LL and AP respectively).
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Fig. 4. Mediantquartile and min-max range of R2 in each direction.

Statistical difference between R2-SI and R2-LL/AP was proved through Kruskall-
Wallis test. In table 1, the range of motion averaged on the set of three selected points
for each subject is presented. Patient 3 exhibited largest tumor motion in AP and SI
directions, being up to 8 mm and 17 mm respectively. LL direction was most stable

except for Patient 2 (up to 6 mm about).

Table 1. Estimated range of motion of the tumor obtained through the analysis of
the movement of 3 points. Mean (standard deviation) values over three points are

reported.
Patient # LL (mm) AP (mm) SI (mm)
P1 1.94 (0.22) 2.21(0.98) 6,08 (1.33)
P2 5.45 (0.85) 2.16 (1.12) 8,17 (2.37)
P3 2.67 (0.79) 7.16 (0.69) 16,28 (0.62)
P4 1.16 (0.58) 0.71 (0.38) 8,31 (1.40)
P5 0.26 (0.23) 3.32(0.52) 6,05 (1.18)
P6 0.91 (0.49) 3.26(1.13) 6,54 (1.73)

In a effort to understand repeatability of tumor motion over different breathing
cycles, we compared the trajectory of the three points of the tumor. Patient 3 is
reported in Fig. 5 as an example: in this case, the three points were tracked on couch
position number 15, 16 an 18.



FIRST INTERNATIONAL WORKSHOP ON -249-
PULMONARY IMAGE PROCESSING

2
T
L5 W e
E
E \ 6
¥
e |
S osf 4 Jr T
£ \ | £ R
a v g 5 24 .
= ! o - i
g o i i o 757 o
'y b g 2] B .-‘.':‘5&4_1————‘_____ o
05 V! I o —
¥ g | - L
e 1
b -4 2 B |
&y ) ) “ 2 P!
oo 195 200 208 210 25 20 228 AP ()
Time [sec] LL [imau]

Fig. 5. Trajectory of three points selected at the beginning (*), middle (O) and
towards the end (4 ) of the lesion of Patient 3.

Points 1 and point 2 were visible only in few phases for the selected respiration
cycle, as is observable in the left panel of the figure. Extensions over contiguous CP
were not considered in this analisys Qualitative examination demonstrates a quite
good repeatability of the trajectory of points belonging to the same anatomical
structure in different breathings, especially in the SI direction.

Considering the prediction error, the RPM amplitude-based (2D) prediction was
compared to the RPM amplitude and velocity-based prediction (3D) and results are
reported in table 2. Wilcoxon matched pair test revealed no statistical difference
between the two methods. Maximum values were found in SI direction of Patient 3
(about 2 mm).

Table 2. RPM amplitude-based (2D) prediction and RPM amplitude and
velocity-based prediction (3D)

Prediction Error 2D Prediction Error 3D
LL(mm) AP(mm) SI(mm) LL(mm) AP (mm) SI(mm)
25% 0,26 0,30 0,50 0,25 0,29 0,43
Median 0,34 0,48 0,74 0,31 0,43 0,60
75% 0,37 0,73 1,14 0,34 0,69 1,03

We put forward the hypothesis that there is a relation between the size of the
prediction error and the size of the range of motion. This is supported by results
displayed in Fig. 6 (2D prediction error vs. range of motion). Although a good linear
relation cannot be demonstrated, the increasing trend of prediction error as a function
range of motion is evident (p value<0.001).
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Fig. 6. Analysis of the relation between range of motion and prediction error.

Discussion and Conclusion

In this work, we present a semi-automatic and fast method for characterizing the
correlation between the external surface movement and internal tumor motion using
the same data and images that are routinely acquired for 4D-CT. Most of literature
about this topic in the radiotherapy field is based on data acquired by using
fluoroscopic imaging [9], [10], [11]. Although these studies sufficiently describe the
tumor motion and the quality of external/internal correlation, they are not based on a
protocol widely spread into the clinical practice. Furthermore, the monitoring of
internal movements by using fluoroscopic images requires the implantation of seeds,
which represents a serious hazard for lung patients. Instead, 4D-CT based planning
and treatment procedures are currently well-accepted, and RPM is the most
widespread device used as surrogate of the breathing signal. For this reason it is
crucial to understand the sensitivity of this instrument, and to evaluate how well it can
estimate internal organ motion. The advantages of using cine-mode protocol,
especially for investigations purposes, are widely described [8]. Because this analysis
is based on the synchronization of cine mode images with the respiratory signal, no
inaccuracies in phase detection and binning were introduced.

Our results revealed a good correlation between the internal SI motion and the
external respiratory surrogate. Low correlation in the other directions is probably due
to small range of motion in LL and AP. The size of range of motion also influence the
size of the prediction error as shown in Fig. 6. However, the maximum value was
about 2 mm that might be considered acceptable as extreme limit for gated
radiotherapy.

In conclusion, we have developed a automatic procedure and analysis tools for
studying the correlation between the internal and external motion in lung tumors,
using data already routinely acquired for 4D-CT. This tool will aid in predicting
internal motion through external surrogates. Further research is needed to improve the
accuracy and spatial coherence of internal anatomy in 4D CT data acquisition
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Abstract. Accurate segmentation of a pulmonary nodule is an impor-
tant and active area of research in medical image processing. Although
many algorithms have been reported in literature for this problem, those
that are applicable to various density types have not been available until
recently. In this paper, we propose a new algorithm that is applicable
to solid, non-solid and part-solid types and solitary, vascularized, and
juxtapleural types. The algorithm works on the distance map computed
from a foreground image. It first locates the core of a nodule in a manner
that is robust against the presence of attached structures such as pleura
and vessels, and then detaches the nodule from the attached structures
by a variant of region growing and region partition.

The performance of the technique is evaluated using 23 data sets with
manual segmentation and 1521 data sets with manual diameter mea-
surements. The experiments show that the algorithm is highly reliable
in segmenting convex nodules of various types.

1 Introduction

Pulmonary nodules are potential manifestations of lung cancer, and their de-
tection and inspection are essential for screening and diagnosis of the disease.
The growth of a nodule is considered the most important cue for assessing its
malignancy.

Various segmentation methods targeted for pulmonary nodules have been
developed, and some have been deployed in commercial applications. Many tech-
nical issues still remain, including accuracy and handling of non-solid and part-
solid nodules. Most of existing segmentation algorithms are targeted toward
nodules composed only with solid components, although studies have shown
that nodules of non-solid and part-solid types are frequent and have higher risks
of being malignant than solid ones [1]. More recent segmentation methods re-
ported in literature claim to handle these types of nodules[2—-4]. However, we
believe that the field is relatively new and requires further investigation.

The goal of our work is to develop a semi-automated nodule segmentation
algorithm that is applicable to not only the solid type but also the non-solid



-254- FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

and part-solid types. Figure 1 shows examples of pulmonary nodules of different
density types. As exemplified in the figure, the appearance varies among different
nodule types. In particular, non-solid nodules are extremely subtle with fuzzy
boundaries, and part-solid nodules exhibit highly irregular intensity variations
and boundary shapes. Thus, handling them under a single framework presents
a great challenge to the segmentation problem. The inputs to the algorithm are
a thin-slice thoracic CT volume and a click point. The output is a segmentation
map of a nodule found in the vicinity of the click point. One assumption we make
is that the nodule is convex. Thus, we are interested in segmenting a convex part
of the nodule.

(a) (b)

Fig. 1. Examples of pulmonary nodules of various densities. (a)-(b): Solid nodules,
(c)-(d): Non-solid nodules, (e)-(f): Part-solid nodules.

The important feature of our algorithm is twofold. First, it locates the core
of a nodule using a new approach that is highly robust against the presence of
attached structures such as pleura and vessels and is invariant to the size of
the nodule. The problem of segmenting a juxtapleural nodule lies in detecting
a boundary between the nodule and the lung wall. We take the problem in two
steps: locating the core of the nodule and growing a region from the core. Insen-
sitivity to attached structures is a key in achieving the first step. Many previous
techniques search both location and size of a nodule either in iterative manners
or in scale-space representations [5,6]. The size-invariance property of our ap-
proach makes it unnecessary to estimate the size of the nodule, thus renders the
localization process computationally more efficient. Second, it employs a two-
step region growing process as described in Sections 2.3 and 2.4, where the first
step over-segments the nodule and the second step refines the segmentation via
a competition process. The approach extracts a convex nodule from attached
structures such as lung walls and vessels.

Throughout the paper, the following notations are used. A lower bold letter
(x) is used for a vector, an upper bold letter (X) is used for a 3D volume, and a
non-bold letter () is used for a scalar. Without ambiguity, we also use an upper
bold letter associated with a binary volume (eg. segmentation) to indicate those
voxels whose binary values are non-zero. For example, we use L to denote a set
of voxels that are foreground. Furthermore, we use —L to denote those voxels
whose binary values are zero in L.
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2 Algorithm

2.1 Overview of the algorithm

The segmentation algorithm consists of six stages: pre-processing, figure-ground
separation, localization of a nodule core, region growing, region partition, and
post-processing. The first two stages are briefly discussed in this section. The
other four are discussed, respectively, in the following sub-sections.

At the pre-processing module, a sub-volume that is large enough to contain
a nodule of interest is extracted. The sub-volume is then resampled at a fixed
interval to produce an isotropic sub-volume, called a region of interest (ROI).
We denote a set of voxels in ROI as (2. The figure-ground separation applies
a bi-class segmentation algorithm previously developed by the authors to the
ROI3. The result of the operator is a binary map denoted as L : 2 — {0,1},
where 0 and 1 voxels indicate backgrounds and foregrounds, respectively.

Figure 2 shows results of the figure-ground separation process applied to 23
data sets provided by the NIH Lung Imaging Database Consortium (LIDC)[7].
For each data, five images are shown. The left image is a representative axial
slice of the nodule in the original CT data. The second image from the left is
the result of the figure-ground separation. The other three images are results of
seed point localization and segmentation processes, which are discussed in detail
below. A bold number accompanying each set of images is a unique number for
identifying the data, and two non-bold numbers indicate the accuracy of the
segmentation. We will describe the accuracy measures in Section 3. Note that
the images are shown at the resolution of the original CT data. Thus, all results
shown are interpolated back to the resolution of the original CT data.

2.2 Localization of Nodule Center

After the figure-ground separation, our next task is to locate a core of a nodule
inside the ROI. We first apply Euclidean distance transform to L to compute for
each location in L the shortest Euclidean distance to the background. Call the
resulting distance map D. Our motivation for working on D is twofold. First,
D is free from signal noise present in the original intensity volume. Thus, no
noise removal and signal restoration processes are needed in the subsequent pro-
cesses. Furthermore, it renders the rest of the algorithm insensitive to intensity
variations of images. This is important as solid, non-solid and part-solid nodules
present significantly different intensity distributions. Second, D compactly en-
codes information regarding the shape of the foreground. For example, D tells
how close each voxel is to the background. It provides, by means of the gradient
vector computed on D, a rough direction to the background.

A limitation of D is that it is extremely sensitive to a small hole present in
the foreground and partially sensitive to an attached structure. The foreground
extraction procedure described above effectively removes small holes in L. We
will discuss how to handle the attachment next.

3 For double blind review, details of our previous work are intentionally omitted.
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Fig. 2. Segmentation results on LIDC data set. For each data set, five images are shown.
They are from left to right: original slice, figure-ground separation map, sphericity
map, segmentation result, and comparison with manual segmentation. In the rightmost
image, a dark gray color shows the area selected by at least one segmentation, a light
gray color shows the area selected by 90% of the methods, and a white line shows the
boundary of our segmentation result. If no light gray area is shown, the slice did not
contain an area agreed by 90% of the methods. Three numbers on the side of each
image set are a unique identification number, under-segmentation fraction percentage,
and over-segmentation fraction percentage.
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When the nodule is modeled as a sphere and more than a half of the nodule
is buried in the lung wall, the local maximum of D no longer resides inside the
nodule. To mitigate the problem, we propose another transformation built on
top of D as defined below.

S(x) = /y g (DB~ DO iy (1)

where N(x) is a ball of radius § centered at x and x(z) = 1if x > 0 and 0
otherwise. We call S sphericity.
It is convenient to introduce the following definition of C(d):

C(d) = {x € 2ID(x) < d}. 2)

We call C(d) the level core of D at d. The next lemmas indicate that S can
replace D while providing more robust protection against a pleural attachment.

Lemma 1. For a convez foreground, D has a single local mazimum component,
and for every d, C(d) is convex.

Lemma 2. For a convex foreground, S has a single local mazimum component,
whose position is identical to the local mazimum of D. Furthermore, with a
sufficiently small 6, x is a local mazimum of S if x is a local maximum of D.

Lemma 3. For a spherical nodule, its center remains a local maximum of S
under any degree of partial occlusion by a half plane.

The first lemma justifies our approach in segmenting a nodule by delineating
every level set around the local maximum. The second lemma indicates that
S can be used instead of D to locate the core of a nodule. The third lemma
suggests that the local maximum of S is more stable against partial occlusion
by the half plane than that of D.

Figure 3 compares D and S of a sphere under various degrees of occlusion
by a half plane. The radius of the sphere is 100 voxel unit. The top row shows
instances of D and the bottom row shows instances of S. For computational
simplicity, N(x) is set as a 3x3x3 cube instead of a sphere. From left to right,
columns (a-e) show a solid plane penetrating the sphere at (a) 30 voxels above,
(b) 0 voxel above, (c) 30 voxels below, (d) 60 voxels below, and (e) 90 voxels
below the sphere center, respectively. When the plane penetrates at below the
center, the local maximum of D shifts to inside the wall while the local maximum
of S retains its position regardless of the degree of partial occlusion. Although
Lemma 3 is limited to a sphere, robustness of S in detecting the nodule center
has been observed for other more general shapes.

Note that the sphericity value at the nodule center is 1 regardless of the size
of the nodule when N(x) is completely contained inside the nodule. With our
setting of 3x3x3 voxels for N(x), this implies that the sphericity value is invariant
to the nodule size no smaller than 3x3x3 voxels.
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To locate a nodule center, we compute S and locate a local maximum of S in a
neighborhood of the click point. In our experiment, a 7x7x7 sub-volume centered
at the click point constitutes the neighborhood. Figure 2 shows sphericity maps
and seed points resulted from applying the above procedure to 23 LIDC data
sets. The middle image in each set of five images is the axial slice of S at the
detected seed point. The seed point is shown by a black cross.

() (b) ©) (d (e)

Fig. 3. Distance (top) and sphericity (bottom) maps at various degrees of occlusion.

2.3 Region Growing

Once we locate the core of a nodule, the next task is to extract the nodule from
the foreground. We apply region growing on D starting from the seed point
detected in Section 2.2 and incrementally include each level set to the growing
region. The approach can be implemented in the following algorithm. Note that
R denotes a resulting segmentation map, which is initialized to constant zero.

Input: D: Distance map, s: seed point
Output: R: Segmentation map
d <D(s);
while d > 0 do

foreach z that is adjacent to the current region in R do

if D(z)=d then
R(z)<1;
decrement d to the next possible distance value
Algorithm 1: Region-growing algorithm

The approach is mainly justified by Lemma 1; For a convex isolated nodule,
there is a single local maximum component, from which each level set can be
included into the region incrementally. For a non-isolated nodule, the foreground
may not be convex. As exemplified by Lemma 3, the nodule center can be lo-
cated by the local maximum of S, and we can extract the core of the nodule by
Algorithm 1. However, at some point of d, C(d) becomes non-convex. Includ-
ing the entire C(d) into the region results in significant over-segmentation. By
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approaching the inclusion of each level set in a region growing manner (that is
to include only a single layer around the current region into the region), we can
limit the over-segmentation.

Figures 4(a) and (d) show results of Algorithm 1 applied to two artificial data
which illustrate juxtapleural and vascularized cases. In both cases, the nodule is
a sphere, and the foreground is non-convex due to the attached structure. The
black, gray, and white regions are —L, L and =R, and R, respectively. Although
the algorithm successfully segmented the entire nodule, it also included a portion
of the attached structure near the nodule. We leave it to the next step to remove
the oversegmented portion.

(a) (b) (© (d (e) ®

Fig. 4. Segmentation of simple artificial data.

2.4 Region Partition

The objective of this stage is to remove over-segmented parts of the region-
growing segmentation. We treat the problem as follows. The segmentation of
Algorithm 1 consists of multiple convex regions, among which the one including
the seed point is the nodule of interest. Thus, the objective is to isolate the
nodule from other convex regions. We take the same strategy as in Algorithm 1,
as each convex part has a local maximum of D and a convex core around it. We
need to compute a new D using R, which we denote as D. Since R is already
isolated from a pleural wall, it is not necessary to carry out computation of S
and find its local maxima; D and its local maxima are sufficient.

Local maxima in D are treated as a new set of seed points, which are either
positive or negative. The positive seed points are in the vicinity to the original
seed point and contribute toward delineating the nodule part. The negative seed
points are those that are not positive, and contribute toward delineating non-
nodule components. We use the following steps to select positive seed points.
First, the location of the original seed point is moved to the local maximum of
D by tracing the gradient of D. Call this relocated seed point s. Then, those
local maxima of D that are within D(8) away from § are classified positive.

Once we collected both positive and negative seed points, we perform a region
growing on D from each seed point in down-hill directions. A region grown from
a positive seed point is marked as nodule, while a region grown from a negative
seed point is marked non-nodule. The process continues until no further growth
is possible. Algorithm 2 summarizes the process. P denotes the result, which is
initialized to constant zero.
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Input: D: distance map, s positive seed points, s™: nagative seed points
Output: P:Partition map
P(st)=1; P(s7)=-1;
repeat
foreach z in {2|P(2) = 0} do
if @ has a positive neighbor y & D(x) < D(y) then

P(x)=1; B B
if @ has a negative neighbor y & D(z) < D(y) then
P(x)=-1;

until No change to P
Set all negative voxels in P to 0;
Algorithm 2: Region-partition algorithm

Results of Algorithm 2 applied to the artificial data of Figure 4(a) and (d)
are shown in Figure 4(b) and (e), in which black, gray, and white regions are
—-R, R and —P, and P, respectively. In both examples, most of the nodule is
included in P while non-nodule components are successfully eliminated.

2.5 Post-processing

Segmentation after Algorithm 2 is not necessarily convex. At this final stage, P
is first made convex by convex hull of P, and then taken intersection with L.
Figure 4(c) and (f) show results of this stage applied to the artificial data of
Figure 4(a) and (d). We call the segmentation after this stage F.

3 Experiments

3.1 LIDC Segmentation

First, we apply the segmentation algorithm to the LIDC data set. The study
came from two cancer cases with collected segmentation done by six radiologists
using three methods: one fully manual and two with automated programs. Thus,
it collected a total of 18 segmentation maps. A sub-volume of 81x81xL voxels is
extracted around the nodule where L is the number of slices in the data set. A
click point is set at the center of the sub-volume. We also derive two different
segmentation maps from the manual segmentation. One is a set of voxels included
in at least one out of 18 methods. The other is a set of voxels included in 90%
of the methods. The former is denoted as G; and the latter Go.

Figure 2 shows the result of our segmentation for each LIDC nodule. As
stated in Section 2.1, each nodule corresponds to a set of horizontally aligned
five images where the first is a representative axial slice of the original sub-
volume, the second shows L at the slice, the third shows S and s. The fourth
image shows F super-imposed on top of the original sub-volume. The fifth is
made by first painting G in dark gray, then painting Go in light gray, and fi-
nally painting the boundary of F in white. Shown to the left of the image set are
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three numbers, which are, from top to the bottom, the unique data identifica-
tion number (in bold), under-segmentation fraction (py) and over-segmentation
fraction (po). The under/over segmentation fraction percentages are defined as
py = 100|-F N G3||G2|~! and po = 100|F N =G1||G1|~!, respectively, where
| - | is the cardinality of the set.

3.2 Automated Diameter Measurement

We apply our segmentation algorithm to a larger set of CT data. Since it is
difficult to obtain a reliable segmentation on a large set of data, we use the
diameter of a nodule to test the accuracy of our segmentation. The test data
consist of 1521 nodules from 253 cases, where 1237 are solid, 206 are non-solid,
and 77 are part-solid. Each sub-volume after isotropic resampling is 41x41x41
voxels. The ELCAP protocol ([8]) is used to measure the nodule diameter both
manually and automatically from the segmentation obtained by our algorithm.

Figure 5(a) shows a scatter plot of the manual and automated diameter
measurements. The horizontal axis is the manual diameter measurement and
the vertical axis is the automated diameter measurement. Figure 5(b) shows a
histogram of normalized errors (€) defined as € = |D,, — D,|D;,! where D,, and
D, are manual and automated diameter measurements, respectively. Table 3.2
shows descriptive statistics of estimates.

measurement vs estimate estimate error histogram,

©  Solid
+ Non-Solid

£ Part-Solid 400

diameter estimate (mm)
frequency

. ol e e H
5 10 15 20 -4 -2 0
diameter measurement (mm) normalized error

(a) (b)

Fig. 5. Diameter measurement results on 1521 nodule data.

4 Discussion and Conclusion

The paper presented a new general purpose segmentation algorithm for a pul-
monary nodule. The algorithm is applicable to solid, non-solid and part-solid
types and handles juxtapleural and vascularized ones without having the lung
separated from the pleural walls. The results on 23 LIDC data and 1521 data
with manual diameter measurements are highly encouraging.

A limitation of the approach is that it cannot handle spiculated nodules due
to its underlying assumption of nodule convexity. For a spiculated nodule, we
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Table 1. Descriptive statistics of the diameter measurement experiment

o 2 o pcs s
All 0.755 0.359 0.254 0.397 0.607
Solid 0.759 0.372 0.256 0.422 0.603
Non-solid 0.624 0.334 0.285 0.266 0.611
Part-solid 0.864 0.214 0.177 0.163 0.664

! p: Pearson correlation coefficient.

2 11: mean normalized absolute error.

3 m: median normalized absolute error.

4 o std normalized absolute error.

5 7: mean computation time (sec) on 2.8CGHz PC with 1G memory.

may be able to treat it as one comprised of multiple convex parts, and extract
each part in succession. Another possible solution is to perform segmentation at
a coarse resolution where the degree of spicularity is reduced. Another limita-
tion is that it tends to over-segment non-solid nodules. The limitation can be
circumvented by referring to the ROI intensity volume and carefully trimming
voxels that are likely to be partial volumes.
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Local Characteristic Features for Computer Aided
Detection of Pulmonary Embolism in CT Angiography

Jianming Liang and Jinbo Bi
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Abstract. An automated detection system is constructed for detecting pulmonary
embolism from computed tomographic pulmonary angiographic images. Our pre-
vious work has presented novel effective algorithms to identify suspicious PE re-
gions from images and reduce false detections by designing powerful classifiers.
However, these techniques have to take effects in conjunction with discriminative
features used to characterize each identified PE candidate. This paper investigates
three sets of novel features: 1) features based on local candidate co-occurrence
matrices to remove false detections induced by noise and poorly mixed contrast;
2) features characterizing vessel properties to eliminate candidates outside of ves-
sel; 3) features discriminating between arteries and veins to remove candidates
from veins. We tested these features in our multiple instance learning classifi-
cation setting, and they constantly improved the detection accuracy when the 3
sets of features are included sequentially. The resulted PE CAD system has been
deployed in clinical settings with capabilities of incrementally reporting any de-
tection immediately once becoming evident during searching, offering real-time
support and achieving 85% sensitivity at 5 false positives.

1 Introduction

Computer aided detection of pulmonary embolism (PE) in computed tomographic pul-
monary angiographic (CTPA) images has received growing attention in recent years.
Pulmonary embolism (PE) is the third most common cause of death in the US, with
at least 650,000 cases occurring annually, although treatment with anti-clotting med-
ications is highly effective. Each year more than 400,000 PE cases are not correctly
diagnosed, and approximately 100,000 patients die who would have survived with the
proper diagnosis and treatment. CTPA has emerged as the first-line diagnostic tool for
PE. In CTPA, an embolus appears as dark regions residing in bright vessel lumen as il-
lustrated in Fig. 1. A CTPA volume consists of hundreds slices of the lung. The accurate
and efficient interpretation of such a large image volume is complicated by various PE
look-alikes and also limited by human factors, such as attention span and eye fatigue.
It is highly desirable to have an automated detection system to assist radiologists in de-
tecting and characterizing emboli in an accurate, efficient and reproducible way. Such
a CAD system must satisfy stringent real-time requirement since PE cases often occur
in emergency room. It must achieve high detection sensitivity with as few false posi-
tives as possible to acquire clinical acceptance, because inaccurate use of anti-clotting
medications can lead to subsequent hemorrhage and bleeding.

PE detection has been attacked by several groups [1-4]. All the existing meth-
ods in the literature require sophisticated vessel segmentation. Vessel segmentation
is computationally time-consuming, has been problematic in small vasculature where
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Fig. 1. Acute (a,b) and chronic (¢) pulmonary emboli.

subsegmental PEs often occur, and further complicated by PE if exists. None of these
approaches can meet the real-time requirement. To circumvent the problem, our early
work developed an effective system to search for any suspicious PE regions in the entire
lung without segmenting the vessels, and then reduce non-PE regions by distinguish-
ing them from true PE candidates with local characteristic features. Since the number
of suspicious PE regions (called candidates) is rather limited (about 50) in each case,
and it is much more efficient to compute the features descriptive to the local vascular
structure of the candidates than segmenting the whole pulmonary vascular tree.

We investigate three sets of novel local characteristic features in this paper. First,
features based on local candidate co-occurrence matrices are calculated to remove false
detections due to noise and poorly mixed contrast. Second, Hessian-based features are
designed to characterize vessel properties to eliminate candidates outside of vessel.
Last, image features discriminating between arteries and veins are computed to remove
candidates from veins. These features were tested in the multiple instance classifica-
tion setting. Together with our candidate generation and classification algorithms, the
overall approach forms a comprehensive and clinically usable PE CAD system which
is capable of reporting the first detection if any within 30 seconds and achieving 85%
sensitivity under 5 false positives on average across a large number of cases. For com-
pletion, we first review our concentration oriented tobogganing algorithm for quickly
generating suspicious regions for PE incrementally (candidate generation) and our mul-
tiple instance learning (MIL) framework for false positive reduction (classification) in
Section 2 before presenting our three sets of novel features in Secs. 3, 4 and 5, respec-
tively.

2 Retrospect of candidate generation and classification
2.1 Candidate generation

When the vascular structure is not segmented, a major challenge for automatic PE de-
tection is to effectively separate the emboli from the vessel wall and to quickly remove
partial volume effects around the vessel boundaries while correctly preserving the PE
pixels, since all the voxels in those areas have the same original CT values as those in
the PE regions. To this end, we first reported an approach based on basic toboggan-
ing in [5] with a simple operation called “sliding”: A pixel v with intensity P(v) and
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Table 1. False positive distributions based a meticulous analysis of training cases.

[ FP types [in vein [in artery[on lymph[on artery wall[between vessels|vein wall[as Nodule[at bifurcation][ others]
[percentage[39.06%| 20.24% | 12.00% | 9.58% | 4.71% | 447% | 3.29% | 2.52% [3.53%)|

neighbors N (v) slides down to pixel g = arg min, ¢ y(,)ugp} £(t). A pixel that cannot
slide to any of its neighbors is called a concentration. All the pixels that slide down to
the same concentration form a toboggan cluster. The basic idea is to treat the image as
a landscape and let pixels slide within the landscape. Almost all the pixels along the
vessel wall in the same intensity range as true PEs will merge into air regions and the
true PE regions will stand out automatically. However, this basic tobogganing approach
requires to scan the whole volume two times and cannot meet the real-time requirement
for PE detection. To accelerate the tobogganing process, we developed a concentration-
oriented tobogganing algorithm, achieving the same sensitivity as basic tobogganing
but reducing computation time from originally 2 minutes to 27 seconds.

Readers can consult with [6] for a complete description of our concentration-
oriented tobogganing algorithm. Briefly, the algorithm has two steps. It first searches
for concentration ¢ from the given pixel s and then expands from the found concentra-
tion ¢ to extract the whole toboggan cluster C. The expansion includes a base step and
an iterative step. In the base step, it includes the concentration c as the first pixel in the
cluster and pushes all its neighbors with CT values between -50 HU and 100 HU into an
active list A. In the iterative step, it selects pixel ¢ with the minimal CT value from the
active list A, if the selected pixel toboggans to an already clustered pixel, then condi-
tionally pushes its neighbors to the active list A to ensure the uniqueness of the pixels in
the active list, otherwise, the selected pixel belongs to the cluster’s external boundary B.
The iterative step is repeated till the active list A is empty. This concentration oriented
tobogganing algorithm is repeatedly applied on all those external boundary pixels, until
a whole PE candidate has been extracted. This process is illustrated in Fig. 2.

The concentration oriented tobogganing algorithm is then iteratively applied on
each of the external boundary pixels with CT value in the PE HU range. Any addi-
tional extracted toboggan cluster is merged into the previously extracted toboggan clus-
ters, and any additional external boundary pixels are also merged. Once no external
boundary pixel is left, all the toboggan clusters are extracted and merged, automatically
forming a connected component — a PE candidate.

We validated the tobogganing algorithm through a clinical study of 177 cases (col-
lected from multiple medical institutions) with 872 clots marked by expert chest radi-
ologists. These cases were divided into two sets: training (45 cases with 156 clots) and
test (132 cases with 716 clots). This algorithm successfully detected 90.38% (141/156)
of the PE in the training set and 90.1%(645/716) of the PE in the test set. However, it
also produces false positives—candidates that do not intersect with any PEs. On aver-
age, 47.5 and 40.3 false positives for each case were generated for the training set and
the test set, respectively. Our false positive distribution is shown in Tab. 1.
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Fig. 2. Using the concentration oriented toboggan algorithm for detecting PE in a small vessel.
During the scan in row by row, the first pixel which does merge into dark regions (< -50 HU) is
(4,5) and regarded as a PE pixel, from which our concentration oriented toboggan algorithm is
applied to extract a whole PE candidate. (a) Step A of the algorithm: Finding the concentration.
(b) Step B: Expanding from the concentration to cover a whole toboggan cluster and providing
all the external boundary pixels (circled). (c) Repeatedly apply the algorithm on all those external
boundary pixels with CT value between -50 HU and 100 HU to form a PE candidate (d).

2.2 Classification

A system that “cries wolf” too often will be rejected out of hand by radiologists. There-
fore, to reduce the false positives, an effective multiple instance learning algorithm was
designed [7] based on the 1-norm support vector machine (SVM). The 1-norm SVM
constructs a linear decision function f(x) = w’x 4 b by minimizing the regularized
empirical error v||wl[1 + 3 ;c5, & + 2 ;eg & Wwhere 7 is a tuning parameter and
¢ = max{0,1—y(w'x+b)} and y = 1 for candidates in S, (PEs), y = —1 for candi-
dates in S_ (non-PEs). The multiple-instance learning approach makes use of the fact
that some candidates can belong to the same PE, so that a PE is missed only if all the
candidates belonging to it are classified as non-PE. Let the ™ PE contain ¢; candidates,
represented as a set of feature vectors {x; }?:1. LetS;,i =1, -+, mbethe index set of
all candidates that belong to the i PE assuming there exist totally m PEs. The goal of
our classification algorithm is to determine a decision boundary that separates, with high
accuracy, at least one candidate from each set S;, i = 1,- - - , m on one side and as many
as possible negative detections on the other side. It implies that the candidate in S'; with
the smallest loss £ should be correctly classified for each i. Mathematically, it means we
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merely need to minimize the smallest error occurred on each set S; and hence the ob-
jective function is to min, ¢ y|[w|[1 + Y1 min{&;, j € Si} + > ,cq & subject to
constraints (1) wix; +b > 1—&;, i € Uiz1.... mSi, QWix;+b < —14+&, i€ S_,
and(3)§ >0, i=1,--- L

We resort to aggregation of multiple classifiers trained over various sample patient
sets to reduce the variance of the constructed classifier. We carry out 7" trials, and in each
trial, two third of the training cases are randomly sampled and used for training. Linear
decision functions are constructed in different trials. The final classifier is obtained
by averaging the weight vectors of these decision functions. Features with very small
weights in the final model will be removed to reduce noise level. This classification
algorithm can reduce much more false positives naturally due to its design. However,
the power of the classification algorithm relies on the discriminativeness of the features.
We therefore develop three sets of features described in the following sections.

3 Local candidate characteristic features

As shown in Tab. 1, there are many false positives generated from vessels which are
often due to noise or poorly mixed contrast material. One way to distinguish these false
positives from true PE candidates is to design features based on the spatial distributions
of intensity values computed within the candidate cluster. Therefore, in addition to the
basic intensity distribution features such as mean, variance, skewness and kurtosis, we
compute a number of features according to gray level co-occurrence matrices.

The co-occurrence matrices are widely used in texture analysis to capture the spatial
dependence of intensity values within an image using second-order statistics. For a
given 3D volume I of n1 X na X n3 and a number of intensity levels IV, a co-occurrence
matrix C is an NV x N matrix and acts as an accumulator over the image /. Specifically,
a co-occurrence matrix along a direction (d, dy, d.) is defined as follows:

i%i{l, ifl(2,y,2) =1 & I+ dayy +dy, 2 +d:) = J, g

0, otherwise.
z=1y=1z2=1

Haralick [8] proposed fourteen statistical features computed from the co-occurrence
matrices. Based on our experiments, the following four features have the most discrim-
inative power in capturing the spatial dependence of intensity values within a PE can-
didate:

— Entropy, £ = — va Zjv Cy(i,j)log Cy(i,j), measures the randomness of a
gray-level distribution and is expected to be high if the gray levels are distributed
randomly within a PE candidate.

— Energy, G = — Zi\f Z;V C2%(i, j), measures the number of repeated pairs of gray
levels, and is expected to be high if co-occurrence concentrates on certain pairs
(i, 4)-

— Contrast,C = Z Z i—7)%Ca(4, 7), measures the amount of local variations
within a PE candidate and is expected to be low if the gray levels of each pixel pair
are similar.
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— Homogeneity, O = — Efv Zjv Ca(i,7)/(1 + |i — j|), measures the smoothness
of a PE candidate and is expected to be large if the gray levels of all pixel pairs are
similar.

Based on these definitions, we expect that true PE candidates have lower entropy, higher
energy, lower contrast and larger homogeneity, so as to be distinguished from those false
positives due to noise or poorly mixed contrast material. These features serve as the
basic set of image features. We validate these features by evaluating the PE detection
performance using a recently-developed classification algorithm [7]. Figure 3 shows
test performance of 60% sensitivity at 5 false positives per volume with these features,
and hence this set of features is not yet sufficient to meet our goal.
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Fig. 3. ROC plot using local candidate features.

4 Vesselness characteristic features

Again as shown in Tab. 1, we have 12% of false positives generated from the connective
(lymph) tissues located outside of the arteries. To eliminate this type of false positives,
we design a set of features to determine if a candidate is located inside of a vessel based
on the multi-scale Hessian vessel-likelihoods. Ideally, if a voxel is within a vessel, the
Hessian matrix H formed from the second derivatives of intensity in the neighborhood
of this voxel will have two negative eigenvalues and a third one is close to zero. The
eigenvectors corresponding to the first two eigenvalues lie in a plane orthogonal to the
central axis of the vessel, and the eigenvector corresponding to the third eigenvalue
is in a line with this central axis. Based on the eigenvalues, vessel-likelihoods can be
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computed based on the Frangi [9], Sato [10] and Lorenz [11] methods. However, this
idea works only if the vessel does not have PEs. So, we precede this procedure by filling
the detected regions (candidates) with high intensity values, to simulate the inside of a
PE-ridden artery. To accommodate the different vessel radii, three vessel-likelihoods are
computed at five different scales and the maximal response for each vessel-likelihood
is taken across the five scales. In summary, our Hessian-based vesselness features are
computed as follows:

1. Fill the detected candidates with high intensity values
2. Compute vessel-likelihood features for each voxel x in the candidate by:
(a) Constructing the Hessian matrix H(x, s) based on the second derivatives in
scale s at voxel x
(b) Decomposing H into eigenvalues A1, A2, and Az with [A;| < [A2| < |As] in
scale s
(c) Computing three vessel-likelihoods in scale s at voxel x:

. 5 A3+A3+22
F(x,s) = [1 —57%(%)2] ¢ T 2 [1 e e } )
3 7
o?|As] (22 T+35) , <A <A<0
Stx,s) =1 <13)5( ‘*j') , .~ ®)
ol (32) (1-p2y) " M re <0< <
L(x,5) = o" # @)

(d) Maximizing vessel-likelihoods at voxel x across scale s:
F(x) =max F(x,s), S(x)=maxS(x,s), L(x)=maxL(x,s) (5)

3. Compute statistical features (i.e., maximum, minimum, mean, median and standard
deviation) based on the computed three vessel-likelihoods for all the voxels in the
candidate.

True PE candidates have much higher vessel-likelihoods than those generated outside of
vessels (e.g., lymph false positives). We plot the training and test detection performance
of our classification algorithm in Fig. 4 with these vesselness features in addition to the
basic features. It clearly shows the improvement of around 20% increase on sensitivity
at 5 false positives when vesselness features are included.

5 Vein/Artery characteristic features

We have nearly 40% false positives generated in veins. In CTPA images, we found that
the veins have different intensity distribution and texture patterns from arteries. Further-
more, those false positives within arteries were generated mainly due to poorly mixed
contrast material, demonstrating distinct intensity and texture patterns. Therefore, we
design a set of features to capture the intensity and texture patterns of veins and arteries
to eliminate false detections from veins. To do so, we extract a segment of vessel from
a given candidate and then compute a set of features based on the extracted vessel seg-
ment. While taking advantage of the benefits of vessel segmentation, our approach is
to only segment the relevant areas around the candidate, thereby avoiding an expensive
complete segmentation of the complete pulmonary vessel tree.
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Fig. 4. ROC plot using vesselness features in addition to local candidate features.

5.1 Vessel segment extraction

Each PE candidate generated by our CG is a connected component, consisting of a set
of voxels. In this step, we first extract the candidate boundary surface and then obtain
the vessel segment with a modified Dijkstra’s algorithm. The PE candidate boundary
surface is extracted by checking the neighbors of each voxel of the candidate. If any of
its neighbors does not belong to the candidate, then the voxel is on the boundary surface
and is recorded. The vessel segment containing the candidate component is extracted
by a graph-searching based iterative region-growing process by taking the extracted
boundary points of the PE candidate as initial seeds. This process creates a minimum
cumulative cost path map. The cost is set to the Euclidean distance from the boundary
of the candidate component. The growth occurs from the voxel with the lowest cumula-
tive distance cost on the boundary of the growing region. In the growing process, only
those voxels with intensity value above a threshold (100 HU) are considered, so that the
growth is along the contrast enhanced vessels. As a result, the extracted region grows
in layers (equal distance to the boundary of the candidate component) and stops if the
vessel length is larger than a given value (30 mm in our case).

5.2 Vessel feature computation

Once the vessel segment is extracted, similarly we can compute the basic intensity dis-
tribution features (mean, variance, skewness and kurtosis) and texture features based
on gray level co-occurrence matrices from the extracted vessel segment as described in
Section 3. In addition, we compute wavelet-based texture features. In the case of vol-
umetric images, the discrete wavelet decomposition is obtained by applying a pair of
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Fig. 5. ROC plot using the entire set of features.

wavelet filters: a lowpass filter h and a highpass filter g, along the x, y, and z direc-
tion of the volumetric image. In a one-level decomposition of the 3D discrete wavelet
transform (DWT), the particular pair of filters i and g corresponds to a particular type
of wavelet used and |, 2 stands for downsampling by 2 along x direction, generating
nine subvolumes from the input volumetric image. For example, subvolume LLL cor-
responds to the lowest frequencies and subvolume LHH gives the low frequency along
x direction and high frequencies along y and z directions. A multi-level DWT decom-
position is obtained by repeating the same procedure to the subvolume LLL until the
desired level is reached. In our application, we used Daubechies 8-tap filters and a 2-
level decomposition of 3D DWT to compute the wavelet subvolumes. Then for each
subvolume, the energy feature is calculated from its wavelet coefficients,

W:mgggwwm,z)\ ©

where N, Ny, and N are dimensions of the subvolume and w(...) is a wavelet coeffi-
cient within the subvolume. For each candidate, we have nine energy features computed
from the nine subvolumes.

We validate the third set of features by incrementally including them into our train-
ing process. Hence the final set of features include co-occurrence based features in
Section 3 and features described in Sections 4 and 5. The final system achieves 85%
test sensitivity at 5 false positives per volume.

6 Conclusion

We have developed three sets of new local characteristic features for eliminating false
positives in automated PE detection. The developed features have been fully integrated
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into our PE CAD system and validated on over 130 cases, showing that the PE CAD
system performance has been incrementally improved by more than 20% at the ROC
operating point with our second and third set of the features, respectively, in our mul-
tiple instance learning framework. Our approach has a set of distinguished features,
requiring no vessel segmentation, reporting any detection incrementally in real time,
and detecting both acute and chronic pulmonary emboli, achieving a sensitivity of 85%
at 5 false positives, resulting in a clinically usable PE CAD system, which has been
deployed in many clinical sites around the world.
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Abstract. In this paper, we present a new method for separating two iso-intensity
objects attached to each other at different locations at various scales and apply the
method to separating arteries and veins in pulmonary CT images. The method
starts with two sets of seeds — one for arteries and another for veins. Initialized
with seeds, arteries and veins grow iteratively while maintaining their spatial sep-
aration and eventually forming two disjoint objects at convergence. The method
combines fuzzy distance transform, a morphologic feature, with a topologic con-
nectivity property to iteratively separate finer and finer details starting at a large
scale and progressing towards smaller scales. The method has been validated in
mathematically generated tubular objects with different levels of fuzziness, scale
and noise. Also, it has been successfully applied to in vivo clinical CT pulmonary
data for separating arteries and veins. Results have demonstrated the method’s
ability to resolving multi-scale adherence of two iso-intensity objects even when
there are no sign of intensity variation at conjoining locations.

1 Introduction

Image Segmentation [8] — a method of producing a spatio-temporal object definition
in an image — has remained a salient task in most medical imaging applications. Dif-
ferent segmentation methods [3] focus on different image features and properties and
often, the design of an effective segmentation algorithm in a limited SNR and resolu-
tion regime is highly challenging and application dependent. Here, we have selected a
specific segmentation task of separating arteries and veins (4/V) via in vivo pulmonary
CT imaging with no blood pool enhancing contrast. Although, such a method of sep-
arating A/V is very useful, the challenges are multi-folded including — (1) A/V are
indistinguishable by their intensity values in non-contrast pulmonary CT images, (2)
often, there is no trace of intensity variation at locations of adherence between A/V, (3)
complex and tight coupling between A/V with arbitrary and multi-scale geometry, es-
pecially, at branching locations and (4) limited SNR and resolution of in vivo imaging.
Patient-specific structural abnormalities of vascular trees further complicate the task.
Several works have been reported in literature toward solving the problems of separating
arteries and veins using improvised image acquisition techniques; a thorough discussion
on difficulties of such approaches, especially, for smaller vessels has been presented by
Bemmel ez al [10]. As far as our knowledge goes, only a few post-processing meth-
ods have been published on separating arteries and veins [2,10]. The previous methods
have been applied to MR data only and do not use morphological scale information.
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These methods primarily rely on intensity variation or edge information at the adher-
ence locations between A/V and may not work for in vivo CT images where no intensity
variations are visible at locations of adherence between A/V. Recently, two approaches
for artery/vein classification from pulmonary CT images appeared [1,11].

Here, we introduce the use of morphologic scale features which enables separating
two structures even when there is no edge feature at locations of adherence between
the two which often happens between A/V in CT data. Specifically, we develop a new
topo-morphologic method that iteratively separates A/V starting from two sets of seeds
at high scale and then progressively solves the problem at lower scales. The method
combines fuzzy topological approaches [4,9,5] with fuzzy distance transform [6] —
a morphological feature — without requiring a parameter. Separated A/V trees may
significantly contribute to our understanding of pulmonary structure and function and
has immediate clinically applicable applications, e.g., for assessment of pulmonary em-
boli. The knowledge of separated A/V may significantly boost performance of airway
segmentation methods.

Input
: . image
compute local scale using compute fuzzy distance mark seeds (Sa, Sv)
local maximum FDT transform (FDT) for AV

=== — — = — = = — — —

normalize FDT values compute connectivity for A/V assign regions |
using local scale | using FDT values Ra & Rvto AV |
—_ = — —

Ye:!
| ‘ update FDT morphologically change in END
| images and seeds reconstruct Ra & Rv R\ &Rv? [N

_— — —_— —_— —_— —_— —_— — — — — —

Fig. 1. A schematic description of the overall method.

2 Theory and Methods

The overall work flow diagram of the method is presented in Figure 1 that separates
two iso-intensity objects using multi-scale morphological features. As input, it receives
fuzzy segmentation of the assembly of two iso-intensity objects and two sets of seeds
— one for each object — and it outputs separated objects. Although the method im-
mediately extends to multiple objects, here we formulate a solution for two objects
only and we will refer one object as the rival of the other. Let us consider an image
consisting of two iso-intensity fuzzy objects with significant noise and overlapping as
shown in Figure 2(a); a few cross sectional images are shown in Figure 2(b). The two
cylinders with gradually reducing radii are running in parallel. The diameter of one
cylinder is significantly larger than other; a sinusoidal swing is added to both in the
zy-coordinate direction so that central lines of both cylinders lie on an xy-plane, say



FIRST INTERNATIONAL WORKSHOP ON -275-
PULMONARY IMAGE PROCESSING

Fig. 2. (a) 3D rendition of a phantom image. (b) A few cross-sectional images. (¢) FDT
image on the central zy-plane. (d) Results of separation of the two cylinders after the
first iteration using FDT-based connectivity. (¢) Morphologic reconstruction based on
the results of (d). (f,g) Same as (d) after second (f) and terminal (g) iterations. (h,i) 3D
rendition and cross-sectional images of the result.
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the central xy-plane. Usefulness of the method may be better understood in three and
higher dimensions. On the other hand, it is always easier to illustrate a method in 2D.
Therefore, we illustrate results of different steps of the method on the central xy-plane.
One seed is manually placed through a graphical interface on the approximate center
of each cylinder at the top-most cross-section. As shown in Figure 1, the process is it-
erative and begins with marking the seeds followed by fuzzy distance transform (FDT)
computation [6] of the assembly of two cylinders prior to iterations; see Figure 2(c)
for the results of FDT computation. It is visually notable from the FDT image that we
cannot find a single FDT threshold to separate the two cylinders from their head to tail.
Therefore, no straightforward morphological opening operator can solve the problem.
On the other hand, over a small region, the two cylinders seem separable using their
FDT values. In other words, the problem demands regional selection of an optimum
opening structure to separate the two cylinders.

The above observation motivated us using /ocal scale to normalize FDT values that
reduces the effect of spatial scale variations. Local scale at a point p is defined as the
FDT value of the locally-deepest point (a point with locally maximum FDT value) that
is nearest to p. With the normalized FDT map, the method adopts an iterative strategy
that first separates the cylinders over large-scale regions using FDT-based relative con-
nectivity [5] where a point is grabbed by an object if its connectivity to the point is
strictly greater than that of its rival. A separator is built between the two objects using
a morphological reconstruction method that simultaneously and radially dilates each
currently segmented region until blocked by its rival (maximum radius of the dilating
structure is determined by FDT values). Figures 2d & e show the results of initial sep-
aration and morphologic reconstruction of two cylinders after first iteration. In the next
iteration, the FDT-connectivity paths of one object are not allowed to enter into the
region assigned to its rival. This strategy facilitate resolving fusion at smaller scale re-
gions (Figure 2f) and this iterative process is continued as long as there is any change.
For this phantom image, the method stopped after 12 iterations (see Figure 2g—i for
final separation).

3 Results and Discussion

Effectiveness of the method has been examined by applying it to mathematically gen-
erated phantoms and to clinical CT pulmonary images. Five mathematical phantoms
were computer-generated as tubular objects running across the slice direction with dif-
ferent levels of fuzziness, overlap, scale and noise. Initially, the phantom images were
generated at high resolution and then downsampled using 3x3x3, 4x4x4 and 5x5x5 win-
dows. Each downsampled image was degraded with additive noise at SNR of 12. Using
a graphical interface, exactly one seed point was manually selected for each tubular
object in a phantom near its center on the slice at the lower-most level. Although there
is no thoretical restriction on positioning the seed points, the seeds are were positioned
close to the vessel centerlines. Phantoms and results are depicted in Figure 3 at 4 x4 x4
and 5 x5 x 5 downsampling only, as the method has always successfully separated the
two cylinders at 3 x 3 x 3 downsampling. At extremely low resolution and high noise,
the morphological information may be entirely lost, leading to a failure of separation
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in Figure 3t,v. Specifying another pair of seeds would be help achieving correct sep-
aration. Cross sectional images of the first phantom are illustrated at both resolutions
to depict the 3D phantom image quality used and the complexity of separating the two
objects. The smallest radius of the phantom of Figure 3a is 1.87 pixels at the downsam-
pling by 4 x 4 x 4 pixels; the largest radius in the same example at same downsampling
resolution is 18.75 pixels. Except for the examples of Figures 3a and f, the radii of the
two cylinders differed significantly.

sls i1 |
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Fig. 3. (a-k) Results of our method’s application to several 3D phantom images down-
sampled by 4 x 4 x 4. (a,b) 3D rendition and cross-sectional images of one phantom
image. (c) Separated cylinders. (d-k) Results for other four phantoms. (I-v) Results of
application of the method at downsampling by 5x 5 x 5.

The method has been applied to separate arteries and veins in pulmonary CT images
(see Figure 4). Thoracic region of two females of age 22 Y and 27 Y were scanned using
a Siemens Sensation 64 MDCT scanner at 120 kVp and 200 mAs. One subject was
scanned in feet first supine while the other was scanned in head first supine position.
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Images were acquired at 0.75 mm slice thickness and were reconstructed with 0.5 mm
slice-thickness and 0.55x0.55 mm? in-plane resolution. Entire vascular tree of both
lungs was segmented in each CT image data using the method of Shikata ez al. [7] that
uses tree-connectivity on the CT intensity image enhanced by the output of a tubular
enhancement filter. Resulting A/V separation outcomes are shown in Figure 4. Seed
points were manually selected using a 2D slice-display graphical interface followed by
the application of the morphological separator algorithm. The subsequent automated
process requires 2 to 3 mins. to complete the A/V separation for the right or left lung.
Finally, the separated A/V were displayed with color coding (red for veins and blue
for arteries; see Figures 4b,c) through a 3D surface rendition software tool developed
in-house using VTK-based 3D visualization filter classes.

Fig. 4. Results of application to pulmonary CT images. (a) 3D surface renditions of
vessel trees in left and right lungs. (b) Color-coded 3D rendition of separated artery/vein
trees. (c) Same as (b) but for another dataset. Blue — arteries (carrying non-oxygenated
blood), red — veins.

The method has demonstrated feasibility of separating two iso-intensity structures
with multi-scale adherences even when there is no sign of intensity-based separation at
joining locations. The method seeks morphological identities of each object at a specific
scale and separates them without using any gradient- or edge-like features. Introduction
of the ideas of morphological reconstruction and separator allows the method to seal
the joining border at current scale and then seek morphological features identifying
different objects at finer scales. The mathematical phantom demonstrates the ability of
the method when the geometry of coupling of two objects are known and its perfor-
mance with just one seed for each object is encouraging. For pulmonary CT images,
the geometry of coupling between arteries and veins are far more challenging and quite
unknown. However, the method has shown acceptable performance with a reasonable
number of seeds. Approximately 25-35 seeds were manually selected on each of the
A/V subtrees. It may be pointed out that the seeds were selected using a 2D graphical
tool. Often multiple seeds were placed within the same locality of an object and there-
fore, not all of the seeds contributed to true A/V separation. We have found that seed
selection is an important task in the entire process and the current seed-selection tool is
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far from optimal. An effective seed selection process must be performed through a 3D
graphical interface coupled with the morphological separator providing a transparent
interactive environment to the user. Currently, we are developing such a seed-selection
graphical system and we believe that, once it is developed, the number of seeds required
will significantly decrease.
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064368. The authors wish to thank Dr. Guoyuan Liang and Ms. Yan Xu for their helps
in generating the color display of Figure 4.
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Abstract. With the recent advances in multidetector-row CT (MDCT) to
dynamically assess the lung with a z axis coverage now including up to 70% of
the whole lung, we have integrated quantitative measures of regional
pulmonary perfusion and ventilation into the Pulmonary Analysis Software
Suite (PASS), allowing for detailed assessments of structure-to-function
relationships and are using this integrated system to identify early smokers at
risk of chronic obstructive pulmonary disease (COPD). Previously we
developed methods to segment lungs, lobes, airways, and blood vessels and
extract histogram and texture-based measures of the lung parenchyma. These
segmentation, analysis and display tasks were integrated into a comprehensive
software package: PASS.

Keywords: MDCT, Medical Image Analysis, Texture Analysis, Functional
Imaging, Ventilation, Perfusion

1 Introduction

Quantitative assessment of lung structure along with indices of parenchymal
pathology are taking on increased roles in the detection and tracking of pulmonary
disease. To date the focus has largely been on airway morphometry and indices of
parenchymal destruction, and air trapping. The parenchymal analysis has, in large
part, focused on the use of the density histogram within the lung field to identify
voxels falling below a given density threshold to define volumes of emphysema-like
lung or air trapping. Some work has shown that texture measures can provide more
accurate detection and quantification of pathology not limited to enlargement of
peripheral air spaces [1, 2]. To date, our quantitative tools for the assessment of the
lung parenchyma have been integrated into a software package which we have
dubbed the Pulmonary Analysis Software Suite or PASS, and PASS has been used in
a number of large multi-center studies including the NIH sponsored National
Emphysema Treatment Trial [3], the Lung Imaging Database Consortium [4], and as
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clinical applications for PASS have expanded, this software has been commercialized
and integrated with airway analysis and guidance software (Pulmonary Workstation
Plus, VIDA Diagnostics, Coralville, IA). In addition to structural information,
dynamic CT imaging is capable of delivering regional measures of ventilation and
perfusion by following the accumulation of Xenon gas over multiple breaths [5, 6, 7]
or the first pass kinetics of a sharp bolus of iodinated contrast agent as it passes
through the lungs [8, 9]. To date, the functional measures have been limited largely
to research studies because of the limited z-axis coverage during axial scanning
protocols. With the recent advances in multidetector-row CT (MDCT) to dynamically
assess the lung with a z axis coverage now including up to 70% of the whole lung, we
have been motivated to integrate our quantitative measures of regional pulmonary
perfusion and ventilation into PASS, allowing for detailed assessments of structure-
to-function relationships. In an early application of integrated system we are
identifying smokers at risk of chronic obstructive pulmonary disease (COPD) but
with normal pulmonary function tests to assess correlations between early structural
(histogram-based analysis) and functional (perfusion measures) changes. In this
paper, we present an overview of the newly expanded PASS that now provides the
link between structure and function for the inclusion of regional distribution of
ventilation and perfusion as part of a comprehensive phenotype determination [10].

2 Software Components

2.1 PASS Core Functionality
2.1.1 Task Concept

The PASS framework is organized with a task-document-frame-view hierarchical
structure. Depending on the task, one or more documents can be opened
simultaneously, each document can open one or more frames, and each frame can
show multiple different kinds of views. This design schema can be separated into two
layers, the underneath layer is the document-frame-view structure which is a
traditional multi-document interface (MDI). The upper layer is the task manager that
uses a sequence of wizard dialogs to guide the user through predefined steps to finish
a particular analysis process. The goal of this schema is to make the PASS software as
flexible as a traditional MDI while also being simple to use as similar wizard driven
applications. Figure 1 shows an example of the task concept in which three tasks are
open simultaneously. Each task is distinguished by a unique background color for
both the tab bar at the top of the window and the floating dialog box. The floating
dialog box is the interface to task manager that controls the task. Users can switch
tasks by pressing the colored tabs at the top of the window, and the task manager will
be switched automatically to the correct task.
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Fig. 1. Three tasks are opened in PASS. (a) The first task is the Histogram Analysis task
(displayed in blue). This task opens one document which in turn opens three frames of result
data. The third frame, which contains 9 views, is pictured above. (b) The third open task is the
TSIA Single Image task (displayed in yellow). One document is opened which creates two
frames. The second frame, which contains 4 views, is currently in display.

2.1.2 PASS Profile

In order to facilitate situational based behavior of the general class pieces of the PASS
structure while under control of a wizard, a profile method has been designed. Each
instance object of the above class will be assigned a corresponding type of profile that
defines the behavior of that object. For example, depending on the task, document,
frame, or location within a frame, an object of the transverse view class may display
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different content. Similarly, parameters are saved for each algorithm, allowing them
to be retrieved based on a user’s previous usage. Each task has a user-configurable
set of default profiles for the objects used in that task.
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Fig. 2. PASS includes a Profile editing interface, pictured above are the settings for Lung
Histogram View. Through this interface the user can adjust the profile settings for current view,
frame, document, or task respectively. The options that can be adjusted vary depending on the
type of the object selected in the profile editor.

2.1.3 Separation of Core Functionality and Time Series Algorithms

The PASS software package is extensive, containing hundreds of GUI components
and algorithm modules. In order to manage the development in an efficient way, the
GUI framework is separated from the algorithm modules. For example, the Time
Series Image Analysis (TSIA) algorithm modules are independently developed
outside of PASS framework and are dynamically loaded into PASS at runtime using a
common memory module (CMM) interface.

2.1.4 DICOM Viewer

PASS enables the viewing of 2D, 3D, and 4D image data in a variety of ways.
Typically, the input to the PASS is a multi-dimensional MDCT data set of thorax as a
series of DICOM files. Inside a user specified directory, PASS finds all valid DICOM
files, automatically detects the scan plan, and organizes them into a single multi-
dimensional dataset. In some situations, a multi-dimensional scan is acquired in
multiple steps; with each step making up only a smaller portion of the thorax or of the
time series. The final dataset needs to be created by intelligently joining several of
these partial datasets. In the case where extra slices or overlap occurs between
datasets, a dialog prompts the user to interactively remove the extra slices. The newly
created dataset can be saved in the extended DICOM format for future use enabling
the user to skip the joining process in the future.
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2.1.5 Extension to DICOM Standard

The standard DICOM file format is limited to 2D images. Additions have been made
to the standard to enable it to handle higher-dimensional (3D & 4D) image data. A
private section is inserted into the standard 2D DICOM tag structure that includes
information regarding the higher-dimensionality of the dataset including number of
phases, depth of volume, phase timing, etc. The pixel bitmap for the first slice is
stored in the public area as usual; while the rest of the pixel bitmaps are stored under
the private section. A special tag is generated by grouping the series-varying
information from the original series into a single tag. This method enables the
retrieval of 2D DICOM information from within the new higher-dimensional dataset
and also retains the ability to recover the original DICOM files if necessary without
data loss.

2.1.6 Segmentation

Lungs. One of the important first steps for quantitative analysis is segmentation of
left and right lungs. The PASS lung segmentation processing consists of three main
steps: an extraction step to identify the lungs; a separation step to separate the right
and left lungs; and an optional smoothing step to smooth the lung boundaries.
Complete details and validation information for the lung segmentation algorithm are
givenin [11].

Airways. Airway processing consists of three separate steps: (1) segmentation of the
airway lumen, (2) analysis of the tree structure to define the branch centerlines and
branching relationships, and (3) measurement of the airway lumen and airway walls.
Complete algorithm details are given in [12, 13].

Vessels. The vessels are segmented using a variant of the method described by
Shikata et al. [14]. Shikata et al. use a two-step approach: a line-filtering of the raw
data based on an eigen-analysis of the Hessian matrix calculated at multiple scales,
followed by an optional vessel tracking approach to extract the small vessel segments
which are missed in the first step. For most purposes the second step is not necessary
and is undesirable because of the increased computational cost. We threshold the
line-filtered result to retain only voxels with line-filtered value less than -0.08, and
then subsequently use size filtering to remove all segments less than 75 mm”.

Currently vessel segmentation in used in PASS as a step within the lobe segmentation
process (see below). Additionally, vessel segmentation allows for 3D visualizations
of the vascular tree. There is ongoing work to separate the arteries and veins for
further quantification of the vessel tree.

Lobes. Identification of the lobar fissures can help decompose the 3D lung into its
major structural components. These components can be used as a basis for reporting
measurements, and for inter-subject comparisons. The lobar segmentation is guided
by the airway tree and vessel trees. After vessel segmentation, a distance map is
computed based on the segmented vasculature. This distance map is analyzed using a
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watershed transform. The watershed simulation proceeds and the basins are merged
using markers automatically generated from the anatomically labeled airway tree.
After the watershed analysis is completed, we obtain an initial, approximate
segmentation of the fissures. The initial segmentation is refined using a 3D optimal
surface segmentation. Full details on the lobar segmentation are given in [15].

Free Hand Drawing. For certain applications such as lung nodule analysis [4], there
has been the desire to have a tool for manually identifying structure boarders so that
automatically defined edge locations can be compared with radiologist defined gold
standards. The free hand drawing tool includes a live wire feature that aids the user in
drawing boarders. The free hand drawing can also be modified by shifting individual
points along a trace, or multiple points around a boarder can be identified and a cubic
spline fit will complete the boarder.

2.1.7 ROI Dictionary / Indexing

Lung segmentation assigns every pixel a region property or ROI label. Typically a
mask image is used to record these labels. However, a major limitation of this
approach is that the meanings of ROI labels are defined locally. Thus the mask bitmap
will be unexplainable without first knowing the specific type of the mask image and
having detailed documentation regarding its labeling schema. It is impossible to make
global definitions for ROI labels since each pixel in the mask image has limited size
(usually 8-bits), but the meaning it should be able to describe is infinite. In order to
solve the problem between the limited label and infinite meaning, we proposed a ROI
Dictionary/Indexing method. In this method, we build a global ROI dictionary to
record all global ROI names and their relationships. For each mask image, a file
called ROI Indexing is created which maps the local ROI labels to the global ROI
names. With the help of Indexing file, a previous locally defined ROI image becomes
a global resource, allowing the use of a mask image in a simple and uniform way.

2.2 Structural Analysis
2.2.1 Histogram Analysis

The gray level histogram has been widely used as a tool for detection of early
parenchymal disease. PASS calculates the histogram and cumulative histogram for
all pixels in the lung parenchyma. Further subdivisions of the histogram can be
achieved using the regions defined from segmentation. Measurements can be reported
for any of the defined ROIs, including separating the lung on a lobar basis. Several
statistical parameters, such as gray level mean, median, standard deviation, average
deviation, skewness, kurtosis, and histogram full width at half maximum (FWHM)
are calculated. Total volume, air volume, and tissue volume are computed for each
region. The slope and intercept value of the knee line and ankle line of the cumulative
histogram curve have been identified as key parameters that may distinguish normal
lungs from lung showing signs of early parenchymal disease.
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Fig. 3. Histogram analysis in PASS: Parenchymal histogram (upper row left), cumulative
histogram (upper row middle), histogram results (upper row right), coronal — transverse —
sagittal views (middle row), and 3D renderings (bottom row). Low attenuation areas in red.

2.2.2 Hole Analysis

The onset of emphysema is characterized by the development of poorly ventilated
regions within the lungs (“holes”). We try to assess the distribution of holes within
the lungs to estimate the severity of the disease process. The distribution of the holes
in the normal lung is due only to cross sectional sampling of air within the airway
tree. Therefore, we expect the probability distribution of hole cross-sectional area to
change as new holes are created and as smaller holes join together to create larger
ones during disease progression. Thus the hole distribution curve provides
information that can be used to assess the disease severity.

2.2.3 AMFM Texture Analysis

The adaptive multiple feature method (AMFM) was introduced as a texture-based
method which could take into account co-existing pathologies and provide a
simultaneous classification of multiple simultaneous disease processes. Two kinds of
tasks are made possible in the package 2D and 3D. The 2D AMFM uses only 2D
features, and therefore works on any 2D images; 3D AMFM uses 3D features and can
produce better results for 3D isotropic datasets [1].

2.3 Functional Analysis
2.3.1 Time-Series Image Analysis (TSIA) Task

Overall Concept. The system uses an axially acquired time-series volumetric MDCT
data set of the thorax as the input. The acquisitions of these 4D functional scans
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employ either ECG or respiratory image gating techniques. The TSIA single image
task is selected from the wizard that then guides the user through the analysis process.
First an algorithm is selected and the appropriate parameters are set based on previous
analyses or current user input. Lungs are segmented and for perfusion analysis a
reference ROI is selected within a pulmonary artery region. Results are output either
as 3D floating point Analyze images or comma separated value files. On a typical
medical image workstation, for a 5x5 grid, Ventilation analysis takes approximately
10 minutes and Perfusion 0.5 hour. These times can clearly be reduced with
optimization efforts. For our current human ventilation studies, the total effective
radiation exposures dose (HE) is 315/480 mrem for male/female; for perfusion
studies, the total effective dose (HE) is 236.25/360 mrem for male/female.

Shared Algorithm Framework. Although the internal algorithm can be totally
different from method to method, the basic programming interface for different time
sequence image analysis algorithm can be made very similar by passing parameters,
options, and results all in format of dynamic array. This makes it possible for us to
define a shared algorithm framework and a shared GUI interface. The actual
algorithms are designed as plug-in modules and will be dynamically loaded at run
time.

Perfusion Algorithm. A central bolus injection of iodinated contrast agent is
delivered by a power injector system during an ECG-gated axial dynamic MDCT
scan. This software uses indicator dilution theory and first pass kinetics, assuming a
bolus injection, residue detection model, to determine the regional Pulmonary Blood
Flow (PBF) and perfusion parameters as previously described [8, 9]. Data is filtered
to remove major airways and vessels. Mean Transit Time (MTT) and PBF normalized
to the mean PBF of the imaged region are examined and heterogeneity can be
estimated from its coefficient of variation (CV). MDCT-based perfusion
measurements demonstrate significant differences in heterogeneity of perfusion
parameters in subjects with imaging-only based evidence of lung pathology and show
potential for detection of early inflammatory changes in the lung [10].

@iss 00 o0 s T S]]
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Fig. 4. This figure shows a screenshot of PASS using the TSIA Single Image Task using the
perfusion algorithm on a human subject who is a smoker with early signs of emphysema on
MDCT. Views: Gray scale CT image with user defined ROIs (upper left), Non-linear curve-
fitted ROIs (upper right), Colormap of pulmonary blood flow (lower left) and per-ROI
calculated perfusion parameters (lower right).

Ventilation Algorithm. Ventilation is evaluated from a Xenon wash-in series [5, 6,
7]. The density values for a ROI taken during the Xenon wash-in will yield a curve
that can be fitted to a single exponential model with a time-constant t. This time

constant is equal to the inverse of the specific ventilation (sV), the ventilation per unit
volume. T=1/sV.

Fig. 5. Results from a ventilation study utilizing the 3D visualization component of PASS.
Combination overlay of the lung parenchyma (yellow), airway tree (light blue), and 3D
ventilation colormap.

3 Conclusion

Overlay functional data onto the structural image, in both 2D section slice and 3D
volume rendering display, provides a unique way to include functional with structural
data as efforts increase to use imaging as a means of determining disease phenotypes
as part of a search for underlying genetic bases for disease susceptibility.
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Abstract. Quantitative analysis of computed tomographic (CT) im-
ages of the lungs is becoming increasingly useful in the medical manage-
ment of subjects with Chronic Obstructive Pulmonary Disease (COPD)
and other lung diseases. Airway Inspector is an open source initiative
based on 3D Slicer for the morphometric analysis of airway trees and
lung parenchyma to foster the quantitative needs to carry out image-
based lung disease studies. Airway Inspector allows the user to navigate
an airway tree and provide airway morphometric measurements at ev-
ery points. The airway wall extraction can be done by several methods,
namely, traditional methods like Full-Width at a Half Max (FWHM) and
Zero Crossing of the Second Order Derivative (ZCSEC), and a new breed
of methods based on phase congruency. Airway Inspector can also per-
form quantitative analysis of parenchyma diseases by means of histogram
analysis of the lung parenchyma CT density.

1 Introduction

Recent investigations using quantitative image analysis of multislice CT (MSCT)
data sets have provided new insights into the characterization of both emphy-
sema and airway disease. For example, measurements of airway wall thickness
on CT images are predictive of lung function; thicker airway walls tend to be
found in subjects with reduced airflow [16]. This increased interest in using CT
scans for the characterization of lung disease has unveiled the need for a software
platform that can be used to implement reliable methods for lung CT analysis.
Given the evolving nature of the field, an open platform is an optimal way to
test different approaches and perform the necessary validation that is needed
before those methods can be used in research networks and clinical trials.
Airway Inspector (www.airwayinspector.org) is a open source software plat-
form for the morphometric analysis of lung CT images based on 3D Slicer. 3D

* This work has been funded by grants R0O1 HL68926, P41-RR13218, R01 HL075478
and P01 HL083069
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Fig. 1. (a) Airway Inspector and 3D Slicer software components and dependencies. (b)
Computational components of Airway Inspector.

Slicer (www.slicer.org) is a free open source platform for medical image visu-
alization and computing developed at the Brigham and Women’s Hospital. 3D
Slicer is available under a BSD-style license that has been also adopted by Air-
way Inspector. 3D Slicer has a modular architecture that allow the developers
to extend its capabilities by adding new modules. The modules are mostly writ-
ten in C++ and Tcl/Tk. While C++ is used to implement the main processing
elements, Tcl/Tk is used for GUI design, interfacing and quick prototyping by
means of wrappers to the methods implemented in C++. The main libraries that
3D Slicer depends on are the Visualization Toolkit (VTK) [19] and the Insight
Toolkit (ITK) [23] for image visualization and image processing respectively.
Additionally, 3D Slicer also depends on Teem [8], a multipurpose collection of
libraries for representing, processing, and visualizing scientific multidimensional
raster data. A diagram showing the dependencies of Airway Inspector is shown
in Fig. la.

Airway Inspector is a component of the COPD module; a module for the
analysis of both parenchyma and airway diseases. As such, the module imple-
ments different quantitative methods for the assessment of emphysema and the
assessment of airway wall remodeling by means of Airway Inspector.

2 Airway Inspector: Computational Components

The main computational components of Airway Inspector are shown in Fig. 1b.

2.1 Airway Lumen Extraction

The entry point to Airway Inspector is a point inside the airway lumen under
interrogation. This point can be either manually selected by an user or it can
be automatically extracted by means of the segmentation of the airway lumen
tree and the extraction of the centerline. For the automatic segmentation of the
airway tree, Airway Inspector currently relies on the Editor module capabilities
provided by 3D Slicer. The Editor module allows the user to perform a region
growing process from a seed point placed, for example, in the trachea. After
the segmentation of the airway tree, the COPD module provides a method to
extract the centerline [2].
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2.2 Continuous data reconstruction

An ubiquitous functionality across different computation components is the need
of continuous data reconstruction, data interpolation and differentiation opera-
tions (first order and second order derivatives). To that end, Airway Inspector
relies on Teem. The library inside Teem that takes care of the reconstruction is
gage. Gage is an interface for continuous data reconstruction from sampled data.
Gage implements different interpolation kernels; among them, the traditional cu-
bic B-spline [13,10] is used to compute intensity data at a continuous location
and the corresponding gradient vector and Hessian matrix at that location.

2.3 Automatic scale selection

When querying the derivative operator at a given point, a critical factor is the
scale at which those derivatives should be extracted. Based on the seminal work
of Eberly [4], airways can be seen as valley lines of intensity. The Hessian matrix
capture second-derivative information that can distinguishes ridges and valley
lines, saddles, valley surfaces and ridge surfaces, and spheres. For a valley line
the Hessian matrix, at the right scale, is characterized by two large positive
eigenvalues (A1 >> 0, Ay >> 0) and one small negative eigenvalue (A3 < 0). At
the valley point, the gradient should be orthogonal to the eigenvectors associated
to the positive eigenvalues.

Although a formal scale-space analysis is not carried out [11], the automatic
scale selection process seeks the optimal reconstruction kernel support, oop¢, such
as the following functional of the eigenvalues is maximized

gop =argmaz LRy g )

where )\; is the Hessian eigenvalue associated to the eigenvector e;. This optimal
kernel size computed at the selected airway point is used hereon.

2.4 Airway Centering

The first step after a point inside the airway of interest has been chosen is to
perform a centering of the point. The center is defined as the centroid, x. of
the luminal area. The luminal region is defined in the axial plane by means of
a thresholding. The threshold is automatically defined as the mean value of the
minimum and the maximum intensity values found in two rays in the form of a
cross casted from the selected point.

After the centroid is located, a second step refines that location using the
properties of the Hessian matrix. The centroid location, x., is optimized using
a gradient descent in the direction of the projected gradient, g,(x), given by

g,(x) = (I — ese ) VI(x). (2)

The result of the optimization process is the final airway luminal center location,
x;. The Hessian eigenvectors are computed at the optimal scale, oop;.

When the slice thickness is larger than the in-plane resolution, a full volu-
metric approach is not reliable, at least in the slice direction. Then, x; is only
computed in the axial plane by descending in the in-plane 2D gradient direction.
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2.5 Airway Local Frame

The Hessian matrix at the optimal scale, 04y, can be used to estimate the
direction of the airway longitudinal axis and define a local reference frame, if
not already available through the centerline extraction process. The longitudi-
nal airway axis, a, is given by the eigenvector associated to the most negative
eigenvalue at the airway center location, x;, such as a, = e3(x;). A local frame
for the airway locations, x;, is defined as the vectors a, and a, that form an
orthonormal basis with a, and at the same time are maximally aligned with the
scan axial directions.

Based on the airway local frame and center, a 2D slice containing the whole
airway is interpolated for further processing. Airway Inspector allows the user to
perform the interpolation in two ways; either in the oblique plane or the native
axial plane, if the slice thickness is not suitable for a reliable interpolation in
the z-direction. The oblique plane is defined as the plane whose normal is given
by the airway longitudinal axis, a,. The field of view (FOV) of the reformatted
airway plane is equal to 25.6 mm, although this value can be modified accordingly
to accommodate larger airways.

2.6 Airway wall extraction

The airway wall is defined by casting rays at regular angular increments from
the center location, x;. For each ray, the intensity profile of the 2D reformatted
slicer is interpolated at 0.05 mm. Each ray, A,(r), is a profile that comprises
a lumen section, a wall section and a parenchyma section. Airway Inspector
currently implements four methods for the definition of the inner and outer wall
boundaries. In section 3, we will elaborate on these methods.

The result of the wall extraction process is the inner and outer radial loca-
tions, 7;(p) and 7,(p) respectively, at the polar angle p. The airway wall bound-
aries in the local frame defined by the axes a, and a, are given by point set
Ti/o = Tijo(p)cos(p) and y;/o = 1i/0(p)sin(p) in Cartesian coordinates. The
current implementation uses 128 rays equally distributed in the interval [0, 27)
radians.

2.7 Ellipse Fitting

The airway extraction methods are based on a ideal circular model for the airway.
Due to adjacent vessels and other image artifacts, the airway detection can
be challenging and airway wall points can be noisy. To yield a more robust
measurement, a ellipse model is fitted to the set of points {;/,,¥;/o} using the
method proposed in [7,5]. Both the native ray-based measurements as well as
the ellipse model parameters are available for the user.

2.8 Airway labeling

Currently the airways are label in four categories: right/left upper/lower lobe,
based on the relative location of the airway center x; with respect to the CT
volume center. The user can redefine this assignment if it is not correct.
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2.9 Morphometric statistics

From the polar parametrization of the inner and outer wall, several morphome-
tric quantities are computed for each selected airway. For each quantity, mean,
standard deviation, maximum and minimum values are reported. The morpho-
metric quantities that Airway Inspector currently reports are:

— Inner, outer radius and wall thickness.

— Inner and outer perimeter: the perimeter is computed as a piecewise approx-
imation based on the data points

— Inner, outer and wall area: the area is computed as a piecewise approximation
of the area for each ray sector.

— Inner and outer ellipse parameters: the parameters of the ellipse fitting pro-
cess are the length of the major and minor axes and the angle that the major
axis with respect to a,.

— X-ray attenuation: airway inspector provides different metrics for the mea-
sured intensity inside the wall. Those metrics include the mean wall intensity
inside the wall, peak wall intensity (maximum X-ray attenuation inside the
airway wall for each ray) and the inner and outer luminal intensities (X-ray
attenuation at the location of the inner and outer wall respectively).

3 Airway wall morphology

Airway Inspector currently implements four different methods for the extraction
of the airway wall boundaries and it is poised to be an extensible platform where
new airway wall extraction methods can be implemented and compared against
is peers. Methods for the estimation of the airway wall can be divided in two cat-
egories: parametric [17, 3, 20, 22] and non-parametric [1, 18]. The former methods
rely on an estimation of the scanner point spread function (PSF), therefore they
can provide measurements beyond the limit imposed by the pixel resolution. The
latter do not use any knowledge about the scanner PSF, therefore their mea-
sures are more limited in range. Airway Inspector currently only implements
non-parametric methods given that they do not imply any knowledge about the
acquisition process. The implemented methods can be divided in two categories:
traditional methods and new methods based on phase congruency.

3.1 Traditional Methods

FWHM. FWHM defines the wall boundaries at the location where the inten-
sity profile is half the intensity between the peak intensity inside the wall and the
intensity of the inner/outer valley areas. Let 7,4, be the location of the max-
imum of the intensity profile A,(r) and r¢ ;, and rS,, be the locations of the
minimum intensity that are observed in the inner and outer walls, respectively.
Formally, the FWHM is given by

rlp) = A1 (A,J(rmaz) —QACT(r:‘m)); ro(p) = A1 (Ap(rmaz) —QACT(T;)M))
(3)
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where A;l is the inverse function of A, that maps intensity values into radial
locations. As seen from eq. (3), a robust and accurate determination of the wall
location based on the FWHM principle relies on a proper estimation of the peak
and valley locations (also known as eztrema points): prmaz, Py and p2,;,.. These
values can be worked out by means of the first order derivative.

dA, dA,

—0- i -0 dAP o _
W(T'maw) - 07 W(Tmzn) - 07 and dp (pmin) =0. (4)

Moreover, if we want to distinguish between the peak and the valley points, we
can inspect the sign of the second order derivative, such that
2
d°A,
dr

d?A,
dp

d2Ap
dr

(8 i) >0; and

min

(TWGZ) < 07 (r;)nin) > 0. (5)
In summary, the first order derivative of the intensity profile is the main oper-
ator that allows for the computation of the wall location based on the FWHM
principle. FWHM is quite sensitive to the selection of these locations and slight
differences in implementation can change the results yielded by FWHM. Airway
inspector uses gage to compute the needed derivatives along the ray direction
and the Newtwon-Raphson method [24] for the computation of the roots of the
first-order derivative.

ZCSEC. Based on the edge detection theory proposed by Marr and Hildreth
[12], the location of a boundary is defined as the inflection point between the
valley intensity and the peak intensity. This inflection point is located at the zeros
of the second order derivative; thus, the airway wall locations can be formally
defined as %(m) =0 and %(ru) = 0. The zero location of the second order
derivatives are computed using Netwon-Raphsons method.

3.2 Phase Congruency Methods

Based on the work by Morrone et al. [14], edge locations are related to those
locations where the local Fourier components of the intensity signal are maxi-
mally in phase [9]. This in-phase behavior has been denoted as phase congruency
and it has been used by the computer vision community as a feature descriptor
[15,6]. Airway Inspector defines the airway wall boundaries as the locations of
maximal phase congruency. Phase congruency can be computed either by means
of multiple CT reconstruction kernels by effectively changing the CT modula-
tion transfer function or by means of a computational approaches using a single
reconstruction kernel. We have previously reported these methods for the com-
putation of airway wall location and we have shown their superiority with respect
to traditional methods [18].

Single reconstructions. Phase congruency can be estimated by analyzing
the input signal with a bank of complex-value quadrature filters, g,(z), n =
0,...,N — 1. The output of a quadrature filter is a complex-value signal whose
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magnitude and argument represents the local energy and the local phase of the
input signal respectively. The quadrature filter bank used in Airway Inspector
is a log-Gabor family given by, in the Fourier domain,

10g2(ﬁ)

Gn (w) _ 67 2logZ () , (6)

where w,, is the central frequency of the filter and « is related to the filter
bandwidth. The filter bank is defined in Airway Inspector by three parameters
that can be adjusted by the user: number of filters, IV, the bandwidth of the
filters, B (in octaves), and a multiplication factor that defines the separation
of the filters, my,, ;. The central frequency for each filter in the bank is given
by the series w,, = m,ﬁ% where n is the n-th filter and \,,;, is the spatial
wavelength of the highest frequency filter and has a nominal value of 4 samples.

After filtering the 1D intensity profiles with the bank of quadrature filters,
Airway Inspector computes phase congruency as

Lo V(205 e (46 =0+ (5 T 40) » 0000}
= S 1A * g ()] o

maz (cos(¢(z) — 0),0) ,

where 6 depends on the feature type we want to extract by means of phase

congruency. Based on the meaning of the local phase, for the detection of the
inner wall interface 6 = 7/2 and for a outer wall interface @ = 2F. Then, the inner

and outer wall location are estimated by finding the location that maximizes
D /9(x) and D3, /9(7) respectively. ¢(z) is the energy weighted mean local phase
and can be approximated by

N-1 N-1
é(z) = atan2 <Z Im {A(r) xgn(r)}, Z Re {A(r) * gn(r)}> , (8)
n=0 n=0

where atan2(-,-) is the four quadrant inverse tangent.

Multiple reconstructions When multiple CT reconstructions are available,
maximal phase congruency is expressed as a common crossing point in the in-
tensity profiles of the kernels [18]. If multiple kernels are available, Airway In-
spector reformats the airway for each kernel and detects the common crossing
point for each 1D ray as the median intersection point for all possible pair-
wise combinations of kernels. The median operator is used because it is a ro-
bust estimator. If we have K kernels, the number of pairwise combinations
is M = ﬁ Let V be the set of all pairwise combinations and V(i) the
i — th pair of the set. Let Inter; and Inter, be the intersection operator that
computes the intersection point between two kernel profiles for the inner and
outer walls, respectively. The inner and outer wall locations are then given by

pijo = median (Uf\il [nteri/o{V(i)}) respectively.
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Fig. 2. (a) Airway Inspector GUI interface. (b) COPD module GUIL (c¢) Top- detected
airway with FWHM, ZCSEC and phase congruency. Botton- Lung extraction.

4 Software functionalities

Figure 2a shows a snapshot of the current user interface for Airway Inspector.
After the selection of several airway locations, the user can browse different
airway locations and can probe the intensity profile by moving the mouse over
the airway viewer. The airway wall is also plotted on the airway viewer for the
method currently active. The panel below the airway viewer shows a plotting of
the intensity profile, intensity derivatives, phase congruency responses (@ 2(x)
and P53 /5(x)) and the location of the estimated airway wall at the given ray
for the selected method. In the left panel the user can control the analysis by
selecting a detection method. The user can analyze either a given airway or all
the loaded airways. The analysis can be run for a given wall detection method
or all implemented methods. The results are reported in the lower left panel. A
general statistical summary is shown as a separate tab on the left panel. Three
airway viewer examples for each implemented detection method are shown in
Fig. 2c. Phase congruency produces the most consistent results having the best
performance in challenges areas like sections of the airway closed to vessels.

Additional features are the possibility of saving the current analysis in a
Comma Separated Values (CSV) file format. This file can be later loaded into
Airway Inspector and both the airway locations and the corresponding scan are
automatically loaded for further analysis. A batch mechanism is in place (see
Fig. 2b) that enables a automatic reanalysis of the data. The user can select the
directories containing both the Airway Inspector files and the CT scans, and the
software automatically loads every case, reanalyzes the data and saves the new
analysis files into a directory.

Besides Airway Inspector, the COPD module integrate another package, Em-
physema Inspector, for emphysema CT-based quantification based on histogram
analysis. As part of this package, the lungs are automatically segmented into
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three regions of equal volume, the trachea is extracted and the major vessels
inside the parenchyma are also identified as shown in Fig 2c.

5 Conclusions

Airway Inspector is a Free Open Source software package for the morphomet-
ric analysis of airway trees. More information about the project, tutorials and
source code can be found in www.airwayinspector.org. Although high-quality
commercial software packages, like VIDA [21], exist, Airway Inspector is one of
the first attempts to offer an open platform for the implementation of new airway
morphometry methods that can foster the application of CT-based quantitative
research. Airway Inspector is an evolving tool and some of the future features
are the following:

— Implementation of a reliable method for automatic extraction of tubular
structures in the lung: airway lumen and pulmonary vessels.

— Automatic filter bank design for phase congruency based on the prior knowl-
edge of the structure size that is to measured.

— Automatic labeling of airway generations according to anatomical standards.

— Support for airway generation-based statistics.

— Group-wise registration of airway trees corresponding to a population to
enable group statistical analysis.

— Porting to the next 3D Slicer generation (Slicer 3).

— Lobular segmentation.

— Integration with grid computing infrastructures to enable processing of large
cohorts.

Further work is also needed to validate the airway extraction and wall detec-
tion methods across platforms. Both accuracy and precision are key components
to study when designing a validation experiment. These kind of studies are very
important for the adoption of computer-based CT morphometry of the lung in
clinical research.
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Automated Lymph Node Labeling System
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Abstract. Lung cancer staging typically requires locating, measuring, and
labeling lymph nodes to determine affected nodes. Until recently, automation
and workflow reduction has focused on the first two tasks. According to the
classification scheme recommended by the American Joint Committee on
Cancer and the Union Internationale Contre le Cancer, pulmonary lymph nodes
are divided into four groupings with two to four stations per grouping. We
present a system that automatically assigns proper group and station labels to
lymph node locations within contrast enhanced chest CT images. The airways
and aortic arch are automatically segmented to obtain an anatomic model of the
patient. The model provides spatial features, such as distance and angle, used
by a support vector machine to automatically provide a label for any given
location. The model also provides interactive visual feedback, allowing the user
to understand the relationship between the nodes and nearby anatomy for
verification and for surgical planning.

1 Introduction

Recently the concept of automatically labeling lymph nodes has been presented to
assist in cancer staging [1]. Previous automation approaches mainly focused on lymph
node segmentation to assist in evaluation [2,3]. During cancer staging, lymph nodes
are evaluated based upon condition and location. The cancer severity not only
depends on the condition of the lymph node, but also on its anatomical location.
According to the American Joint Committee on Cancer and the Union Internationale
Contre le Cancer, pulmonary lymph nodes are divided into four groupings, each with
several stations [4]. A scoring or evaluation of a patient involves assessing lymph
nodes within each grouping.

We present a demonstration system for automated lymph node labeling and
visualization. The user can select any lymph node and receives the label associated
with that location. The labeling algorithm is independent of lymph node detection and
segmentation methods and can be applied soon after the data is loaded. The topic of
assisted labeling was later explored in [5] with a Bayesian approach to define station
regions as discussed in [1]. However, not all components used in station definitions
were acquired.



-304- FIRST INTERNATIONAL WORKSHOP ON
PULMONARY IMAGE PROCESSING

2 Method

The method proceeds by first obtaining a physical centerline and surface model of the
airways and aorta in the given image. A user input of a lymph node location then
produces several physical features relative to the models such as angles and distances
that are used as a feature vector on a trained support vector machine (SVM) to
produce a label. Further details are described below with complete details in [1].

2.1 Airway and Aortic Arch Modeling

The centerline and surface of the airways are obtained by an adaptive region growing
method followed by skeletonization and refinement. The model describes the
hierarchy of the airway tree and its physical location. The carina and left and right
main bronchus can be determined from the model. The aortic arch is obtained by a
tracking process focusing on a 3D response image. The top most region of the arch is
then determined. These anatomical features are based on those used to define labels in
the staging system.

A user input in a form of a 3D coordinate then produces a feature vector encoding
relative distances, angles, and vectors relating the location to specific locations on the
airway and aortic arch models. This vector is then passed to the SVM.

2.2 SVM classification

An SVM with a radial basis function is used to determine the label from the feature
vector. The SVM was trained and evaluated on a total of 10 images with 86 labeled
nodes. The labels in the ground truth were assigned by an experienced radiologist and
then verified for by a second reader.

The SVM was first used to test and train on all of the datasets to determine the best
features. A total of 8 features both from the airways and aorta were selected to be the
most discriminating with the angle in relation the carina deemed the most important
feature. The other features included the nearest distance to the airway tree and the
distance to the top of the aortic arch.

In order to evaluate the method with the 8 selected features, round-robin testing
was performed where all but one image was used to train the classifier with the
remaining image used for testing. This procedure was repeated for each image. The
results were 100% accuracy for group labeling and 76% for station labeling [1].

Even with a 76% accuracy for stations, staging scores rely more on the group
labeling than station labeling to determine severity. Hence, the current method can
still serve for automatic group labeling and assist in scoring.
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3 System

Figure 1 shows the application. A patient dataset is loaded and the airway and aortic
arch models are automatically determined. The user can click on any slice views
(transverse, sagittal, coronal) and then have the label automatically generated. Since
only a label is generated, the core labeling components of the system are portable and
can be easy incorporated into dictation systems to provide further assistance with
workflow. In this system, any user specified locations can be saved and documented
into a case study. The determined label is automatically added to this case study.

Conversely, since the system has regions associated with station labels, the user
can also focus on a particular region of the image given a specific station that they are
interested in pursuing.

Folir Uiy Prgmtins
Maichg Cick

T0 - 7 Infenor Mediastinal

Fig. 1. The demonstration system for automatic lymph node labeling. In this example, the user
has selected a location on the axial slice. The “Classify Location” button is pressed to produce
the label associated with given lymph node location. This process is then repeated for each
lymph node found. The labeled node and its location are then saved into the patient’s case study
for future reference.
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4 Conclusions

We have demonstrated a prototype system for automated lymph node labeling. The
interface is simple in that the user simply selects a location to immediately obtain a
station label. Also, knowing a specific station, the region bounded by that station can
also be obtained. The display of the models obtained allow for verification and better
spatial understanding of the station label.

The labeling method is open to different labeling systems and image modalities
since it based on physical features. In addition to benefiting the user, the regions
defined by the method can be used as precursor inputs to lymph node detection and
segmentation methods to help limit search regions.

The evaluation with the SVM provided a 76% accuracy for nodal station labels.
Without an accurate model of the brachiocephalic artery, pulmonary artery, or
pulmonary ligament, it is difficult to exactly model the labeling system. These are
future components that must be incorporated to allow for a label determination on a
Bayesian level. Without these components, an SVM allows us to maximize the
accuracy with the available models and offer accurate group labels.

The system will be more complete with the incorporation of these additional
models. However, the SVM would still be of use in determining useful features to
help validate and even possibly improve existing lymph node station schemes.
Valuable clues can be garnered to provide a more intuitive boundary description.
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